MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik

Examinator: Yishao Zhou

Tentamensskrivning i Linear Algebra and Learning from Data AN, 7,5 hp October 26, 2023

You are allowed to bring an A4 sheet (double sides) with whatever you think is important.

- 1. Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x) = x^\top A x$ where $A = \begin{pmatrix} a & 1 & 2 \\ 3 & 2 & 2 \\ 1 & 1 & 3 \end{pmatrix}$.
 - (i) For what values of a is f strictly convex?
 - (ii) What is the smallest eigenvalue of H, without further computing, if a=2?

12 p

- 2. (i) Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Show that $B^{\top}AB > 0$ if and only if the null space $\mathcal{N}(B) = \{0\}$, where $B \in \mathbb{R}^{n \times k}$.
 - (ii) Let $A = xy^{\top}$ where $x, y \in \mathbb{R}^n$. Show that $||A||_2 = ||x||_2 ||y||_2$. What is $||A||_F$?
 - (iii) Let A be a square symmetric matrix. Show that $||A||_2 = \max\{|\lambda_1|, |\lambda_n|\}$, where λ_1 and λ_n , are the largest and smallest eigenvalues of A, respectively.
 - (iv) Let $u, v \in \mathbb{R}^n$ be two unit vector (in 2-norm) with angle α . Compute $||uu^\top vv^\top||_F^2$. 12 p
- 3. Assume S is an $n \times n$ symmetric positive definite matrix and C is an $n \times n$ invertible matrix. Show that the $2n \times 2n$ matrix $H = \begin{pmatrix} S & C \\ C^\top & 0 \end{pmatrix}$ is indefinite. How many positive, negative and zero eigenvalues does H have?

 $12\,\mathrm{p}$

4. (i) Let $A \in \mathbb{R}^n$ and $b \in \mathbb{R}^n$ be such that the Krylov matrix $M = (b, Ab, A^2b, ..., A^{n-1}b)$ is invertible. Show that $M^{-1}AM = C$, where

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -p_0 \\ 1 & 0 & 0 & \cdots & 0 & -p_1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -p_{n-1} \end{pmatrix}$$

and the matrix C depends only on A.

- (ii) Find vectors u and v with n-components such that $C = C_{e_2} + uv^{\top}$, where C_{e_2} is the circulant shift matrix generated by $e_2 = (0, 1, 0, ..., 0)^{\top}$,
- (iii) Find a QR factorization i.e., $C = Q_1 R_1$.
- (iv) Let $C_1 = R_1Q_1$. Repeat the procedure described in the previous two items two more steps. What can be expectedly obtained if we continue this procedure?
- (v) Show that if the polynomial $p(s) = s^n + p_{n-1}s^{n-1} + \cdots + p_0$ has $m(\leq n)$ distinct zeros λ_i , then the matrix C has exactly m linearly independent left eigenvectors $v_i = (1, \lambda_i, \lambda_i^2, ..., \lambda_i^{n-1}), i = 1, ..., m$, associated with the eigenvalue λ_i .

 $12\,\mathrm{p}$

- 5. Consider the matrix $T_n(\rho)$ with real components $\rho^{|i-j|}$, i, j = 1, 2, ..., n.
 - (i) Is it a Toeplitz matrix? Is its inverse a Toeplitz matrix?
 - (ii) Discuss for which ρ the matrix is invertible. Find the inverse in these cases.
 - (iii) Discuss for which ρ the matrix is positive (semi)-definite.
 - (iv) Compute the ℓ^{∞} -norm of the inverse $T_n^{-1}(\rho)$.
 - (v) Give an estimate of the spectral radius of $T_n(\rho)$.

 $12\,\mathrm{p}$