MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Yishao Zhou

Tentamensskrivning i
Linear Algebra and
Learning from Data AN, 7,5 hp
October 26, 2023

You are allowed to bring an A4 sheet (double sides) with whatever you think is important.

1. Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x)=x^{\top} A x$ where $A=\left(\begin{array}{lll}a & 1 & 2 \\ 3 & 2 & 2 \\ 1 & 1 & 3\end{array}\right)$.
(i) For what values of a is f strictly convex?
(ii) What is the smallest eigenvalue of H, without further computing, if $a=2$?
2. (i) Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Show that $B^{\top} A B>0$ if and only if the null space $\mathcal{N}(B)=\{0\}$, where $B \in \mathbb{R}^{n \times k}$.
(ii) Let $A=x y^{\top}$ where $x, y \in \mathbb{R}^{n}$. Show that $\|A\|_{2}=\|x\|_{2}\|y\|_{2}$. What is $\|A\|_{F}$?
(iii) Let A be a square symmetric matrix. Show that $\|A\|_{2}=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{n}\right|\right\}$, where λ_{1} and λ_{n}, are the largest and smallest eigenvalues of A, respectively.
(iv) Let $u, v \in \mathbb{R}^{n}$ be two unit vector (in $2-$ norm) with angle α. Compute $\left\|u u^{\top}-v v^{\top}\right\|_{F}^{2}$.
3. Assume S is an $n \times n$ symmetric positive definite matrix and C is an $n \times n$ invertible matrix. Show that the $2 n \times 2 n$ matrix $H=\left(\begin{array}{cc}S & C \\ C^{\top} & 0\end{array}\right)$ is indefinite. How many positive, negative and zero eigenvalues does H have?
4. (i) Let $A \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{n}$ be such that the Krylov matrix $M=\left(b, A b, A^{2} b, \ldots, A^{n-1} b\right)$ is invertible. Show that $M^{-1} A M=C$, where

$$
C=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -p_{0} \\
1 & 0 & 0 & \cdots & 0 & -p_{1} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -p_{n-1}
\end{array}\right)
$$

and the matrix C depends only on A.
(ii) Find vectors u and v with n-components such that $C=C_{e_{2}}+u v^{\top}$, where $C_{e_{2}}$ is the circulant shift matrix generated by $e_{2}=(0,1,0, \ldots, 0)^{\top}$,
(iii) Find a QR factorization i.e., $C=Q_{1} R_{1}$.
(iv) Let $C_{1}=R_{1} Q_{1}$. Repeat the procedure described in the previous two items two more steps. What can be expectedly obtained if we continue this procedure?
(v) Show that if the polynomial $p(s)=s^{n}+p_{n-1} s^{n-1}+\cdots+p_{0}$ has $m(\leq n)$ distinct zeros λ_{i}, then the matrix C has exactly m linearly independent left eigenvectors $v_{i}=$ $\left(1, \lambda_{i}, \lambda_{i}^{2}, \ldots, \lambda_{i}^{n-1}\right), i=1, \ldots, m$, associated with the eigenvalue λ_{i}.
5. Consider the matrix $T_{n}(\rho)$ with real components $\rho^{|i-j|}, i, j=1,2, \ldots, n$.
(i) Is it a Toeplitz matrix? Is its inverse a Toeplitz matrix?
(ii) Discuss for which ρ the matrix is invertible. Find the inverse in these cases.
(iii) Discuss for which ρ the matrix is positive (semi)-definite.
(iv) Compute the ℓ^{∞}-norm of the inverse $T_{n}^{-1}(\rho)$.
(v) Give an estimate of the spectral radius of $T_{n}(\rho)$.

