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• No use of textbook, notes, or calculators is allowed.

• Unless told otherwise, you may quote results that were proved in class. When you do, state
precisely the result that you are using.

• Be sure to justify your answers, and show clearly all steps of your solutions.

• In problems with multiple parts, results of earlier parts can be used in the solution of later
parts, even if you do not solve the earlier parts

1. For each of the following statements, determine if it is true or false. Give a brief justification
or a counterexample.

(a) (2 points) Every group of order 8 is abelian.

Solution: False. For example, the dihedral group of order 8 and the quaternion group
are not abelian.

(b) (3 points) Suppose x and y are elements of some group G. If x3 = y3 then x = y.

Solution: False. For example, take x and y be the two non-trivial elements of the cyclic
group of order 3. Then x3 = y3 = e, but x ̸= y.

2. Let σ ∈ S7 be the following permutation(
1 2 3 4 5 6 7
2 5 7 6 1 4 3

)
.

(a) (1 point) Write σ in cycle notation (i.e., as a product of disjoint cycles).

Solution: (1, 2, 5)(3, 7)(4, 6).

(b) (1 point) Find the order of σ.

Solution: The order is the least common multiplier of the lengths of the cycles, which is
6.

(c) (1 point) Is σ an even permutation?

Solution: Yes. Recall that a cycle of an odd length is an even permutation, and vice versa.
Since σ is a product of one even and two odd permutations, it is an even permutation.

(d) (2 points) Find the order of σ10.

Solution: It is easy to see that σ10 = (1, 2, 5). It follows that σ10 has order 3. Alterna-
tively, you know that the order of σ is 6, and the order of σ10 is equal to 6

gcd(6,10) = 3.

3. (4 points) Suppose G is a non-abelian group of or order 2n, for some n. Prove that G has an
element of order 4.

Solution: Note that since G is non-abelian, it follows that n ≥ 3.

First of all, I claim that if G has an element of order greater than 2, then G has an element of
order 4. Indeed, every element of G has order 2k for some 0 ≤ k ≤ n. Let x ∈ G be an element
of order greater than 4. Then x has order 2k, for some 2 ≤ k ≤ n. Then x2

k−2
is a well-defined

element of G, and I claim that x2
k−2

has order 4. Indeed (x2
k−2

)4 = x2
k−2·4 = x2

k
= e. On the

other hand, (x2
k−2

) ̸= e and (x2
k−2

)2 = (x2
k−1

) ̸= e.
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In view of the claim that we just proved, it is enough to prove that G has an element of order
greater than 2. We will prove that if every element of G has order at most 2 then G is a abelian.
Indeed, if every element of G has order at most 2, then x2 = e for every x ∈ G. But then for
every x, y ∈ G, (xy)2 = e. This means xyxy = e. Multiplying by x on the left and by y on the
right, and using that x2 = y2 = e, we find that yx = xy for all x, y ∈ G.

4. (a) (2 points) Prove that a group of order 45 must be abelian.

Solution: Let G be a group of order 45. We know that n5|9 and n5 ≡ 1( mod 5). It
follows that n5 = 1. Similarly, n3|5 and n3 ≡ 1( mod 3), which implies n3 = 1. It
follows that the 3-Sylow and the 5-Sylow subgroup of G are normal. Let P3 and P5 be the
Sylow subgroups of G. It follows that G ∼= P3 × P5. To see this, observe that there is a
homomorphism G → G/P5×G/P3 that sends an element g ∈ G to the pair (g ·P5, g ·P3).
The kernel of this homomorphism is P5 ∩ P3 = {e}. It follows that the homomorphism
G → G/P5×G/P3 is injective. By counting elements, it is an isomorphism. Furthermore,
the compositions P5 → G → G/P3 and P3 → G → G/P5 have trivial kernels, and therefore
are isomorphisms. We have shown that G ∼= P3 × P5. P5 is a group of order 5 and P3 is a
group of order 9. Groups of order prime or square of a prime are abelian. It follows that
P3 and P5 are abelian, and therefore G is abelian.

(b) (3 points) Prove that a group of order 224 can not be simple.

