STOCKHOLM UNIVERSITY
Department of Mathematics
Salvador Rodríguez-López

Examination in
Mathematics for Economic and Statistical Analysis
MM1005, Fall term; 7,5 ECTS
25 September 2023

Instructions: - During the exam you may not use any textbook, class notes, or any other supporting material.

- Non-graphical calculators will be provided for the exam by the department. Other calculators may not be used.
- In all solutions, justify your answers.
- Use natural language, not just mathematical symbols. Write clearly and legibly
- Mark your final answer to each question clearly by putting a a box around it.
- Do not write two exercises on the same page.

Grades: Each solved problem is awarded by up to 10 points. At least 35 points would guarantee grade E, 42 for D, 49 for C, 56 for B and 63 for A. Note that the problems are not ordered according to the difficulty!

1. Calculate the limits
a) $\lim _{x \rightarrow+\infty} \frac{x^{2}-\sqrt{1+25 x^{4}}}{x^{2}+25 x+1}$
b) $\lim _{x \rightarrow 0} \frac{x e^{x^{2}}-x-x^{3}}{2 \ln \left[(e+x)^{x^{5}}\right]}$

Solution

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}-\sqrt{1+25 x^{4}}}{x^{2}+25 x+1}=-4 \quad \quad \lim _{x \rightarrow 0} \frac{x e^{x^{2}}-x-x^{3}}{2 \ln \left[(e+x)^{x^{5}}\right]}=-\frac{1}{4}
$$

2. Calculate the integrals
a) $\int 2\left(\frac{x^{3}+7 x^{2}+16 x+11}{x+1}\right) \mathrm{d} x$
b) $\int_{-\infty}^{0} x^{2} 5^{x^{3}} \mathrm{~d} x$

Solution

$$
\begin{aligned}
\int 2\left(\frac{x^{3}+7 x^{2}+16 x+11}{x+1}\right) \mathrm{d} x & =2 \int\left(x^{2}+6 x+\frac{1}{x+1}+10\right) \mathrm{d} x \\
& =\frac{2}{3} x^{3}+6 x^{2}+2 \ln |x+1|+20 x+C \quad \text { where } C \in \mathbb{R} . \\
& \int_{-\infty}^{0} x^{2} 5^{x^{3}} \mathrm{~d} x=\frac{1}{3 \ln 5}
\end{aligned}
$$

3. The expression

$$
e^{x+1} y^{3}+(x+1)^{2} e^{y}-x^{2}-6 x+3=0
$$

defines y as a function of x. What is the equation of the tangent line to $y(x)$ at the point $x=-1$?
Solution Substitution gives

$$
y(-1)=2
$$

Implicit differentiation yields

$$
y^{\prime}(-1)=1
$$

Then the tangent line becomes

$$
Y(x)=2+(x-1)=x+1
$$

4. Find the value of the parameters a, b such that the function given by

$$
f(x)=\frac{a x^{2}+x(6 a+b)+9 a+3 b+1}{x+1}
$$

has a local extreme at $f(-2)=1$. Is it a local maximum or a minimum point? Is it a global maximum/minimum point?

Solution Differentiating yields

$$
f^{\prime}(x)=\frac{a\left(x^{2}+2 x-3\right)-2 b-1}{(x+1)^{2}}
$$

Hence we need to solve

$$
\left\{\begin{array} { l }
{ 1 = f (1) } \\
{ 0 = f ^ { \prime } (1) }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ 1 = - a - b - 1 } \\
{ 0 = - 3 a - 2 b - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=3 \\
b=-5
\end{array}\right.\right.\right.
$$

In this case

$$
f^{\prime}(x)=\frac{3 x(x+2)}{(x+1)^{2}}
$$

Note that the function is not defined for $x \neq-1$. If $x<-2$ then $f^{\prime}(x)>0$ and if $-2<x<-1$ or $-1<x<0$ then $f^{\prime}(x)<0$. This implies that $x=-2$ is a local maximum point for f.

