- No use of textbook, notes, or calculators is allowed.
- Unless told otherwise, you may quote results that were proved in class. When you do, state precisely the result that you are using.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- In problems with multiple parts, results of earlier parts can be used in the solution of later parts, even if you do not solve the earlier parts

1. For each of the following statements, determine if it is true or false. Give a brief justification or a counterexample.
(a) (2 points) Every group of order 8 is abelian.
(b) (2 points) Suppose x and y are elements of some group G. If $x^{3}=y^{3}$ then $x=y$.
2. Let $\sigma \in S_{7}$ be the following permutation

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 5 & 7 & 6 & 1 & 4 & 3
\end{array}\right)
$$

(a) (1 point) Write σ in cycle notation (i.e., as a product of disjoint cycles).
(b) (1 point) Find the order of σ.
(c) (1 point) Is σ an even permutation?
(d) $(2$ points $)$ Find the order of σ^{10}.
3. (4 points) Suppose G is a non-abelian group of or order 2^{n}, for some n. Prove that G has an element of order 4.
4. (a) (3 points) Prove that a group of order 45 must be abelian.
(b) (3 points) Prove that a group of order 224 can not be simple.
5. Let R, S be rings, and suppose $f: R \rightarrow S$ is a surjective homomorphism of rings. Recall that if $I \subset R$ then $f(I)$ denotes the image of I in S. Similarly, if $J \subset S$, then $f^{-1}(J)$ denotes the pre-image of J in R.
(a) (2 points) Suppose M is a maximal ideal of S. Prove that $f^{-1}(M)$ is a maximal ideal of R.
(b) (2 points) Suppose I is an ideal of R. Prove that $f(I)$ is an ideal of S.
(c) (2 points) Show with examples that if f is not surjective, then neither (a) nor (b) need to hold.
6. Let $\mathbb{Q}[x]$ be the polynomial ring over the rationals.
(a) (2 points) Find the greatest common divisor of the polynomials $x^{4}-1$ and $x^{5}-x^{3}$ in $\mathbb{Q}[x]$.
(b) (3 points) Is the ideal $\left(x^{4}-1, x^{5}-x^{3}\right)$ a maximal ideal of $\mathbb{Q}[x]$?

