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(1)

Solution:

(a) [1 pt] Show that the collection B = {(a,00) C R: a € R} is a basis for
a topology 7 on R.

(b) [1 pt] What are the closed sets in 77

(c) [1 pt] What are the limit points of the set (0,1) with respect to 77

(d) [1 pt] What are the path connected components of R with respect to 77

(e) [1 pt] Determine if any of the sets {1 : n € N} and {1 : n € N} U {0}
are compact with respect to 7.

(a) First note that for all € R holds z € (x — 1,00), so that B covers R.
Moreover, for any a,b € R, we have (a,00)N (b, 00) = (max(a,b), 00) € B.
Hence, by Proposition 2.44, the set B is a basis for a topology on R.

(b) We first claim that 7 = BU {R,&}. To prove this claim, note that
the open sets of T are precisely those that can be written as unions of
elements of B. In particular the inclusion “O” is clear. To prove the
other inclusion, let A C B be any subset and A C R the subset such that
A={(a,00) | a € A}. Write U = Ugc 4 B. If A is empty, then U = @.
Otherwise, set m = inf,c4 a. If m = —oo0, i.e. if A is unbounded below,
then U = R. Otherwise m € R and U = (m, c0) by definition of the
infimum. This proves the claim.

The claim implies that the set of closed sets in T is precisely equal to
{(-o0,0a] | a € R} U {2, R}.

(¢c) We claim that the set of limit points of (0,1) in 7 is equal to (—oo, 1].
Let [ < 1. Then an open set U that contains [ is either of the form (a, 00)
with a <1 <1, or U=TR. In either case UN(0,1) O (max(0,a),1) # &,
and hence [ is a limit point of (0,1). On the other hand, let £ > 1. Then
(%, 00) is an open set containing k that does not intersect (0,1). Hence
k is not a limit point of (0,1).

(d) We claim that R is path-connected with respect to T, i.e. that the whole
set R is the only path component. To prove this, it is enough to show
that for all a,b € R such that a < b the map ~: [0,1] — R given by
~(t) = (1 — t)a + tb is continuous with respect to 7. Let ¢ € R; then we
have that

[0,1], ife<a
7 (e 00)) = 4 (522,1], ifa<e<b
a, ifb<c

is open in [0, 1]. Similarly v~!(R) = [0,1] and y~!(@) = @ are open in
[0,1]. Hence v is continuous.

(e) The set A = { |n € N} is not compact with respect to 7. To see this,
note that the set C = {(,00) | n € N} covers A since 1 € (n%‘_l,oo)7
but that no finite subset of C covers A.

The set B = AU {0} is compact with respect to 7. To see this, let
D C T be a subset that covers B. Then there exists a D € D such that
0 € D. Hence either D = (d,00) with d < 0, or D = R. In either case

the finite subset {D} C D covers B.

(2) Let X be a topological space and define A : X — X x X by A(z) = (z, ).

(a) [2 pts] Show that A is continuous and then that it is an embedding.
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(b) [3 pts] Show that A(X) is closed if and only if X is Hausdorff.
(Note that this is a standard result, but you need to prove it and cannot
just refer to a text book.)

(a) The map A is continuous by the characteristic property of the product,
since both component functions are equal to the identity of X, which
is continuous. Furthermore define p = pry[a(x): A(X) — X, i.e. the
projection to the first coordinate, restricted to the image of A. The map
p is continuous since the projection is continuous. Furthermore note that
po A is the identity of X and that A op is the identity of A(X). Thus
A is a homeomorphism onto its image, i.e. an embedding.

(b) That A(X) C X x X is closed is equivalent to the existence, for all
(z,y) € (X xX)\A(X), of an element of the basis of X x X that contains
(z,y) and does not intersect A(X). Note that (z,y) € (X x X)\A(X) is
equivalent to x # y. Furthermore, an element of the basis of X x X is of
the form U x V with U and V open subsets of X, and it contains (z,y)
if and only if € U and y € V. Lastly note that (U x V)NA(X) = @ is
equivalent to U NV = &. Hence A(X) being closed is equivalent to the
existence, for all z,y € X with x # y, of two open subsets U and V of
X such that z € U, y € V, and U NV = &. But this is the definition of
X being Hausdorff.

(a) [3 pt] Consider the cylinder S® x I and define f : S" x I — B! by
(z,t) — ta. Show that f is a quotient map.

