Solutions to Final exam in MM7033, 2023-12-14, 14:00-19:00

1. (a) $x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible because if it was reducible it would have a root but neither $x=0$ nor $x=1$ are roots. In the extension $E=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$ we have the root $\alpha=\bar{x}$ and $x^{2}+x+1=(x-\alpha)(x-(\alpha+1))$ splits completely. Thus E is the splitting field and it has degree 2 .
(b) We let $\alpha=\sqrt[4]{2}$. Then the roots of $x^{4}-2$ are $\pm \alpha$ and $\pm i \alpha$. The splitting field is thus $E=\mathbb{Q}(\alpha, i)$. Since $x^{4}-2 \in \mathbb{Q}[x]$ is irreducible, by Eisenstein's criterion for $p=2$, it follows that $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$. Since $\mathbb{Q}(\alpha)$ is real, it does not contain i so $[E: \mathbb{Q}(\alpha)]=2$. The degree of the splitting field is $2 \cdot 4=8$.
2. Two algebraic subsets are isomorphic if and only if their coordinate rings are isomorphic as \mathbb{C}-algebras. The first coordinate ring is

$$
\mathbb{C}\left[X_{1}\right]=\mathbb{C}[x, y] /\left(y-x^{2}\right) \simeq \mathbb{C}[x] .
$$

The second coordinate ring is

$$
\mathbb{C}\left[X_{2}\right]=\mathbb{C}[x, y] /(x y-1) \simeq \mathbb{C}\left[x, \frac{1}{x}\right]
$$

These are both integral domains but the units of the first coordinate ring is \mathbb{C}^{\times}whereas the second coordinate ring also has the units x^{n}, for $n \in \mathbb{Z}$. Thus, they cannot be isomorphic.
The third coordinate ring is

$$
\mathbb{C}\left[X_{3}\right]=\mathbb{C}[x, y] /\left(y^{2}+x^{2}\right)
$$

which is not a domain since $(y+i x)(y-i x)=0$, hence not isomorphic to the previous two.
3. (a) Since $(x+1)$ is a principal ideal, it is a cyclic module and $(x+1) \cong R / I$ where $I=$ $\operatorname{Ann}_{R}(x+1)$. For $f(x) \in \mathbb{Z}[x]$, we have that $f(x)(x+1) \in\left(x^{2}-1\right)$ if and only if $f(x) \in(x-1)$ (here we use that $\mathbb{Z}[x]$ is a domain). This means that $\operatorname{Ann}_{R}(x+1)=(x-1)$ so $(x+1) \cong R /(x-1)$.
(b) First note that $R /(x-1)=\mathbb{Z}[x] /(x-1) \cong \mathbb{Z}$ as an \mathbb{Z}-module. Since $R /(x-1)$ is cyclic, a potential splitting $s: R /(x-1) \rightarrow R$ is determined by the image $s(1)$ of 1 . Since $0=s(x-1)=(x-1) s(1)$, we have that $s(1) \in \operatorname{Ann}_{R}(x-1)=(x+1)$, that is $s(1)=r(x+1)$ for some $r \in R$. But $\pi(x+1)=2$ where $\pi: R \rightarrow R /(x-1)$ is the quotient homomorphism. Thus, $1=(\pi \circ s)(1)$ is divisible by 2 which is impossible since $R /(x-1) \cong \mathbb{Z}$.
(c) As abelian groups, we have that R is free of rank 2 with basis $1, x$. The other two modules are free of rank 1 with bases $x-1$ and 1 respectively. We thus have the sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1
\end{array}\right]} \mathbb{Z} \longrightarrow 0
$$

A splitting is given by any map $\mathbb{Z} \mapsto \mathbb{Z}^{2}, 1 \mapsto(a, b)$ where $a+b=1$, e.g., $n \mapsto(n, 0)$.
We could also immediately conclude that the sequence is split since the $R /(x-1) \cong \mathbb{Z}$ is free, hence projective, as a \mathbb{Z}-module.
4. (a) We have a short exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$. Tensoring this with R / J over R gives a right-exact sequence

$$
I \otimes_{R} R / J \rightarrow R / J \rightarrow R / I \otimes_{R} R / J \rightarrow 0 .
$$

