STOCKHOLMS UNIVERSITET, MATEMATISKA INSTITUTIONEN,
Avd. Matematisk statistik

Suggested solutions

Exam: Introduction to Finance Mathematics (MT5009), 2023-08-25

Problem 1

See Capinski \& Zastawniak, for example ch. 1, 4, 5.

Problem 2

(A) The weights of the market portfolio is (see Capinski \& Zastawniak p. 83)

$$
\mathbf{w}_{M}=\frac{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1}}{(\mathbf{m}-R \mathbf{u}) \mathbf{C}^{-1} \mathbf{u}^{T}}
$$

where \mathbf{u} is a vector of ones, and in our case

$$
\mathbf{m}=(0.05,0.06)
$$

and

$$
\mathbf{C}=\left(\begin{array}{cc}
0.1^{2} & 0.1 \cdot 0.12 \cdot 0.2 \\
0.1 \cdot 0.12 \cdot 0.2 & 0.12^{2}
\end{array}\right)
$$

i.e.,

$$
\mathbf{C}=\left(\begin{array}{cc}
0.01 & 0.0024 \\
0.0024 & 0.0144
\end{array}\right)
$$

Standard calculations give

$$
\mathbf{C}^{-1}=\left(\begin{array}{cc}
104,1667 & -17,3611 \\
-17,3611 & 72,3380
\end{array}\right)
$$

Lastly, we use the formula above and find with basic calculations

$$
\mathbf{w}_{M}=(0.5060,0.4940) .
$$

(B) The solution to this variance minimization problem is given in Capinski \& Zastawniak p. 73, as $\mathbf{w}_{M V P}=\frac{\mathbf{u C}^{-1}}{\mathbf{u C}^{-1} \mathbf{u}^{T}}$. Relying on the information in (A) above we find with some calculations that

$$
\mathbf{w}_{M V P}=(0.6122,0.3878)
$$

Problem 3

(A) Write $S^{u}=S(0)(1+U)=22$ and $S^{u}=S(0)(1+D)=19$. The replicating portfolio is given by

$$
\begin{aligned}
x(1) S^{u}+y(1)(1+R) & =\max \left\{S^{u}-X ; 0\right\} \\
x(1) S^{d}+y(1)(1+R) & =\max \left\{S^{d}-X ; 0\right\},
\end{aligned}
$$

where $x(1)$ is the number of shares and $y(1)$ is the amount of money in the risk-free asset in the replicating portfolio. By plugging in numbers we see that the replicating portfolio should satisfy

$$
\begin{aligned}
& x(1) 22+y(1)=4 \\
& x(1) 19+y(1)=1 .
\end{aligned}
$$

Solving this equation system gives the replicating portfolio $x(1)=1$ and $y(1)=$ -18 . The cost of the replicating portfolio is $x(1) S(0)+y(1)=1 \cdot 20-18=2$.
(B) Replicating the call means buying shares at $t=0$ and selling them at $t=1$ (in this case incurring a proportional cost of 5%). Hence, the replicating portfolio should in this case solve

$$
\begin{aligned}
x(1)(1-0.05) S^{u}+y(1)(1+R) & =\max \left\{S^{u}-X ; 0\right\} \\
x(1)(1-0.05) S^{d}+y(1)(1+R) & =\max \left\{S^{d}-X ; 0\right\}
\end{aligned}
$$

By plugging in numbers we find that this boils down to

$$
\begin{aligned}
& x(1) 20.9000+y(1)=4 \\
& x(1) 18.0500+y(1)=1 .
\end{aligned}
$$

Solving this equation system gives the replicating portfolio

$$
\begin{aligned}
& x(1)=1.0526 \\
& y(1)=-18 .
\end{aligned}
$$

The cost of the replicating portfolio is

$$
x(1) S(0)+y(1)=1.0526 \cdot 20-18=3.0526
$$

Problem 4

This is based on Capinski \& Zastawniak around p. 227. We aim at finding the value VaR that solves the equation

$$
P\left(10 S(0) e^{r}-10 S(1)<V a R\right)=0.95
$$

Use that the random variables $S(1)$ and $S(0) e^{\mu+\sigma Z}$ (where $Z \sim N(0,1)$) have the same distribution, to see that the above equation is equivalent to

