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1. Consider the function f : R3 → R given by f(x) = x>Ax where A =

(
a 1 2
3 2 2
1 1 3

)
.

(i) For what values of a is f strictly convex?

(ii) What is the smallest eigenvalue of H, without further computing, if a = 2? 12 p

2. (i) Let A ∈ Rn×n be symmetric positive definite. Show that B>AB > 0 if and only if the null

space N (B) = {0}, where B ∈ Rn×k.

(ii) Let A = xy> where x, y ∈ Rn. Show that ‖A‖2 = ‖x‖2‖y‖2. What is ‖A‖F ?

(iii) Let A be a square symmetric matrix. Show that ‖A‖2 = max{|λ1|, |λn|}, where λ1 and
λn, are the largest and smallest eigenvalues of A, respectively.

(iv) Let u, v ∈ Rn be two unit vector (in 2−norm) with angle α. Compute ‖uu> − vv>‖2F . 12 p

3. Assume S is an n× n symmetric positive definite matrix and C is an n× n invertible matrix.

Show that the 2n× 2n matrix H =

(
S C
C> 0

)
is indefinite. How many positive, negative and

zero eigenvalues does H have?

12 p

4. (i) Let A ∈ Rn and b ∈ Rn be such that the Krylov matrix M = (b, Ab,A2b, ..., An−1b) is
invertible. Show that M−1AM = C, where

C =


0 0 0 · · · 0 −p0
1 0 0 · · · 0 −p1
...

...
...

...
...

0 0 0 · · · 1 −pn−1


and the matrix C depends only on A.

(ii) Find vectors u and v with n-components such that C = Ce2 + uv>, where Ce2 is the

circulant shift matrix generated by e2 = (0, 1, 0, ..., 0)>,

(iii) Find a QR factorization i.e., C = Q1R1.

(iv) Let C1 = R1Q1. Repeat the procedure described in the previous two items two more steps.
What can be expectedly obtained if we continue this procedure?

(v) Show that if the polynomial p(s) = sn + pn−1s
n−1 + · · · + p0 has m(≤ n) distinct ze-

ros λi, then the matrix C has exactly m linearly independent left eigenvectors vi =
(1, λi, λ

2
i , ..., λ

n−1
i ), i = 1, ...,m, associated with the eigenvalue λi.

12 p

5. Consider the matrix Tn(ρ) with real components ρ|i−j|, i, j = 1, 2, ..., n.

(i) Is it a Toeplitz matrix? Is its inverse a Toeplitz matrix?

(ii) Discuss for which ρ the matrix is invertible. Find the inverse in these cases.

(iii) Discuss for which ρ the matrix is positive (semi)-definite.

(iv) Compute the `∞-norm of the inverse T−1n (ρ).

(v) Give an estimate of the spectral radius of Tn(ρ).

12 p

You can pick up the graded paper at the student affairs office on Tuesdays at 11:45-12:45.