The kernel of the second map $R / J \rightarrow R / I \otimes_{R} R / J$ is the image of the first map which is $I(R / J)$. By composition, we get a surjective map $R \rightarrow R / J \rightarrow R / I \otimes_{R} R / J$ and the kernel is exactly $\pi^{-1}(I R / J)=I+J$ where $\pi: R \rightarrow R / J$. The result follows.
Alternative solution: There is a homomorphism of R-modules $\bar{q}: R \rightarrow R / I \otimes_{R} R / J$ defined as the following composition

$$
R \xlongequal{\rightrightarrows} R \otimes_{R} R \rightarrow R / I \otimes_{R} R / J .
$$

Here the first homomorphism can be defined by the formula $r \mapsto r \otimes 1$. The second homomorphism is the tensor product of the quotient homomorphisms $R \rightarrow R / I$ and $R \rightarrow R / J$. Notice that $r \otimes 1=1 \otimes r$ in $R \otimes_{R} R$, because of the R-bilinearity of $-\otimes_{R}-$. Suppose $x \in I$. Then $x+I=0+I$ and $\bar{q}(x)=(x+I) \otimes(1+J)=(0+I) \otimes(1+J)=0$. Suppose $x \in J$. Then, again

$$
\bar{q}(x)=(x+I) \otimes(1+J)=(1+I) \otimes(x+J)=(1+I) \otimes(0+J)=0 .
$$

We have shown that $I \subset \operatorname{ker}(\bar{q})$ and $J \subset \operatorname{ker}(\bar{q})$. It follows that $I+J \subset \operatorname{ker}(\bar{q})$, and therefore \bar{q} factors through a homomorphism $q: R /(I+J) \rightarrow R / I \otimes_{R} R / J$. Explicitly, $q(r+I+J)=(r+I) \otimes(1+J)$.
To prove that q is an isomorphism, we construct an inverse homomorphism $\mu: R / I \otimes_{R}$ $R / J \rightarrow R /(I+J)$. To construct such a homomorphism is equivalent to constructing an R-bilinear map $\bar{\mu}: R / I \times R / J \rightarrow R /(I+J)$. We define $\bar{\mu}$ by the formula $\bar{\mu}(x+I, y+J)=$ $x y+I+J$. To check that $\bar{\mu}$ is well-defined we have to check that if $i \in I$ and $j \in J$ then $x y+I+J=(x+i)(y+j)+I+J$. But $(x+i)(y+j)=x y+x j+i y+i j \in x y+I+J$. Once we know that $\bar{\mu}$ is well-defined it is clear that it is R-bilinear, because multiplication in R is R-bilinear. So $\bar{\mu}$ induces a well-defined R-module homomorphism $\mu: R / I \otimes_{R} R / J \rightarrow$ $R /(I+J)$, determined by the formula $\mu((x+I) \otimes(y+J))=(x y+I+J)$.
It remains to check that q and μ are inverses of each other, and thus are isomorphisms. We have

$$
\mu(q(r+I+J))=\mu((r+I) \otimes(1+J))=r+I+J
$$

and

$$
q(\mu((x+I) \otimes(y+J)))=q(x y+I+J)=(x y+I) \otimes(1+J)=(x+I) \otimes(y+J)
$$

where the last equality follows from the R-bilinearity of $-\otimes_{R}-$.
(b) If M is a finitely generated non-zero R-module, then by the fundamental theorem of modules over a PID, we have that M is a direct sum of cyclic R-modules:

$$
M=R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{n}\right)
$$

where $\left(a_{i}\right) \neq R$ and $n \geq 1$. Since tensor products distribute over direct sums, we obtain

$$
M \otimes_{R} M=\bigoplus_{1 \leq i, j \leq n} R /\left(a_{i}\right) \otimes_{R} R /\left(a_{j}\right)=\bigoplus_{1 \leq i, j \leq n} R /\left(a_{i}, a_{j}\right)
$$

