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Problem 1

a. The null hypothesis H, that hands-free mobile usage and accident proneness are
independent, corresponds to m;; = ;74 ;, where w4 = mo+m;, and 7 ; = w4715

b. Fisher’s exact test uses a hypergeometric distribution

() Cin) — (5) ()
ni1—ni1/\ni1/) _ \12-ni11/ \n11

Py (N1 = nailnog, nag, nyo, ny1) = et = 30 5
(i) ()
for the number Nj; of mobile users with accidents, and ny; = 0,1,...,12. This

distribution is based on drawing n,, persons with accidents from a sample of size
nyy that consists of nyy persons who do not use the mobile while driving, and n,
who do. It is also possible to reverse the role of columns and rows, and draw nq,
mobile users from a sample that consists of n g persons without accidents and n

with accidents. This gives
(mzi?ﬂn) (77;;1) _ (17i§111> (711121)

Pry (N1 = nan|noy, nig, niyo, i) = (n++) = (30) ’
17

ni4+
for ni1 :O,l,...,12.

c. A one sided alternative where mobile usage increases accident risk corresponds to
an alternative hypothesis H, : 0 > 1, where 6 = (m11700)/(m01710) is the odds ratio.

d. Since H, is rejected for large values of Nj; for the one-side alternative hypothesis
in ¢, and ny; = 9, we get

P-value = Py, (N3 >9)

0.0804 4+ 0.0175 4 0.0019 4 0.0001 = 0.100,
0.5PH0(N11 == 9) + PH0<N11 2 10)

= 0.5-0.0804 + 0.0175 + 0.0019 + 0.0001 = 0.060.

mid P-value



e. It follows from 1d and
Py, (Ny; > 10) = 0.0175 + 0.0019 + 0.0001 < 0.05

that both the P-value and mid P-value are smaller than 0.05 when n;; > 10.
Together with ¢, we deduce that the actual significance level of a test with nominal
significance level o = 0.05, is

Py, (P-value < 0.05) = Py, (N > 10) < 0.05,
PH()(IIlid—P—Vahle < 005) = PHO (NH > 10) < 0.05.

This implies that both tests are conservative. On the other hand, the actual signif-
icance levels are

Pu, (P-value < 0.07) = Py (Np > 10) < 0.07,
PHO(mid—P—value < 007) = PHO (NH > 9) > 0.07

when a = 0.07, so that the P-value based test is conservative, whereas the other
one is anti conservative.

Problem 2

a. Since 0;; is the odds ratio of a table with rows ¢ and 7 + 1, and columns j and j + 1,

it follows that o
0, = HijHit1,j+1 (1)

i 5+1 5415

for four different combinations of ¢ and j (1 <1i,j < 2).

b. Estimates éij are obtained by replacing all y;; in (1) with n;;, so that

011 = (nuings)/(niangy) = (34 -174)/(80 - 53 )—1.3957

01 = (nignas)/(noanis) = (53 -304) /(174 - 88) = 1.052,
0y = (nains)/(nging) = (80-175)/(29 - 174) = 1.189,
Oy = (noonss)/(nosngs) = (174 - 172)/(75 - 304) = 1.313,

c. We have that

Var [log(f11/010)] = Var [log { (F452)/(232)}
= Var [lOg(NH) — IOg(Ngl) -2 IOg(ng).
—|—210g(N22) + log(ng) log(Nag)]

~ _1 1, 4 , 4 4 1 4, 1
~ ,u11 + M21 + u12 + uzz + Mld + w3’

where in the third step we used independence of the six terms (since V;; are inde-
pendent), and computed the variance of a Taylor expansion for each one of them,
according to

Hij 1 Wi g

Var [log(NV;;)] = Var |log(p;) +



The corresponding estimate of the variance is obtained by replacing all p;; with n;;,

1.e.
Var log(n/62)] = o4+l Ly L
_ 1 1 4 4 1 1
= 3ttt testsm
= 0.1550.

d. We first compute a one-sided confidence interval for log(611/60:2) as
(log(%2) — 1.645v/0.1550,00) = (log(1253) — 1.645V/0.1550, 00)
= (—0.3654, 00).
The corresponding one-sided confidence interval for 6,1/6;2 is
(exp(—0.3654), 00) = (0.694, 00).

Since 1 is included in the interval, we cannot reject the null hypothesis at level 5%.

