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Problem 1

a. The null hypothesis H0 that hands-free mobile usage and accident proneness are
independent, corresponds to πij = πi+π+j, where πi+ = πi0+πi1, and π+j = π0j+π1j.

b. Fisher’s exact test uses a hypergeometric distribution

PH0(N11 = n11|n0+, n1+, n+0, n+1) =

(
n0+

n+1−n11

)(
n1+

n11

)
(
n++

n+1

) =

(
13

12−n11

)(
17
n11

)
(
30
12

) ,

for the number N11 of mobile users with accidents, and n11 = 0, 1, . . . , 12. This
distribution is based on drawing n+1 persons with accidents from a sample of size
n++ that consists of n0+ persons who do not use the mobile while driving, and n1+

who do. It is also possible to reverse the role of columns and rows, and draw n1+

mobile users from a sample that consists of n+0 persons without accidents and n+1

with accidents. This gives

PH0(N11 = n11|n0+, n1+, n+0, n+1) =

(
n+0

n1+−n11

)(
n+1

n11

)
(
n++

n1+

) =

(
18

17−n11

)(
12
n11

)
(
30
17

) ,

for n11 = 0, 1, . . . , 12.

c. A one sided alternative where mobile usage increases accident risk corresponds to
an alternative hypothesis Ha : θ > 1, where θ = (π11π00)/(π01π10) is the odds ratio.

d. Since H0 is rejected for large values of N11 for the one-side alternative hypothesis
in c, and n11 = 9, we get

P -value = PH0(N11 ≥ 9)
= 0.0804 + 0.0175 + 0.0019 + 0.0001 = 0.100,

mid P -value = 0.5PH0(N11 = 9) + PH0(N11 ≥ 10)
= 0.5 · 0.0804 + 0.0175 + 0.0019 + 0.0001 = 0.060.
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e. It follows from 1d and

PH0(N11 ≥ 10) = 0.0175 + 0.0019 + 0.0001 < 0.05

that both the P -value and mid P -value are smaller than 0.05 when n11 ≥ 10.
Together with c, we deduce that the actual significance level of a test with nominal
significance level α = 0.05, is

PH0(P -value ≤ 0.05) = PH0(N11 ≥ 10) < 0.05,
PH0(mid-P -value ≤ 0.05) = PH0(N11 ≥ 10) < 0.05.

This implies that both tests are conservative. On the other hand, the actual signif-
icance levels are

PH0(P -value ≤ 0.07) = PH0(N11 ≥ 10) < 0.07,
PH0(mid-P -value ≤ 0.07) = PH0(N11 ≥ 9) > 0.07

when α = 0.07, so that the P -value based test is conservative, whereas the other
one is anti conservative.

Problem 2

a. Since θij is the odds ratio of a table with rows i and i+1, and columns j and j+1,
it follows that

θij =
µijµi+1,j+1

µi,j+1µi+1,j

(1)

for four different combinations of i and j (1 ≤ i, j ≤ 2).

b. Estimates θ̂ij are obtained by replacing all µij in (1) with nij, so that

θ̂11 = (n11n22)/(n12n21) = (34 · 174)/(80 · 53) = 1.395,

θ̂12 = (n12n23)/(n22n13) = (53 · 304)/(174 · 88) = 1.052,

θ̂21 = (n21n32)/(n31n22) = (80 · 175)/(29 · 174) = 1.189,

θ̂22 = (n22n33)/(n23n32) = (174 · 172)/(75 · 304) = 1.313,

c. We have that

Var
[
log(θ̂11/θ̂12)

]
= Var

[
log

{
(N11N22

N12N21
)/(N12N23

N13N22
)
}]

= Var [log(N11)− log(N21)− 2 log(N12).
+2 log(N22) + log(N13)− log(N23)]

≈ 1
µ11

+ 1
µ21

+ 4
µ12

+ 4
µ22

+ 1
µ13

+ 1
µ23

,

where in the third step we used independence of the six terms (since Nij are inde-
pendent), and computed the variance of a Taylor expansion for each one of them,
according to

Var [log(Nij)] ≈ Var

[
log(µij) +

Nij − µij

µij

]
=

Var(Nij)

µ2
ij

=
µij

µ2
ij

=
1

µij

.
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The corresponding estimate of the variance is obtained by replacing all µij with nij,
i.e.

