STOCKHOLM UNIVERSITY

Department of Mathematics
Salvador Rodríguez-López
Lefteris Theodosiadis

Re-sit exam
Mathematics for Economic and Statistical Analysis
MM1005, Fall term; 7,5 ECTS
9 November 2022

Instructions:

- During the exam you may not use any textbook, class notes, or any other supporting material.
- Non-graphical calculators will be provided for the exam by the department. Other calculators may not be used.
- In all solutions, justify your answers? communicate your reasoning. Use ordinary language where appropriate, not just mathematical symbols.
- Use natural language, not just mathematical symbols. Write clearly and legibly
- Mark your final answer to each question clearly by putting a a box around it.

Grades: Each solved problem is awarded by up to 10 points. At least 35 points would guarantee grade E, 42 for D, 49 for C, 56 for B and 63 for A. Note that the problems are not ordered according to the difficulty!

1. Compute the Taylor polynomial of degree three for the function $f(x)=\ln \left(x^{3}+1\right)$ about the point $x_{0}=0$.

Solution Hence, the Taylor polynomial of degree three of the function f around the point $x_{0}=0$ is

$$
P_{3}(x)=\frac{6}{3!} x^{3}=x^{3}
$$

2. Calculate the integrals
a) $\int \frac{2 x^{3}-x^{2}}{x-1} \mathrm{~d} x$
b) $\int_{0}^{\infty} x 2^{-x^{2}+1} \mathrm{~d} x$

Solution a) Making the polynomial division one obtains that

$$
\int \frac{2 x^{3}-x^{2}}{x-1} \mathrm{~d} x=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}+x+\ln |x-1|+C \quad \text { where } C \in \mathbb{R} .
$$

b)

$$
\int_{0}^{\infty} x 2^{-x^{2}+1} \mathrm{~d} x=\frac{1}{\ln 2}
$$

3. The expression

$$
3 x^{2} y+e^{x+y}+\ln (x+y)-e^{y}=0
$$

defines y as a function of x. What is the equation of the tangent line to $y(x)$ at the point $x=0$?
Solution The tangent line to $y(x)$ at $x=0$ is given by

$$
P(x)=1-(1+e) x
$$

4. Find the value of the parameters a, b such that the function given by $f(x)=2 x^{3}+a x^{2}-12 x+b$ has a stationary point at $x=1$ with $f(1)=0$. Determine for which intervals is the function increasing/decreasing.

Solution The function is increasing on the interval $(-\infty,-2)$ and $(1,+\infty)$.
The function is decreasing on the interval $(-2,1)$.
5. Consider the function

$$
f(x, y)=5-3 x+3 y^{2} x+2\left(x^{3}+y^{3}\right)
$$

(a) Find the stationary points of $f(x, y)$.
(b) Let D be the square with vertices $(0,0),(0,1),(-1,1)$ and $(-1,0)$. Determine the maximum and minimum value of f on D.

Solution The four stationary points are

$$
\left(\pm \frac{1}{\sqrt{3}}, \mp \frac{1}{\sqrt{3}}\right), \quad\left(\pm \frac{1}{\sqrt{2}}, 0\right)
$$

The maximum is 7 and it is attained at the point $(0,1)$, and the minimum is 5 and it is attained at $(-1,1)$ and $(0,0)$.
6. For which real numbers x is the series $S=\sum_{n \geq 1}(\ln (x+\sqrt{e}))^{n}$ convergent? Find x such that $S=1$.

Solution The series converges for $x \in(-\sqrt{e}, e-\sqrt{e})$

$$
S=1 \text { only for } x=0
$$

(ヌ) Consider the matrix $A=\left(\begin{array}{lll}1 & a & 6 \\ 2 & 4 & a \\ 1 & 2 & 0\end{array}\right)$ where a is a parameter.
(a) Calculate the determinant of $A,|A|$ as a function of the parameter a.
(b) Find all the values of a for which A is not invertible.
(c) Determine whether the system

$$
\left\{\begin{aligned}
2 x+4 y & =2 \\
x+6 z & =1 \\
x+2 y & =1
\end{aligned}\right.
$$

has one solution, no-solution or an infinite number o solutions. If it has any solution, find all possible solutions.

Solution $\operatorname{det} A=-2 a+a^{2}=a(a-2)$
So, for $a \in\{0,2\}$ te matrix A is no invertible.
The system has an infinite number of solutions.

