
Solutions to Final exam in MM7033, 2023-12-14, 14:00–19:00

1. (a) x2+x+1 ∈ F2[x] is irreducible because if it was reducible it would have a root but neither
x = 0 nor x = 1 are roots. In the extension E = F2[x]/(x

2+x+1) we have the root α = x
and x2 + x+ 1 = (x− α)

(
x− (α+ 1)

)
splits completely. Thus E is the splitting field and

it has degree 2.

(b) We let α = 4
√
2. Then the roots of x4 − 2 are ±α and ±iα. The splitting field is thus

E = Q(α, i). Since x4 − 2 ∈ Q[x] is irreducible, by Eisenstein’s criterion for p = 2, it
follows that [Q(α) : Q] = 4. Since Q(α) is real, it does not contain i so [E : Q(α)] = 2.
The degree of the splitting field is 2 · 4 = 8.

2. Two algebraic subsets are isomorphic if and only if their coordinate rings are isomorphic as
C-algebras. The first coordinate ring is

C[X1] = C[x, y]/(y − x2) ≃ C[x].

The second coordinate ring is

C[X2] = C[x, y]/(xy − 1) ≃ C
[
x,

1

x

]
.

These are both integral domains but the units of the first coordinate ring is C× whereas the
second coordinate ring also has the units xn, for n ∈ Z. Thus, they cannot be isomorphic.

The third coordinate ring is
C[X3] = C[x, y]/(y2 + x2)

which is not a domain since (y + ix)(y − ix) = 0, hence not isomorphic to the previous two.

3. (a) Since (x + 1) is a principal ideal, it is a cyclic module and (x + 1) ∼= R/I where I =
AnnR(x + 1). For f(x) ∈ Z[x], we have that f(x)(x + 1) ∈ (x2 − 1) if and only if
f(x) ∈ (x−1) (here we use that Z[x] is a domain). This means that AnnR(x+1) = (x−1)
so (x+ 1) ∼= R/(x− 1).

(b) First note that R/(x − 1) = Z[x]/(x − 1) ∼= Z as an Z-module. Since R/(x − 1) is
cyclic, a potential splitting s : R/(x− 1) → R is determined by the image s(1) of 1. Since
0 = s(x−1) = (x−1)s(1), we have that s(1) ∈ AnnR(x−1) = (x+1), that is s(1) = r(x+1)
for some r ∈ R. But π(x+1) = 2 where π : R → R/(x−1) is the quotient homomorphism.
Thus, 1 = (π ◦ s)(1) is divisible by 2 which is impossible since R/(x− 1) ∼= Z.

(c) As abelian groups, we have that R is free of rank 2 with basis 1, x. The other two modules
are free of rank 1 with bases x− 1 and 1 respectively. We thus have the sequence

0 −→ Z

−1
1


−−−−→ Z2

[
1 1

]
−−−−−→ Z −→ 0.

A splitting is given by any map Z 7→ Z2, 1 7→ (a, b) where a+ b = 1, e.g., n 7→ (n, 0).

We could also immediately conclude that the sequence is split since the R/(x− 1) ∼= Z is
free, hence projective, as a Z-module.

4. (a) We have a short exact sequence 0 → I → R → R/I → 0. Tensoring this with R/J over R
gives a right-exact sequence

I ⊗R R/J → R/J → R/I ⊗R R/J → 0.
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The kernel of the second map R/J → R/I ⊗R R/J is the image of the first map which
is I(R/J). By composition, we get a surjective map R → R/J → R/I ⊗R R/J and the
kernel is exactly π−1(IR/J) = I + J where π : R → R/J . The result follows.

Alternative solution: There is a homomorphism of R-modules q̄ : R → R/I ⊗R R/J
defined as the following composition

R
∼=−→ R⊗R R → R/I ⊗R R/J.

Here the first homomorphism can be defined by the formula r 7→ r ⊗ 1. The second
homomorphism is the tensor product of the quotient homomorphisms R → R/I and
R → R/J . Notice that r ⊗ 1 = 1⊗ r in R⊗R R, because of the R-bilinearity of −⊗R −.

Suppose x ∈ I. Then x+ I = 0+ I and q̄(x) = (x+ I)⊗ (1 + J) = (0 + I)⊗ (1 + J) = 0.

Suppose x ∈ J . Then, again

q̄(x) = (x+ I)⊗ (1 + J) = (1 + I)⊗ (x+ J) = (1 + I)⊗ (0 + J) = 0.

We have shown that I ⊂ ker(q̄) and J ⊂ ker(q̄). It follows that I + J ⊂ ker(q̄), and
therefore q̄ factors through a homomorphism q : R/(I + J) → R/I ⊗R R/J . Explicitly,
q(r + I + J) = (r + I)⊗ (1 + J).