$$
\begin{aligned}
& P\left(10 S(1)>10 S(0) e^{r}-V a R\right)=0.95 \\
& \Leftrightarrow P\left(e^{\mu+\sigma Z}>e^{r}-\frac{V a R}{10 S(0)}\right)=0.95
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow P\left(\mu+\sigma Z>\ln \left(e^{r}-\frac{V a R}{10 S(0)}\right)\right)=0.95 \\
& \Leftrightarrow P\left(Z>\frac{\ln \left(e^{r}-\frac{V a R}{10 S(0)}\right)-\mu}{\sigma}\right)=0.95 \\
& \Leftrightarrow 1-P\left(Z<\frac{\ln \left(e^{r}-\frac{V a R}{10 S(0)}\right)-\mu}{\sigma}\right)=0.95 \\
& \Leftrightarrow P\left(Z<\frac{\ln \left(e^{r}-\frac{V a R}{10 S(0)}\right)-\mu}{\sigma}\right)=0.05
\end{aligned}
$$

Recalling the value for standard normal quantile $N^{-1}(0.05) \approx-1.645$, this yields

$$
\frac{\ln \left(e^{r}-\frac{V a R}{10 S(0)}\right)-\mu}{\sigma}=-1.645
$$

Plugging in values for $S(0), r, \mu$ and σ and solving for $V a R$ yields

$$
V a R=25.59
$$

Problem 5

(A) We find

$$
\begin{aligned}
p_{*} & =\frac{R-D}{U-D}=1 / 3 \\
S^{u u} & =S(0)(1+U)^{2}=24.20 \\
S^{u d} & =S(0)(1+U)(1+D)=20.90 \\
S^{d d} & =S(0)(1+D)^{2}=18.05
\end{aligned}
$$

The risk-neutral valuation formula for the put is

$$
\begin{align*}
& P_{E}(0) \\
& =\frac{1}{(1+R)^{2}} E_{*}\left[(X-S(2))_{+}\right] \\
& =\frac{1}{(1+R)^{2}}\left[p_{*}^{2}\left(X-S^{u u}\right)_{+}+2 p_{*}\left(1-p_{*}\right)\left(X-S^{u d}\right)_{+}+\left(1-p_{*}\right)^{2}\left(X-S^{d d}\right)_{+}\right] \tag{1}
\end{align*}
$$

Plugging in the numbers above and basic calculations give

$$
P_{E}(0)=0.8667
$$

(B) Similar to the above we find (with notation in line with Capinski \& Zastawniak) that

$$
\begin{aligned}
P_{E}^{u} & =\frac{1}{(1+R)}\left[p_{*}\left(X-S^{u u}\right)_{+}+\left(1-p_{*}\right)\left(X-S^{u d}\right)_{+}\right] \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
P_{E}^{d} & =\frac{1}{(1+R)}\left[p_{*}\left(X-S^{u d}\right)_{+}+\left(1-p_{*}\right)\left(X-S^{d d}\right)_{+}\right] \\
& =1.300
\end{aligned}
$$

Using this we can describe the replicating strategy for the option as follows:
The replicating portfolio formed at time 0 is given by

$$
\begin{aligned}
x(1) & =\frac{P_{E}^{u}-P_{E}^{d}}{S^{u}-S^{d}}=-0.4333 \\
y(1) & =\frac{P_{E}^{u}-x(1) S^{u}}{1+R}=9.5333 .
\end{aligned}
$$

The replicating portfolio formed at time 1 in case $S(1)=S^{u}$ is given by

$$
\begin{aligned}
x^{u}(2) & =\frac{P_{E}^{u u}-P_{E}^{u d}}{S^{u u}-S^{u d}}=0 \\
y^{u}(2) & =\frac{P_{E}^{u u}-x^{u}(2) S^{u u}}{1+R}=0 .
\end{aligned}
$$

The replicating portfolio formed at time 1 in case $S(1)=S^{d}$ is given by

$$
\begin{aligned}
x^{d}(2) & =\frac{P_{E}^{u d}-P_{E}^{d d}}{S^{u d}-S^{d d}}=-0.6842, \\
y^{d}(2) & =\frac{P_{E}^{u d}-x^{d}(2) S^{u d}}{1+R}=14.3000
\end{aligned}
$$

(C) If we view the option value $P_{E}(0)$ in Equation (1) in (A) above as a function of the strike $X>0$ it is clear that it is an increasing function such that $X \rightarrow \infty \Rightarrow P_{E}(0) \rightarrow \infty$, and $X \rightarrow 0 \Rightarrow P_{E}(0) \rightarrow 0$, and that there exists exactly one strike price X such that $P_{E}(0)=10$.