Problem 3

a. The cell probabilities 7;; are proportional to p;; with sum 1, i.e. m; = p;/pss =
pij/n. In the last step we used that n = pyy for multinomial sampling, since
Hij = N5

b. The number of concordant and discordant pairs are

C' = 34(174 + 304 + 75 + 172) + 53(304 + 172) + 80(75 + 172) + 174 - 172 = 99566,
D = 53(80 + 29) + 88(80 + 174 + 29 + 75) + 174 - 20 + 304(29 + 75) = 73943

respectively. Therefore, an estimator of ~ is

99566 — 73943
"~ 99566 4 73943

This indicates a positive association between age and job satisfaction.

= 0.148.

2>

c. A pair (X,Y) = (4,) and (X', Y’) = (h, k) of cells is concordant if i < h,j < k or
i > h,j > k. For a large population (not the sample with n individuals!), we may
regard (X,Y) and (X', Y”) as drawn independently with replacement, so that

PIX,Y) = (i,4), (X"Y') = (h, k)] = P[X,Y)=(i,))] P[(X",Y') = (h, k)]
= TjThk-
Therefore, the probability of a concordant pair is
He = 2205 Mijg Xhdshsies; Thi T 2ohk Thi 2i jsishj>k Tij
= 2 Ei,j T Zh,k;h>i,k>j Thi-
Since a cell pair is discordant if ¢ < h, 7 > kori > h,j < k, an analogous calculation

gives
Hd =2 Z T4 Z Thk

ij hoksh>i,k<j

for the probability of such a pair.



d. Since m;; = m;my; under the null hypothesis that age and job satisfaction are
independent, it follows that

He = 235, Tis Ty 2Xon kshsik>s Th Tk
2 (Zi Tt Dohih>i Tht ) (225 Tj Dokk>j 7T+k:> .
A similar calculation gives
g = 2(3 Mir Zhinsi The ) (225 Tj Zkskej Tk
= 222 it Dohshsi Thet ) (Do Tk D2jijok Mg ) -

By interchanging the role of indeces j and k in the last sum, we conclude that
[T, = II, and hence v = 0.

Problem 4

a. The expected cell counts of the My = (XY, ZY') loglinear model are
piy = pij(Mo, 8) = exp (A+ XS+ A+ M+ A5+ A7), 0<ijk<1l (2

If i = j = k = 0 are baseline levels, then all parameters with at least one 0 index
are put to zero. This gives a parameter vector

ﬁ = ()\7 Af’ >\¥7 )\1Z7 A{iy7 )\1Y1Z)7 (3>
with p = 6 components.

b. It follows from (2) that
tiji = BijCik, (4)
where, for instance, Bj; = exp(A+AX +A) +A%Y) and Cjj, = exp(Af +A}7). Then,
summing over one of ¢ or k, or over both indeces simultaneously in (4), we find that

pij+ = ByCiy,
g = ByiCig,
faj+ = BiiCjy.

Consequently,
.y , B;;Ci. - By.C:
Hij+H+35k _ J~ I+ +3“jk _ Bz’jCjk = Liijr.
[+ By;Ciy
Alternatively, we may work directly with the cell probabilities m;x = i/ fbs++-
Since X and Z are conditionally independent given Y for model (XY, Y 7), it follows

that
_ _ _ Tij+  Tjk  Tij+T4jk
Tijk = Tj+Tik|j = Tj+Tit |5 T+klj = T+j+ - : = )
Trj+  Tj+ i+
and hence
Hij+ . H4jk L L
_ _ L S L o e e s ¥ b s o L
Hijk = Ht++Tijk = Mt fitjt - o
P+ Hetit



c. The maximum likelihood estimates
flijh = 17+"%47
Mj+
of the expected cell counts are obtained by replacing fu;;4, ft4+jx and 44 by es-
timates n;j4, nqj and ni;;. From the two partial tables we can compute row
sums n;;4, columns sums 7.y, and total number of observations nyo; = 283 and
ny1y+ = 137. This gives

93 4 39) - (93 + 101
flogp = 0100 (93+39)- (93+101) _ g 19
n+0+ 283

Continuing in this way for the other cells (i, j, k), we get the following predicted
expected cell counts fi;:

No cancer Y = 0: Cancer Y = 1:
Exposure || Smoking Z =k Exposure || Smoking Z = k
X=i | k=0]k=1] Sum X=i [k=0] k=1 [ Sum
1=0 90.49 | 41.51 || 132 1=0 10.67 | 23.33 34
1=1 103.51 | 47.49 || 151 1=1 32.33 | 70.67 103
| Sum | 194 | 89 [ 283 | Sum [ 43 [ 94 | 137 |

d. The log likelihood ratio statistic for testing (XY, Y Z) against the saturated model
(XYZ),is
G* = 2 > ijk Nijk 10g %:
= 2(93-10g%+...+72-10g%)
= 0.733
< x3(0.05) = 5.99,

where in the last step we used that df = 8 — 6 = 2, since the saturated model
has 2 x 2 x 2 = 8 parameters, and the conditional independence model (XY,Y 7)
has 6 parameters according to (3). We thus cannot reject conditional independence
between X and Z given Y at level 5%, indicating that smoking and exposure don’t
have a joint effect on lung cancer.

