You are allowed to bring an $A 4$ sheet (double sides) with whatever you think is important.
Write down on your cover page how many points p_{h} you collected from the homework assignments. You must motivate well your arguments.

1. (i) Give two definitions of a convex function and show that they are equivalent.
(ii) Is the function $f(x)=\sqrt[3]{x_{1} x_{2} x_{3}}$ convex or concave on \mathbb{R}_{++}^{3} ?
(iii) Is the set $\left\{x \in \mathbb{R}_{++}^{3}:-\sqrt[3]{x_{1} x_{2} x_{3}}<1\right\}$ a convex set?
(iv) Assume that f is a convex function. Show that d is a descent direction of f at x if and only if $f^{\prime}(x ; d)<0$. Does the result hold without convexity of f ?
2. Consider the following problem:

$$
\begin{aligned}
\max & 3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4} \\
\text { s.t. } & 4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4} \leq 17 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} .
\end{aligned}
$$

(i) Determine its dual objective function (explicitly) and the corresponding dual problem.
(ii) Determine the duality gap.
(iii) Solve the problem based on above analysis.
3. Consider the optimization problem: $\min f(x)$ subject to $g_{i}(x) \leq 0$ for $i=1, \ldots m$.
(i) Show that verifying whether a point \bar{x} is a KKT point is equivalent to finding a vector u such that $A^{\top} u=c, u \geq 0$ where $A \in \mathbb{R}^{m \times n}$.
(ii) Use this together with the Simplex Phase I to check whether $\bar{x}=(2,1)^{\top}$ is a KKT point to the following problem:

$$
\begin{aligned}
\text { Minimize } & \left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2} \leq 5 \\
& x_{1}+2 x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

4. Let $S=\left\{x \in \mathbb{R}_{+}^{2}: x_{1}^{2}+x_{2}^{2} \leq 5, x_{1}+2 x_{2} \leq 4\right\}$ and $y=(3,2)^{\top}$. Find the minimum distance from y to S, the unique minimizing point and a separating hyperplane.
5. Let $\mathcal{C}_{n}:=\left\{M \in \mathcal{S}^{n}: x^{\top} M x \geq 0, \forall x \in \mathbb{R}_{+}^{n}\right\}$ and let $A_{J K}$ be submatrix of A with rows indexed by the (nonempty) index set J and columns by the (nonempty) index set K, and \mathbf{e} be an all one column vector, and $|J|$ be the cardinality of the set J.
(i) Show that the standard quadratic optimization (SQO) problem,

$$
\min _{x \in \Delta_{n}} x^{\top} Q x
$$

with $Q \in \mathcal{S}^{n}$, and $\Delta_{n}:=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$ can be rewritten as

$$
\max _{t \in \mathbb{R}}\left\{t: Q-t \mathbf{e e}^{\top} \in \mathcal{C}_{n}\right\} .
$$

(ii) Show that exactly one of the following two systems has a solution.
a. $A x \geq 0, x \geq 0$, and $c^{\top} x>0$.
b. $A^{\top} y \geq c$ and $y \leq 0$.
(If you are not able to prove it take it as granted.)
(iii) Show that $M \in \mathcal{C}_{n}$ if and only if for all $J \subseteq\{1, \ldots, n\}, J \neq \emptyset$, the following system has a solution: $M_{J J} x_{J} \geq 0, x_{J} \geq 0, \mathbf{e}_{|J|}^{\top} x_{J}=1$. (If you are not able to prove it take it as granted.)
(iv) Show that the SQO can be reformulated as the following LP problem

$$
\max \left\{t: Q_{J J} x_{J}-t \mathbf{e}_{|J|}^{\top} \geq 0, x_{J} \geq 0, \mathbf{e}_{|J|}^{\top} x_{J}=1, \forall J \subseteq\{1, \ldots, n\}\right\}
$$

You have finished the exam if your homework $p_{h} \geq 30$ where p_{h} is the points you gained from homework assignments. Continue otherwise.
Solve 1 or 2 or 3 of the following problems according to the ordering $29 \geq p_{h} \geq 20$, or $19 \geq p_{h} \geq 10$, or $p_{h} \leq 9$.
6. Consider the distance function to a closed convex set C :

$$
d(x, C)=\min _{y \in C}\|y-x\|_{2}
$$

(i) Show that it is a convex function.
(ii) Find its subdifferential $\partial d(x, C)$.
7. Consider the support function S on a nonempty bounded convex set C :

$$
S(y)=\sup _{x \in C} y^{\top} x
$$

(i) Show that it is a convex function.
(ii) Let $C:=\left\{x:(x-\bar{x})^{\top} Q(x-\bar{x}) \leq b\right\}$ where $b>0, Q \in \mathcal{S}_{++}^{n}$ and $\bar{x} \in \mathbb{R}^{n}$. Determine $S_{C}(y)$.
(iii) Let C be a cone in \mathbb{R}^{n}. Determine $S_{C}(y)$.
8. Consider the primal problem

$$
\begin{aligned}
(P) \quad \min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, i=1, \ldots, m \\
& h_{j}(x)=0, j=1, \ldots, p \\
& x \in X \subseteq \mathbb{R}^{n}
\end{aligned}
$$

Assume that strong duality holds, x^{*} is primal optimal, $\left(\lambda^{*}, \mu^{*}\right)$ is dual optimal.
(i) Show that $\lambda_{i} g_{i}\left(x^{*}\right)=0$ for $i=1, \ldots, m$.
(ii) Solve first the following LP problem graphically then its dual optimal solution using the preceding statement.

$$
\begin{aligned}
\min & -2 x_{1}-x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 3, \\
& x_{1}-x_{2} \geq-1 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

You can pick up the graded paper at the student affairs office on Tuesdays at 11:45-12:45.

