Solutions to Final exam in MM7033, 2023-12-14, 14:00-19:00

1.

2.

3.

(a) 22+ x+1 € Fy[z] is irreducible because if it was reducible it would have a root but neither
x = 0nor x = 1 are roots. In the extension F = Fy[z]/(2? 4+ 2+ 1) we have the root a = T
and 2? + 2+ 1 = (z — a)(z — (a + 1)) splits completely. Thus E is the splitting field and
it has degree 2.

(b) We let o = v/2. Then the roots of z* — 2 are +«a and +ia. The splitting field is thus
E = Q(a,4). Since z* — 2 € Q[z] is irreducible, by Eisenstein’s criterion for p = 2, it
follows that [Q(«) : Q] = 4. Since Q(«v) is real, it does not contain ¢ so [E : Q(a)] = 2.
The degree of the splitting field is 2-4 = 8.

Two algebraic subsets are isomorphic if and only if their coordinate rings are isomorphic as
C-algebras. The first coordinate ring is

ClX1] = Clz,y]/(y — 2°) = Cla].

The second coordinate ring is
1
ClXa] = Cla,y)/(zy = 1) = C[a, -].

These are both integral domains but the units of the first coordinate ring is C* whereas the
second coordinate ring also has the units ™, for n € Z. Thus, they cannot be isomorphic.

The third coordinate ring is
C[X3] = Cla,y]/(y* + 2?)

which is not a domain since (y + ix)(y — ix) = 0, hence not isomorphic to the previous two.

(a) Since (z + 1) is a principal ideal, it is a cyclic module and (z + 1) = R/I where I =
Anng(x + 1). For f(z) € Z[z], we have that f(x)(z + 1) € (22 — 1) if and only if
f(z) € (x—1) (here we use that Z[z] is a domain). This means that Anng(z+1) = (z—1)
so(z+1) 2 R/(x—1).

(b) First note that R/(x — 1) = Z[z]/(z — 1) = Z as an Z-module. Since R/(x — 1) is
cyclic, a potential splitting s: R/(x — 1) — R is determined by the image s(1) of 1. Since
0=s(z—1) = (z—1)s(1), we have that s(1) € Anng(z—1) = (z+1), that is s(1) = r(z+1)
for some r € R. But m(x+1) = 2 where m: R — R/(z—1) is the quotient homomorphism.
Thus, 1 = (7 o s)(1) is divisible by 2 which is impossible since R/(x — 1) = Z.

(c) As abelian groups, we have that R is free of rank 2 with basis 1, z. The other two modules
are free of rank 1 with bases x — 1 and 1 respectively. We thus have the sequence

5

A splitting is given by any map Z + Z2, 1+ (a,b) where a +b =1, e.g., n — (n,0).

, 11 1]

00— Z Z Z — 0.

We could also immediately conclude that the sequence is split since the R/(x — 1) =2 Z is
free, hence projective, as a Z-module.

(a) We have a short exact sequence 0 — I — R — R/I — 0. Tensoring this with R/J over R
gives a right-exact sequence

I®rR/J— R/J— R/I®p R/J — 0.
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The kernel of the second map R/J — R/I ®r R/J is the image of the first map which
is I(R/J). By composition, we get a surjective map R — R/J — R/I ®p R/J and the
kernel is exactly n1(IR/J) = I + J where m: R — R/J. The result follows.
Alternative solution: There is a homomorphism of R-modules g: R — R/I @r R/J
defined as the following composition

RS RorR— R/I®rR/J.

Here the first homomorphism can be defined by the formula r — r ® 1. The second
homomorphism is the tensor product of the quotient homomorphisms R — R/I and
R — R/J. Notice that r® 1 =1®r in R ®pr R, because of the R-bilinearity of — ®p —.
Suppose z € I. Thenz+ 1 =0+Tand g(z) = (z+ @ (1+J)=0+1)® (1+J)=0.
Suppose x € J. Then, again

ir)=@+Heo(1l+)=0+NH@@+J)=1+1)®(0+J)=0.