e. For any model M, the maximum likelihood is

Nijk ~Mijk
_ Ml]k — :ui]k
[(M) = max ] e *u* [Je " :
- N - Nk
ijk ijk- ijk ijk-

where fi;;1 = flijr(M, B(M)) are the fitted cell counts for model M, based on plug-
ging the ML estimate B(M) of that model into (2). This gives a log likelihood

L(M) = log(I(M)) = constant + > _ [ log(ftijn) — fij] (5)

ijk



with a constant (= — 3, nyx!) that is the same for any M. Since the saturated

A

model has the same fitted and observed counts, fi;;1(M, B(M;1)) = nyjk, it follows
that the deviance equals

G2(M) = 2[L(My) — L(M)

22 ik [nijk 1095(@) = (g — ﬂiﬂf)} ’
= 2 Zijk’ Nijk IOg(n”k )

fijr’”

In the last step we used that the baseline parameter A\ is part of M. Indeed,
differentiating (5) with respect to A we find that

AL(M)
B))

=Y (nix — fujr) =0,

B=B  ijk

since, by equation (2), dlog(sjx)/dX = 1 and dpjr/d\ = pi;j-

Problem 5

a. Let m;jx = fiji/p+++ refer to the multinomial cell probabilities of the contingency
table. We have that

logitP(Y =1|X =i,Z = k) = log (Zimit) = Jog (Za)

Tiok/Titk
= log (Mi1k/u+++ = log ( Lk (6)
= a+ 0"+ 57,

Higk/ 4+ )

where in the last step we used (2), with a = A} — AY, X = A¥Y — A\3Y and
BE = A7 — \JZ. Since i = j = k = 0 are baseline levels for the loglinear model, it
follows that the three nonzero parameters of the logistic regression model are

a = A\,
X _  \XY
RN
51 = )‘11 .

b. The log conditional odds ratio between X and Y is

XYy _ P(Y=1|X=1,7=k)/ P(Y=0|X=1,Z=k)
log(0) ) log P(Y=1]X=0,7=k)/P(Y=0|X=0,Z=F)

= logitP(Y = 1|X =1,Z = k) — logitP(Y = 1[X =0,Z=F) 5
= (a4 +80) — (a+ 55 +50)
= B
where in the third step we used (6). Hence
0 = exp(B7).

The association between exposure and lung cancer is homogeneous, since 9()8/ does
not depend on the level k£ of the confounding variable Z.



c. The marginal odds ratio
oXY — Hoo+H11+

Ho1+H1o0+
between X and Y can expressed in terms of the expected cell counts p;;4 of the XY
marginal table. It follows from (2) that u;;+ = B;;C;. After some simplifications,
this gives

Boo B11
P9 = G exp(WY) = exp(BY) = 03
where in the second step we used that Bj; = exp(A + XY + XX + AJY), and that
X =0and Y = 0 are baseline levels. This proves that the marginal and conditional
odds ratios are the same.

Alternatively, we express conditional and marginal odds ratios in terms of proba-
bilities. We can use Bayes’ Theorem to rewrite the conditional odds ratio in (7)

as
PX=1Y=12=k)/P(X=0]Y =1,Z=k)

PX=1Y=0,Z=k/P(X=0Y=0,Z=k) (8)

The marginal odds ratio between X and Y can similarly be written as

XY _
Oy =

gy _ PX=1Y =1)/P(X = 0]Y =1) ;
T PX =1y =0)/P(X = 0]y =0)’ (9)

But since X and Z are conditionally independent given Y for loglinear model My,
it follows that
PX=1lY=45,Z=k) =PX=ilY =)

for all 4, j, k. Comparing (8) and (9), we conclude that the conditional and marginal
odds ratios are the same.

d. We can use parts 5b and 5c¢ to deduce that 3 = log(6*Y). The ML estimator of
the marginal odds ratio is obtained from the marginal table n;;; of cell counts, as

gy _ Mooy 132-103 o 0

No1+110+ 34 - 151

Since the ML estimator of a function of 6% is the same function of 8%V, it follows
that the ML estimator of 3;* is

BY =log(0X) = log(2.648) = 0.974.
We may also take the logarithm of any of the two estimated conditional odds ratios

0%y = (93-31)/(101-12) = 2.379,
05 = (39-72)/(50 - 22) = 2.553,

in order to estimate (3;*, but they are both different from the ML estimator.