where we in the last step have used (a). For $i=j$, we have that $R /\left(a_{i}, a_{j}\right)=R /\left(a_{i}\right) \neq 0$ so $M \otimes_{R} M \neq 0$.
(c) Let $R=\mathbb{Z}$ and $N=\mathbb{Q} / \mathbb{Z}$. Then $N \otimes_{R} N=0$. Indeed, if $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q} / \mathbb{Z}$, then $\frac{a}{b} \otimes \frac{c}{d}=$ $\frac{a}{b} \otimes \frac{b c}{b d}=a \otimes \frac{c}{b d}=0$. This shows that all pure tensors are zero in $N \otimes_{R} N$, hence every tensor is zero in $N \otimes_{R} N$.
5. (a) Let $y=x^{2}+x$. Note that $x \notin \mathbb{F}(y)$. Indeed, every element of $\mathbb{F}(y)$ has a presentation as a ratio $\frac{p\left(x^{2}+x\right)}{q\left(x^{2}+x\right)}$, where p and q are polynomials with coefficients in \mathbb{F} and $q \neq 0$. Considered as polynomials in x, the degrees of $p\left(x^{2}+x\right)$ and $q\left(x^{2}+x\right)$ differ by an even number. It follows that their ratio cannot be equal to x.
Next, note that $E=\mathbb{F}(x)$ is the smallest subfield of E containing \mathbb{F} and x. We have shown that $[E: \mathbb{F}(y)]>1$. Since x satisfies the degree 2 equation $x^{2}+x-y=0$ with coefficients in the subfield $\mathbb{F}(y)$, it follows that $[E: \mathbb{F}(y)]=2$ and the minimal polynomial of x is $m(t):=m_{x, \mathbb{F}(y)}(t)=t^{2}+t-y$.
(b) Recall that $p(t)$ is separable if and only if $p(t)$ and $p^{\prime}(t)$ are relatively prime. We see that $m^{\prime}(t)=2 t+1=1$ so $m(t)$ is separable. An arbitrary element of E is of the form $a x+b$ where $a, b \in \mathbb{F}(y)$. If $a=0$, then the minimal polynomial is $t-b$, hence separable. If $a \neq 0$, then the minimal polynomial has degree 2 and we calculate it as follows. We have that $(a x+b)^{2}+a^{2}(x-y)-b^{2}=0$ so $a x+b$ has minimal polynomial $m(t):=m_{a x+b, \mathbb{F}(y)}(t)=t^{2}+a(t-b-a y)-b^{2}=t^{2}+a t+\left(a b+a^{2} y+b^{2}\right)$. The derivative is $m^{\prime}(t)=a$ which is a unit, hence coprime to $m(t)$, so $m(t)$ is separable. We have thus shown that E is separable over $\mathbb{F}(y)$.
(c) The extension E of $\mathbb{F}(y)$ is however inseparable: the minimal polynomial of x is $t^{2}-y$ which has the repeated root x in the splitting field which is E.
6. Let $R=\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose that $S=\left\{a_{1}, \ldots, a_{d}\right\}$ is finite. Then $\mathcal{I}(S)=M_{1} \cap M_{2} \cap$ $\cdots \cap M_{d}$ where $M_{i}=\left(x_{1}-a_{i 1}, x_{2}-a_{i 2}, \ldots, x_{d}-a_{i d}\right)$. Since the M_{i} 's are distinct maximal ideals, they are pairwise coprime: $M_{i}+M_{j}=(1)$ for $i \neq j$. Thus, by the Chinese remainder theorem, we have that

$$
R / \mathcal{I}(S)=R / M_{1} \times R / M_{2} \times \cdots \times R / M_{d} \simeq \mathbb{F}^{d}
$$

which is an \mathbb{F}-vector space of dimension d.
Conversely, suppose that $R / \mathcal{I}(S)$ is a vector space of dimension d but that S is infinite. Then we can pick a subset $S^{\prime} \subset S$ of $d+1$ distinct points. This gives us $\mathcal{I}(S) \subseteq \mathcal{I}\left(S^{\prime}\right)$ and a surjection $R / \mathcal{I}(S) \rightarrow R / \mathcal{I}\left(S^{\prime}\right)$. But we previously showed that $R / \mathcal{I}\left(S^{\prime}\right)$ has dimension $d+1$ which contradicts that $R / \mathcal{I}(S)$ has dimension d.