V̂ar
[
log(θ̂11/θ̂12)

]
= 1

n11
+ 1

n21
+ 4

n12
+ 4

n22
+ 1

n13
+ 1

n23

= 1
34

+ 1
80

+ 4
53

+ 4
174

+ 1
88

+ 1
304

= 0.1550.

d. We first compute a one-sided confidence interval for log(θ11/θ12) as(
log( θ̂11

θ̂12
)− 1.645

√
0.1550,∞

)
=

(
log(1.395

1.052
)− 1.645

√
0.1550,∞

)
= (−0.3654,∞).

The corresponding one-sided confidence interval for θ11/θ12 is

(exp(−0.3654),∞) = (0.694,∞).

Since 1 is included in the interval, we cannot reject the null hypothesis at level 5%.

Problem 3

a. The cell probabilities πij are proportional to µij with sum 1, i.e. πij = µij/µ++ =
µij/n. In the last step we used that n = µ++ for multinomial sampling, since
µij = nπij.

b. The number of concordant and discordant pairs are

C = 34(174 + 304 + 75 + 172) + 53(304 + 172) + 80(75 + 172) + 174 · 172 = 99566,
D = 53(80 + 29) + 88(80 + 174 + 29 + 75) + 174 · 29 + 304(29 + 75) = 73943

respectively. Therefore, an estimator of γ is

γ̂ =
99566− 73943

99566 + 73943
= 0.148.

This indicates a positive association between age and job satisfaction.

c. A pair (X, Y ) = (i, j) and (X ′, Y ′) = (h, k) of cells is concordant if i < h, j < k or
i > h, j > k. For a large population (not the sample with n individuals!), we may
regard (X, Y ) and (X ′, Y ′) as drawn independently with replacement, so that

P [(X, Y ) = (i, j), (X ′, Y ′) = (h, k)] = P [(X, Y ) = (i, j)]P [(X ′, Y ′) = (h, k)]
= πijπhk.

Therefore, the probability of a concordant pair is

Πc =
∑

i,j πij
∑

h,k;h>i,k>j πhk +
∑

h,k πhk
∑

i,j;i>h,j>k πij

= 2
∑

i,j πij
∑

h,k;h>i,k>j πhk.

Since a cell pair is discordant if i < h, j > k or i > h, j < k, an analogous calculation
gives

Πd = 2
∑
i,j

πij

∑
h,k;h>i,k<j

πhk

for the probability of such a pair.
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d. Since πij = πi+π+j under the null hypothesis that age and job satisfaction are
independent, it follows that

Πc = 2
∑

i,j πi+π+j
∑

h,k;h>i,k>j πh+π+k

= 2
(∑

i πi+
∑

h;h>i πh+

) (∑
j π+j

∑
k;k>j π+k

)
.

A similar calculation gives

Πd = 2
(∑

i πi+
∑

h;h>i πh+

) (∑
j π+j

∑
k;k<j π+k

)
= 2

(∑
i πi+

∑
h;h>i πh+

) (∑
k π+k

∑
j;j>k π+j

)
.

By interchanging the role of indeces j and k in the last sum, we conclude that
Πc = Πd, and hence γ = 0.

Problem 4

a. The expected cell counts of the M0 = (XY,ZY ) loglinear model are

µij = µij(M0,β) = exp
(
λ+ λX

i + λY
j + λZ

k + λXY
ij + λY Z

jk

)
, 0 ≤ i, j, k ≤ 1. (2)

If i = j = k = 0 are baseline levels, then all parameters with at least one 0 index
are put to zero. This gives a parameter vector

β = (λ, λX
1 , λ

Y
1 , λ

Z
1 , λ

XY
11 , λY Z

11 ), (3)

with p = 6 components.

b. It follows from (2) that
µijk = BijCjk, (4)

where, for instance, Bij = exp(λ+λX
i +λY

j +λXY
ij ) and Cjk = exp(λZ

k +λY Z
jk ). Then,

summing over one of i or k, or over both indeces simultaneously in (4), we find that

µij+ = BijCj+,
µ+jk = B+jCjk,
µ+j+ = B+jCj+.