Besides, note that for $a=3$ and $b=-5$

$$
f(x)=10+3 x+\frac{3}{x+1}
$$

In particular

$$
\lim _{x \rightarrow-1^{+}} 10+3 x+\frac{3}{x+1}=+\infty
$$

so we have that f has no global maximum.
5. Find all stationary points for the function

$$
f(x, y)=-(y+1)\left(x^{2}+2 x+y-3\right)
$$

and determine whether they are maximum, minimum or saddle points.
Solution The function $f(x, y)=(-y-1)\left(x^{2}+2 x+y-3\right)$ has partial derivatives

$$
f_{x}^{\prime}(x, y)=-2(1+x)(1+y) \quad \text { and } \quad f_{y}^{\prime}(x, y)=-x^{2}-2 x-2 y+2
$$

This gives us the system of equations

$$
\left\{\begin{array} { l }
{ f _ { x } ^ { \prime } (x , y) = 0 } \\
{ f _ { y } ^ { \prime } (x , y) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{r}
-2(1+x)(1+y)=0 \\
-x^{2}-2 x-2 y+2=0
\end{array}\right.\right.
$$

The first equation gives that $y=-1$ or $x=-1$.
Setting $x=-1$ in the scond equation gives

$$
3-2 y=0 \quad \Leftrightarrow \quad y=\frac{3}{2} .
$$

Setting $y=-1$ in the second equation gives

$$
4-2 x-x^{2}=0 \quad \Leftrightarrow \quad x=-1 \pm \sqrt{5}
$$

We have then three stationary points $\left(-1, \frac{3}{2}\right),(-1-\sqrt{5},-1)$ och $(-1+\sqrt{5},-1)$.
Calculating the second partial derivatives gives

$$
f_{x x}^{\prime \prime}(x, y)=-2-2 y, f_{x y}^{\prime \prime}(x, y)=-2 x-2 \quad \text { och } \quad f_{y y}^{\prime \prime}(x, y)=-2
$$

Letting $(x, y)=\underline{\left(-1, \frac{3}{2}\right)}$ give $A=f_{x x}^{\prime \prime}=-5, B=f_{x y}^{\prime \prime}=0$ and $C=f_{y y}^{\prime \prime}=-2$.
Since $A<0$ (even $C<0$) and $A C-B^{2}=10>0$ then it is a local maximum point.
Letting $(x, y)=(-1+\sqrt{5},-1)$ gives $A=f_{x x}^{\prime \prime}=0, B=f_{x y}^{\prime \prime}=-2 \sqrt{5}$ och $C=f_{y y}^{\prime \prime}=-2$.
Since $A C-B^{2}=-4.5<0$ it follows that it is a saddle point.
Letting $(x, y)=\underline{(-1-\sqrt{5},-1)}$ gives $A=f_{x x}^{\prime \prime}=0, B=f_{x y}^{\prime \prime}=2 \sqrt{5}$ och $C=f_{y y}^{\prime \prime}=-2$.
Also we have that $A C-B^{2}=-4 \cdot 5<0$ so it is also a saddle point.
6. For which real numbers x is the series $S=\sum_{n \geq 1}\left(\frac{2}{3 \sqrt{x+3}}\right)^{n}$ convergent? Find x such that $S=\frac{1}{2}$.

Solution (a) We need that $x>-3$ for the square root to be well defined. To converge, we need that $\sqrt{x+3}>\frac{2}{3}$, which is equivalent to

$$
x+3>\frac{4}{9} \Leftrightarrow x>\frac{-23}{9}(>-3) .
$$

(b) Note that for $x>\frac{-23}{9}$ we have that

$$
S=\frac{2}{3 \sqrt{x+3}-2}=\frac{1}{2} \Leftrightarrow x=1
$$

7. Determine for which values of the parameter a, the system

$$
\left\{\begin{array}{l}
a x+2 y+3 z=5 \\
5 x+2 y+a z=2 \\
5 x+2 y+3 z=a
\end{array}\right.
$$

has exactly one solution, no solutions or an infinite number of solutions.
Solution Defining A as the matrix

$$
A=\left(\begin{array}{lll}
a & 2 & 3 \\
5 & 2 & a \\
5 & 2 & 3
\end{array}\right)
$$

we can write the system as

$$
A \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
2 \\
a
\end{array}\right)
$$

A direct calculation gives that

$$
\operatorname{det} A=-30+16 a-2 a^{2}=-2(-5+a)(-3+a)
$$

Hence, for $a \neq 5$ and $a \neq 3$, the system has a unique solution.
Letting $a=5$, and doing Gaussian elimination yields that the system has an infinite number of solutions.
Letting $a=3$, and doing Gaussian elimination, one shows that the system has no solution.