We have shown that I C ker(g) and J C ker(g). It follows that I + J C ker(g), and
therefore ¢ factors through a homomorphism ¢: R/(I + J) — R/I ®r R/J. Explicitly,
qrr+I+J)=@r+1)e1+J).
To prove that ¢ is an isomorphism, we construct an inverse homomorphism pu: R/I ®p
R/J — R/(I + J). To construct such a homomorphism is equivalent to constructing an
R-bilinear map fi: R/I x R/J — R/(I+ J). We define i by the formula a(z+I,y+J) =
xy + I + J. To check that i is well-defined we have to check that if ¢ € I and j € J then
xy+I+J = (z+i)(y+j)+I1+J. But (z+i)(y+j) =xy+aj+iy+ij € xy+I1+J. Once
we know that pi is well-defined it is clear that it is R-bilinear, because multiplication in
R is R-bilinear. So fi induces a well-defined R-module homomorphism p: R/I ®r R/J —
R/(I +J), determined by the formula p((z 4+ 1) ® (y + J)) = (zy + 1 + J).
It remains to check that ¢ and u are inverses of each other, and thus are isomorphisms.
We have

plgr+14+ D)) =p((r+DH @A+ J)=r+I1+J

and
e+ N y+J) =qay+I+J)=(@y+Ho1+J)=(@+)(y+J)

where the last equality follows from the R-bilinearity of — ®p —.

If M is a finitely generated non-zero R-module, then by the fundamental theorem of
modules over a PID, we have that M is a direct sum of cyclic R-modules:

M = R/(a1) ® R/(a2) ©--- ® R/(an)

where (a;) # R and n > 1. Since tensor products distribute over direct sums, we obtain

MeopM= @ R/(a)orR/(a)= @ R/(aia)

1<ij<n 1<ij<n

where we in the last step have used (a). For i = j, we have that R/(a;,a;) = R/(a;) # 0
so M ®gr M # 0.
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(c) Let R =7 and N = Q/Z. Then N ®g N = 0. Indeed, if 3,5 € Q/Z, then § ® § =
7T® g—g = a ® 33 = 0. This shows that all pure tensors are zero in N ®g IV, hence every
tensor is zero in N ®gr V.

5. (a) Let y = 22+ x. Note that z ¢ F(y). Indeed, every element of F(y) has a presentation as a
p(z?+z)
q(z?+x)
as polynomials in z, the degrees of p(z% + x) and g(z% + z) differ by an even number. It

follows that their ratio cannot be equal to x.

Next, note that £ = F(x) is the smallest subfield of E containing F and x. We have shown
that [E : F(y)] > 1. Since x satisfies the degree 2 equation #? +z —y = 0 with coefficients
in the subfield F(y), it follows that [E : F(y)] = 2 and the minimal polynomial of z is
m(t) :==mymey)(t) =2+t —y.

(b) Recall that p(t) is separable if and only if p(t) and p/(t) are relatively prime. We see
that m/(t) = 2t +1 = 1 so m(t) is separable. An arbitrary element of F is of the
form ax + b where a,b € F(y). If a = 0, then the minimal polynomial is ¢ — b, hence
separable. If a # 0, then the minimal polynomial has degree 2 and we calculate it as
follows. We have that (az + b)? + a®(z — y) — b*> = 0 so ax + b has minimal polynomial
m(t) :== Moz p(y) (t) = 12+ a(t —b—ay) — b* = t* + at + (ab+ a®y + b?). The derivative
is m/(t) = a which is a unit, hence coprime to m(t), so m(t) is separable. We have thus
shown that E is separable over F(y).

ratio , where p and ¢ are polynomials with coefficients in F and ¢ # 0. Considered

(c) The extension E of F(y) is however inseparable: the minimal polynomial of x is t? — y
which has the repeated root = in the splitting field which is FE.

6. Let R = Flx1,2,...,2,]. Suppose that S = {ai,...,aq} is finite. Then Z(S) = M; N My N
-+ N My where M; = (r1 — a;1,T2 — @2, ...,Tq — a;q). Since the M;’s are distinct maximal
ideals, they are pairwise coprime: M; + M; = (1) for i # j. Thus, by the Chinese remainder
theorem, we have that

R/Z(S) = R/M; x R/My x --- x R/My ~ F¢

which is an F-vector space of dimension d.

Conversely, suppose that R/Z(S) is a vector space of dimension d but that S is infinite. Then
we can pick a subset S’ C S of d + 1 distinct points. This gives us Z(S) C Z(S5’) and a
surjection R/Z(S) — R/Z(S’). But we previously showed that R/Z(S’) has dimension d + 1
which contradicts that R/Z(S) has dimension d.