Consequently,
µij+µ+jk

µ+j+

=
BijCj+ ·B+jCjk

B+jCj+

= BijCjk = µijk.

Alternatively, we may work directly with the cell probabilities πijk = µijk/µ+++.
SinceX and Z are conditionally independent given Y for model (XY, Y Z), it follows
that

πijk = π+j+πik|j = π+j+πi+|jπ+k|j = π+j+ · πij+

π+j+

· π+jk

π+j+

=
πij+π+jk

π+j+

,

and hence

µijk = µ+++πijk = µ+++ ·
µij+

µ+++
· µ+jk

µ+++
µ+j+

µ+++

=
µij+µ+jk

µ+j+

.
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c. The maximum likelihood estimates

µ̂ijk =
nij+n+jk

n+j+

of the expected cell counts are obtained by replacing µij+, µ+jk and µ+j+ by es-
timates nij+, n+jk and n+j+. From the two partial tables we can compute row
sums nij+, columns sums n+jk, and total number of observations n+0+ = 283 and
n+1+ = 137. This gives

µ̂000 =
n00+n+00

n+0+

=
(93 + 39) · (93 + 101)

283
= 90.49.

Continuing in this way for the other cells (i, j, k), we get the following predicted
expected cell counts µ̂ijk:

No cancer Y = 0:

Exposure Smoking Z = k
X = i k = 0 k = 1 Sum

i = 0 90.49 41.51 132

i = 1 103.51 47.49 151

Sum 194 89 283

Cancer Y = 1:

Exposure Smoking Z = k
X = i k = 0 k = 1 Sum

i = 0 10.67 23.33 34

i = 1 32.33 70.67 103

Sum 43 94 137

d. The log likelihood ratio statistic for testing (XY, Y Z) against the saturated model
(XY Z), is

G2 = 2
∑

ijk nijk log
nijk

µ̂ijk

= 2
(
93 · log 93

90.49
+ . . .+ 72 · log 72

70.67

)
= 0.733
< χ2

2(0.05) = 5.99,

where in the last step we used that df = 8 − 6 = 2, since the saturated model
has 2 × 2 × 2 = 8 parameters, and the conditional independence model (XY, Y Z)
has 6 parameters according to (3). We thus cannot reject conditional independence
between X and Z given Y at level 5%, indicating that smoking and exposure don’t
have a joint effect on lung cancer.

e. For any model M , the maximum likelihood is

l(M) = max
β

∏
ijk

e−µijk
µ
nijk

ijk

nijk!
=

∏
ijk

e−µ̂ijk
µ̂
nijk

ijk

nijk!
,

where µ̂ijk = µ̂ijk(M, β̂(M)) are the fitted cell counts for model M , based on plug-

ging the ML estimate β̂(M) of that model into (2). This gives a log likelihood

L(M) = log(l(M)) = constant +
∑
ijk

[nijk log(µ̂ijk)− µ̂ijk] , (5)
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with a constant (= −∑
ijk nijk!) that is the same for any M . Since the saturated

model has the same fitted and observed counts, µ̂ijk(M1, β̂(M1)) = nijk, it follows
that the deviance equals

G2(M) = 2 [L(M1)− L(M)]

= 2
∑

ijk

[
nijk log(

nijk

µ̂ijk
)− (nijk − µ̂ijk)

]
,

= 2
∑

ijk nijk log(
nijk

µ̂ijk
).