(b) [2 pt] Show that the quotient map R**1\ {0} — (R"*1\ {0})/ ~, where
x ~ y if x = Ay for some non-zero A € R, is not a covering map.

(a) The map f is a restriction of the map g: R"*! x R — R"*! given by
g(z,t) = tz. Since g is continuous, so is f. Furthermore f is surjective
since we have, for any b € B! \ {0}, that f(TZ\v |b])) = b and that
f(s,0) = 0, where s is any element of S”. Moreover note that S™ x I is
compact, since both S” and I are compact, and that B is Hausdorff
since it is a subspace of R**!. Hence f is a quotient map by the closed
map lemma.

(b) Consider the equivalence class z of the point (1,0, ...,0) in the quotient.
The preimage of x under the quotient map is equal to the subspace
(R\ {0}) x {0} C R\ {0}. This subspace is not discrete and hence
the quotient map is not a covering.

[6 pts] Let G be a connected topological group with neutral element e and f :
R — G a continuous group homomorphism. For every n € Z let a,, : [ — G
be the path a,(t) = f(nt). Prove that if Z C f~'(e), the map Z — m1(G,€)
defined by n — [ay,], is a group homomorphism.

Let R/Z be the quotient group, and write 7: R — R/Z for the projection
map. Since Z C ker(f), there is a unique group homomorphism g: R/Z — G
such that gom = f. Equipping R/Z with the quotient topology induced by ,
we obtain that g is continuous by the characteristic property of the quotient
topology. Moreover, let 8,: I — R/Z be the map given by (,(t) = m(nt),
which is continuous as a composite of two continuous maps. Note that o, =
g © Pn.

By Example 3.92, there is a homeomorphism ¢: R/Z — S' given by
#([z]) = €2™**. This induces a group isomorphism ¢, : 1 (R/Z, [0]) = w1 (S, 1).
Composing this with the group isomorphism Z — 71(S', 1) given by n +— [y,,]
where 7, (t) = e*™ we obtain a group isomorphism Z — w1 (R/Z, [0]) given
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by n — [B,] (since ¢ o 3, = ;). Further composing this with g., we obtain
a group homomorphism Z — 71 (G, e) given by n — [g o B,] = [yn]-

[5 pts] Compute the fundamental group of the complement of n points on S?.

By the stereographic projection, the complement of a single point in S? is
homeomorphic to R2. Hence the complement of n > 1 points in S? is homeo-
morphic to the complement of n — 1 points in R2.

We now claim that the complement of & > 0 points in R? is path-connected
and that its fundamental group is isomorphic to the free product of k copies
of Z. We proceed by induction on k. The claim is true for & = 0 since R? is
contractible; in particular its fundamental group is trivial. Now assume that
k > 1 and let A be the set of k points whose complement we are considering.

Let C be the convex hull of the finite subset A C R?; this is a non-empty
convex polygon. Let a be a corner of this polygon (in particular a € A). By
rotating and scaling R?, we can assume that a = (0,0) and that a is the only
point of C (and hence the only point of A) whose first coordinate is < 0.
Then there exist z,y € R such that 0 < z <y and A\ {a} C (y,00) x R.

Let U = ((—o0,y) x R)\ {a} and V = ((z,00) x R) \ (A \ {a}). Then U
and V together are an open cover of R? \ A. Moreover U = R?\ {(0,0)},
UNV = (z,y) x R=R? and V is homeomorphic to a complement of k — 1
points in R2. Note that U ~ S!; in particular U is path-connected and 7 (U) is
isomorphic to Z. By induction V is path-connected and 71 (V') is isomorphic
to the free product of k£ — 1 copies of Z. Since U NV is non-empty, this
implies that R?\ A is path-connected. Moreover, since U NV is contractible,
we can apply the special case of the Seifert—van Kampen theorem given in
Corollary 10.4 to deduce that 71 (R?\ A) = 71 (U) x w1 (V) = Zx 71 (V), which
is the free product of k copies of Z.

[5 pts] Prove the following theorems:

Theorem 1. (Homotopy Classification of Loops in S*) Two loops in S' based
at the same point are path-homotopic if and only if they have the same winding
number.

Theorem 2. (Fundamental Group of the Circle) The group m1(St,1) is an
infinite cyclic group generated by the loop w : I — S* defined by w(s) = ™.

These are Theorems 8.8 and 8.9 from the book, and their proofs can be found
there.
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