Solutions to Linear Algebra and Learning from Data October 26, 2023

1. The Hessian matrix is $H=\frac{1}{2}\left(A+A^{\top}\right)$. Using then the Jacobi method to check the positivity of the principal minors of H which shows $a \neq 2$. When $a=2, H$ is positive semi-definite so its smallest eigenvalue is 0 .
2. (i) See Solutions to the exam 2022-10-25 1(i).
(ii) See Solutions to the exam 2022-10-25 2(iv).
(iii) Since $\|A\|_{2}$ is the largest singular value of A, which is the largest eigenvalue of A in absolut value if A is symmetrc, the statement follows.
(iv) $\left\|u u^{\top}-v v^{\top}\right\|_{F}^{2}=\operatorname{tr}\left(\left(u u^{\top}-v v^{\top}\right)\left(u u^{\top}-v v^{\top}\right)^{\top}\right)=2-2\left(u^{\top} v\right)^{2}=$ $2 \sin ^{2} \alpha$
3. Note that

$$
\left(\begin{array}{cc}
I & 0 \\
-C^{\top} S^{-1} & I
\end{array}\right) H\left(\begin{array}{cc}
I & -S^{-1} C \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
S & 0 \\
0 & -C^{\top} S^{-1} C
\end{array}\right)=: \hat{H}
$$

showing that H and \hat{H} have the same number of positive, negative and zero eigenvalues. Since $S>0$ and C is invertible the matrix \hat{H} has exactly n positive and n negative eigenvalues and so does H., also proving H is indefinite.
4. (i) Clearly $A M=M C$. Then M is invertible we get the desired result.
(ii) By insepection, we can choose $u=\left(-p_{0}-1,-p_{1}, \ldots,-p_{n-1}\right)^{\top}, v=e_{n}$.
(iii) Note that $Q=C_{e_{2}}$ is an orthogonal matrix so

$$
C=C_{e_{2}}+u v^{\top}=Q(\underbrace{I+Q^{\top} u v^{\top}}_{R}),
$$

where apparently $R:=I+Q^{\top} u v^{\top}$ is an upper triangular matrix. Thus we have $Q_{1}=Q, R_{1}=R$. Notice that C has rank one update.
(iv) Now $C_{1}=R_{1} Q_{1}=Q+(\underbrace{Q^{\top} u}_{u_{1}})(\underbrace{v^{\top} Q}_{v_{1}^{\top}})$, which is again a rank one update. By more inspection we see that $v_{1}=e_{n-1}$. Furthermore we rewrite $C_{1}=Q\left(I+\left(Q^{\top} u_{1}\right) e_{n-1}^{\top}\right)$. Now the matrix $I+\left(Q^{\top} u_{1}\right) e_{n-1}^{\top}$ is an upper Hessenberg matrix we can perform an QR (for example via a Givens rotation G_{1}). This is a well-know method, the QR algorithm, for eigenvalue computation. Due to the special structure of the matrix C we would have a much cheaper QR procedure.
(v) It is a straightforward check. Do it carefully.
5.(i-iii) This is a Toeplitz matrix but its inverse is not, see Lecture notes Day 11 at the course page.
(iv)

$$
\left\|T_{n}^{-1}(\rho)\right\|_{\infty}=\frac{1+2|\rho|+\rho^{2}}{\left|1-\rho^{2}\right|}
$$

(v) By the Gershgorin circle theorem the eigenvalues must lie in the union of the discs centered at 1 with the radii
$|\rho|+|\rho|^{2}+\cdots+|\rho|^{n-1}, 2|\rho|+|\rho|^{2}+\cdots+|\rho|^{n-2}, \ldots,|\rho|^{k}+2\left(|\rho|+\cdots+|\rho|^{k}\right)$,
where $k=\lfloor n / 2\rfloor$. Hence, an estimate for the spectral radius of $T_{n}(\rho)$ is the maximum of these numbers, which is bounded above by $|\rho|+|\rho|^{2}+\cdots+|\rho|^{n-1}=\frac{|\rho|\left(1-|\rho|^{n-1}\right)}{1-|\rho|}$, if $|\rho|<1$ and by $|\rho|^{k}+2(|\rho|+$ $\left.\cdots+|\rho|^{k}\right)=|\rho|^{k}+\frac{2|\rho|\left(1-|\rho|^{k-1}\right)}{1-|\rho|}$, if $|\rho|>1$. Thus an estimate for the spectral radius is $1+\frac{|\rho|\left(1-|\rho|^{n-1}\right)}{1-|\rho|}$, if $|\rho|<1$ and by $1+|\rho|^{k}+$ $\frac{2|\rho|\left(1-|\rho|^{k-1}\right)}{1-|\rho|}$, if $|\rho|>1$ If $|\rho|=1$ then the sepctral radius is 1 .