In the last step we used that the baseline parameter λ is part of M . Indeed,
differentiating (5) with respect to λ we find that

∂L(M)

∂λ

∣∣∣∣∣
β=β̂

=
∑
ijk

(nijk − µ̂ijk) = 0,

since, by equation (2), d log(µijk)/dλ = 1 and dµijk/dλ = µijk.

Problem 5

a. Let πijk = µijk/µ+++ refer to the multinomial cell probabilities of the contingency
table. We have that

logitP (Y = 1|X = i, Z = k) = log
(
πi1k/πi+k

πi0k/πi+k

)
= log

(
πi1k

πi0k

)
= log

(
µi1k/µ+++

µi0k/µ+++

)
= log

(
µi1k

µi0k

)
= α + βX

i + βZ
k ,

(6)

where in the last step we used (2), with α = λY
1 − λY

0 , βX
i = λXY

i1 − λXY
i0 and

βZ
k = λY Z

1k − λY Z
0k . Since i = j = k = 0 are baseline levels for the loglinear model, it

follows that the three nonzero parameters of the logistic regression model are

α = λY
1 ,

βX
1 = λXY

11 ,
βZ
1 = λY Z

11 .

b. The log conditional odds ratio between X and Y is

log(θXY
(k) ) = log P (Y=1|X=1,Z=k)/P (Y=0|X=1,Z=k)

P (Y=1|X=0,Z=k)/P (Y=0|X=0,Z=k)

= logitP (Y = 1|X = 1, Z = k)− logitP (Y = 1|X = 0, Z = k)
= (α + βX

1 + βZ
k )− (α + βX

0 + βZ
k )

= βX
1 ,

(7)

where in the third step we used (6). Hence

θXY
(k) = exp(βX

1 ).

The association between exposure and lung cancer is homogeneous, since θXY
(k) does

not depend on the level k of the confounding variable Z.
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c. The marginal odds ratio

θXY =
µ00+µ11+

µ01+µ10+

between X and Y can expressed in terms of the expected cell counts µij+ of the XY
marginal table. It follows from (2) that µij+ = BijCj+. After some simplifications,
this gives

θXY =
B00B11

B01B10

= exp(λXY
11 ) = exp(βX

1 ) = θXY
(k) ,

where in the second step we used that Bij = exp(λ + λY
j + λX

i + λXY
ij ), and that

X = 0 and Y = 0 are baseline levels. This proves that the marginal and conditional
odds ratios are the same.

Alternatively, we express conditional and marginal odds ratios in terms of proba-
bilities. We can use Bayes’ Theorem to rewrite the conditional odds ratio in (7)
as

θXY
(k) =

P (X = 1|Y = 1, Z = k)/P (X = 0|Y = 1, Z = k)

P (X = 1|Y = 0, Z = k)/P (X = 0|Y = 0, Z = k)
. (8)

The marginal odds ratio between X and Y can similarly be written as

θXY =
P (X = 1|Y = 1)/P (X = 0|Y = 1)

P (X = 1|Y = 0)/P (X = 0|Y = 0)
. (9)

But since X and Z are conditionally independent given Y for loglinear model M0,
it follows that

P (X = i|Y = j, Z = k) = P (X = i|Y = j)

for all i, j, k. Comparing (8) and (9), we conclude that the conditional and marginal
odds ratios are the same.

d. We can use parts 5b and 5c to deduce that βX
1 = log(θXY ). The ML estimator of

the marginal odds ratio is obtained from the marginal table nij+ of cell counts, as

θ̂XY =
n00+n11+

n01+n10+

=
132 · 103
34 · 151

= 2.648.

Since the ML estimator of a function of θXY is the same function of θ̂XY , it follows
that the ML estimator of βX

1 is

β̂X
1 = log(θ̂XY ) = log(2.648) = 0.974.

We may also take the logarithm of any of the two estimated conditional odds ratios

θ̂XY
(0) = (93 · 31)/(101 · 12) = 2.379,

θ̂XY
(1) = (39 · 72)/(50 · 22) = 2.553,

in order to estimate βX
1 , but they are both different from the ML estimator.

7


