No calculators, books, or other resources allowed. The total score is 24 points. The subsequent oral exam has a maximum of 6 points. An overall total of 15 points plus a successful completion of the group project are required to pass.

Problem 1 (4 Points)
Find the (unique) solution to

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)-15 x(t)=30 t+11
$$

satisfying the initial values $x(0)=1$ and $x^{\prime}(0)=-4$.

Problem 2 (4 Points)

Use the Laplace transform to find the solution to the following initial value problem:

$$
\begin{aligned}
x^{\prime \prime}(t)-3 x^{\prime}(t)+2 x(t) & =e^{3 t} \\
x(0) & =1 \\
x^{\prime}(0) & =0
\end{aligned}
$$

Problem 3 (4 Points)
Find a fundamental matrix for the homogeneous system $x^{\prime}(t)=A x(t)$ with

$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 2 & 0 \\
0 & 1 & 3
\end{array}\right)
$$

Problem 4 (4 Points)
Consider the following boundary problem. Compute its associated Green's function and express the solution in terms of it.

$$
\begin{aligned}
y^{\prime \prime}(x)-y(x) & =x^{4}+1 \\
y(0) & =0 \\
y(1) & =0
\end{aligned}
$$

Problem 5 (4 Points)
For which $k \in \mathbb{R}$ and $L>0$ does there exist a non-trivial solution on the interval $[0, L]$ to the equation $y^{\prime \prime}(t)+k y(t)=0$ with $y(0)=y(L)=0$? Prove your answer.

Problem 6 (4 points)
(1) Show that the autonomous systems

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-x
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x^{\prime}=y\left(x^{2}+y^{2}\right) \\
y^{\prime}=-x\left(x^{2}+y^{2}\right)
\end{array}\right.
$$

have the same orbits. That is, show that their solution curves only differ by a reparametrization. (Hint: First describe the solution curves for the first autonomous system and then show that a reparametrization solves the second.)
(2) Compute the equilibrium points for both systems and determine whether they are stable, asymptotically stable or unstable.

