Tentamensskrivning i Topologi MM7052 7,5 hp 2023-12-19

- (1) (a) [1 pt] Show that the collection $\mathcal{B} = \{(a, \infty) \subset \mathbb{R} : a \in \mathbb{R}\}$ is a basis for a topology \mathcal{T} on \mathbb{R} .
 - (b) [1 pt] What are the closed sets in \mathcal{T} ?
 - (c) [1 pt] What are the limit points of the set (0, 1) with respect to \mathcal{T} ?
 - (d) [1 pt] What are the path connected components of \mathbb{R} with respect to \mathcal{T} ?
 - (e) [1 pt] Determine if any of the sets $\{\frac{1}{n} : n \in \mathbb{N}\}$ and $\{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ are compact with respect to \mathcal{T} .
- (2) Let X be a topological space and define $\Delta : X \to X \times X$ by $\Delta(x) = (x, x)$.
 - (a) [2 pts] Show that Δ is continuous and then that it is an embedding.
 - (b) [3 pts] Show that $\Delta(X)$ is closed if and only if X is Hausdorff. (Note that this is a standard result, but you need to prove it and cannot just refer to a text book.)
- (3) (a) [3 pt] Consider the cylinder $\mathbb{S}^n \times I$ and define $f : \mathbb{S}^n \times I \to \overline{\mathbb{B}}^{n+1}$ by $(x,t) \mapsto tx$. Show that f is a quotient map for all $n \ge 0$.
 - (b) [2 pt] Show that the quotient map $\mathbb{R}^{n+1} \setminus \{0\} \to (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$, where $x \sim y$ if $x = \lambda y$ for some non-zero $\lambda \in \mathbb{R}$, is not a covering map for any $n \geq 0$.
- (4) [5 pts] Let G be a connected topological group with neutral element e and $f : \mathbb{R} \to G$ a continuous group homomorphism. For every $n \in \mathbb{Z}$ let $\alpha_n : I \to G$ be the path $\alpha_n(t) = f(nt)$. Prove that if $\mathbb{Z} \subset f^{-1}(e)$, the map $\mathbb{Z} \to \pi_1(G, e)$ defined by $n \mapsto [\alpha_n]$, is a group homomorphism.
- (5) [5 pts] Compute the fundamental group of the complement of n points on \mathbb{S}^2 for all $n \ge 1$.
- (6) [5 pts] Prove the following theorems:

Theorem 1. (Homotopy Classification of Loops in \mathbb{S}^1) Two loops in \mathbb{S}^1 based at the same point are path-homotopic if and only if they have the same winding number.

Theorem 2. (Fundamental Group of the Circle) The group $\pi_1(\mathbb{S}^1, 1)$ is an infinite cyclic group generated by the loop $\omega : I \to \mathbb{S}^1$ defined by $\omega(s) = e^{2\pi i s}$.