Solution: Suppose G is a group of order 224. Note that 224 = 7 · 32. It follows that
n2 = 1 or 7. If n2 = 1 then G has a normal 2-Sylow subgroup, and is therefore not
simple. Suppose n2 = 7. Then the action of G on the set of 2-Sylow subgroups induces
a non-trivial homomorphism G → S7. If G is simple, then this homomorphism has to be
injective, but this would imply that 224|7!, which is false. So G can not be simple.

5. Let R,S be rings, and suppose f : R → S is a surjective homomorphism of rings. Recall that
if I ⊂ R then f(I) denotes the image of I in S. Similarly, if J ⊂ S, then f−1(J) denotes the
pre-image of J in R.

(a) (2 points) Suppose M is a maximal ideal of S. Prove that f−1(M) is a maximal ideal of
R.

Solution: First, let us check that f−1(M) is an ideal. For concreteness, we will take
“ideal” to mean “left ideal”. Suppose x, y ∈ f−1(M). This means that f(x), f(y) ∈ M .
But then f(x − y) = f(x) − f(y) ∈ M , so x − y ∈ f−1(M) and f−1(M) is an additive
subgroup. Now suppose x ∈ f−1(M) and r ∈ R. Then f(rx) = f(r)f(x) is in M , because
f(x) ∈ M and M is an ideal of S. It follows that rx ∈ f−1(M), so f−1(M) is an ideal.

Now let us check that f−1(M) is maximal. Suppose we have an ideal J of R satisfying
f−1(M) ⊂ J ⊂ R. We have to prove that either f−1(M) = J or J = R. By part (b)
below, f(J) is an ideal of S, satisfying f(f−1(M)) ⊂ f(J) ⊂ f(R). Since f is surjective,
it follows that f(f−1(M)) = M and f(R) = S. Thus M ⊂ f(J) ⊂ S. Since M is maximal
in S, f(J) = M or f(J) = S. It remains to prove that if f(J) = M then J = f−1(M) and
if f(J) = S then J = R.

Suppose f(J) = M . Then f−1(f(J)) = f−1(M). It always holds that J ⊂ f−1(f(J)), so
J ⊂ f−1(M). On the other hand we assume that f−1(M) ⊂ J , so J = f−1(M).

Now suppose f(J) = S. Since f−1(M) ⊂ J , ker(f) ⊂ J . Let r ∈ R be an arbitrary
element. Since f(J) = S, there exists a j ∈ J such that f(r) = f(j). But then r − j ∈
ker(f) ⊂ J , and therefore r = j + (r − j) ∈ J . We have shown that every element r ∈ R
is in J , so J = R.
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(b) (2 points) Suppose I is an ideal of R. Prove that f(I) is an ideal of S.

Solution: Suppose x, y ∈ f(I). This means that there exist a, b ∈ I such that x = f(a)
and y = f(b). But then x− y = f(a− b) ∈ f(I).

Now suppose that f(a) = x ∈ f(I) as before and s ∈ S. Since f is surjective, there exists
an r ∈ R such that s = f(r). But then sx = f(r)f(a) = f(ra) ∈ f(I). We have proved
that f(I) is an ideal.

(c) (2 points) Show with examples that if f is not surjective, then neither (a) nor (b) need to
hold.

Solution: Consider the inclusion of rings Z ↪→ Q. The ideal (0) ⊂ Q is maximal, but its
preimage is the ideal (0) ⊂ Z, which is not maximal. Similarly, for all n ̸= 0 (n) is an ideal
of Z, but its image is not an ideal of Q.

6. Let Q[x] be the polynomial ring over the rationals.

(a) (2 points) Find the greatest common divisor of the polynomials x4−1 and x5−x3 in Q[x].

Solution: It is possible to solve the exercise using Euclid’s algorithm, but in this case it
is easy to do it by just finding the decompositions of the two polynomials into irreducible
factors. Indeed, it is easy to see that x4 − 1 = (x − 1)(x + 1)(x2 + 1) and x5 − x3 =
x3(x− 1)(x+ 1). It is easy to see that all these factors are irreducible, and therefore the
greatest common divisor is (x− 1)(x+ 1) = (x2 − 1).

(b) (3 points) Is the ideal (x4 − 1, x5 − x3) a maximal ideal of Q[x]?

Solution: No. It follows from part (a) that (x4 − 1, x5 − x3) = (x2 − 1). Since x2 − 1 =
(x − 1)(x + 1) is not an irreducible polynomial, this ideal is not prime, and in particular
not maximal.