To prove that q is an isomorphism, we construct an inverse homomorphism µ : R/I ⊗R

R/J → R/(I + J). To construct such a homomorphism is equivalent to constructing an
R-bilinear map µ̄ : R/I ×R/J → R/(I +J). We define µ̄ by the formula µ̄(x+ I, y+J) =
xy + I + J . To check that µ̄ is well-defined we have to check that if i ∈ I and j ∈ J then
xy+I+J = (x+ i)(y+j)+I+J . But (x+ i)(y+j) = xy+xj+ iy+ ij ∈ xy+I+J . Once
we know that µ̄ is well-defined it is clear that it is R-bilinear, because multiplication in
R is R-bilinear. So µ̄ induces a well-defined R-module homomorphism µ : R/I ⊗R R/J →
R/(I + J), determined by the formula µ

(
(x+ I)⊗ (y + J)

)
= (xy + I + J).

It remains to check that q and µ are inverses of each other, and thus are isomorphisms.
We have

µ
(
q(r + I + J)

)
= µ

(
(r + I)⊗ (1 + J)

)
= r + I + J

and

q
(
µ((x+ I)⊗ (y + J))

)
= q(xy + I + J) = (xy + I)⊗ (1 + J) = (x+ I)⊗ (y + J)

where the last equality follows from the R-bilinearity of −⊗R −.

(b) If M is a finitely generated non-zero R-module, then by the fundamental theorem of
modules over a PID, we have that M is a direct sum of cyclic R-modules:

M = R/(a1)⊕R/(a2)⊕ · · · ⊕R/(an)

where (ai) ̸= R and n ≥ 1. Since tensor products distribute over direct sums, we obtain

M ⊗R M =
⊕

1≤i,j≤n

R/(ai)⊗R R/(aj) =
⊕

1≤i,j≤n

R/(ai, aj)

where we in the last step have used (a). For i = j, we have that R/(ai, aj) = R/(ai) ̸= 0
so M ⊗R M ̸= 0.
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(c) Let R = Z and N = Q/Z. Then N ⊗R N = 0. Indeed, if a
b ,

c
d ∈ Q/Z, then a

b ⊗ c
d =

a
b ⊗ bc

bd = a ⊗ c
bd = 0. This shows that all pure tensors are zero in N ⊗R N , hence every

tensor is zero in N ⊗R N .

5. (a) Let y = x2+x. Note that x /∈ F(y). Indeed, every element of F(y) has a presentation as a

ratio p(x2+x)
q(x2+x)

, where p and q are polynomials with coefficients in F and q ̸= 0. Considered

as polynomials in x, the degrees of p(x2 + x) and q(x2 + x) differ by an even number. It
follows that their ratio cannot be equal to x.

Next, note that E = F(x) is the smallest subfield of E containing F and x. We have shown
that [E : F(y)] > 1. Since x satisfies the degree 2 equation x2+x− y = 0 with coefficients
in the subfield F(y), it follows that [E : F(y)] = 2 and the minimal polynomial of x is
m(t) := mx,F(y)(t) = t2 + t− y.

(b) Recall that p(t) is separable if and only if p(t) and p′(t) are relatively prime. We see
that m′(t) = 2t + 1 = 1 so m(t) is separable. An arbitrary element of E is of the
form ax + b where a, b ∈ F(y). If a = 0, then the minimal polynomial is t − b, hence
separable. If a ̸= 0, then the minimal polynomial has degree 2 and we calculate it as
follows. We have that (ax + b)2 + a2(x − y) − b2 = 0 so ax + b has minimal polynomial
m(t) := max+b,F(y)(t) = t2 + a(t− b− ay)− b2 = t2 + at+ (ab+ a2y + b2). The derivative
is m′(t) = a which is a unit, hence coprime to m(t), so m(t) is separable. We have thus
shown that E is separable over F(y).

(c) The extension E of F(y) is however inseparable: the minimal polynomial of x is t2 − y
which has the repeated root x in the splitting field which is E.

6. Let R = F[x1, x2, . . . , xn]. Suppose that S = {a1, . . . , ad} is finite. Then I(S) = M1 ∩ M2 ∩
· · · ∩ Md where Mi = (x1 − ai1, x2 − ai2, . . . , xd − aid). Since the Mi’s are distinct maximal
ideals, they are pairwise coprime: Mi +Mj = (1) for i ̸= j. Thus, by the Chinese remainder
theorem, we have that

R/I(S) = R/M1 ×R/M2 × · · · ×R/Md ≃ Fd

which is an F-vector space of dimension d.

Conversely, suppose that R/I(S) is a vector space of dimension d but that S is infinite. Then
we can pick a subset S′ ⊂ S of d + 1 distinct points. This gives us I(S) ⊆ I(S′) and a
surjection R/I(S) ↠ R/I(S′). But we previously showed that R/I(S′) has dimension d + 1
which contradicts that R/I(S) has dimension d.


