MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik

Examinator: Jonas Bergström

Tentamensskrivning i Topologi MM7052 7,5 hp 2024-01-24

- (1) (a) [1 pt] Show that the collection $\mathcal{B} = \{[a,b) \subset \mathbb{R} : a < b\}$ is a basis for a topology \mathcal{T} on \mathbb{R} .
 - (b) [1 pt] What are the limit points of the set (0,1) with respect to \mathcal{T} ?
 - (c) [1 pt] What are the connected components of \mathbb{R} with respect to \mathcal{T} ?
 - (d) [1 pt] Show that \mathbb{R} with respect to \mathcal{T} is not compact.
 - (e) [1 pt] Show that \mathbb{R} with respect to \mathcal{T} is not second countable.
- (2) Let X be any non-empty topological space, and define $CX = (X \times I)/(X \times I)$
 - $\{0\}$) which is called the cone on X.
 - (a) [3 pts] Show that CX is contractible.
 - (b) [2 pts] For any $n \ge 0$, show that $C\mathbb{S}^n$ is homeomorphic to $\overline{\mathbb{B}}^{n+1}$.
- (3) We define a group action of \mathbb{Z}^2 on \mathbb{R}^2 by putting $(m,n)\cdot(x,y)=(x+m,y+n)$ for any $(m,n)\in\mathbb{Z}^2$ and $(x,y)\in\mathbb{R}^2$.
 - (a) [2 pt] Show that this is a covering space action (also called a properly discontinuous action).
 - (b) [3 pt] Show that $\mathbb{R}^2/\mathbb{Z}^2$ is homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^1$.
- (4) Let $q: E \to X$ be a covering map.
 - (a) [3 pt] Show that if X is Hausdorff then E is Hausdorff.
 - (b) [2 pt] Show that if q is proper then $q^{-1}(x)$ consists of finitely many points for all $x \in X$.
- (5) [5 pts] Let $\overline{\mathbb{B}}^2$ denote the closed disc with boundary \mathbb{S}^1 . Fix a point $p \in \mathbb{S}^1$. Compute the fundamental group of the union $(\mathbb{S}^1 \times \mathbb{S}^1) \cup (\overline{\mathbb{B}}^2 \times \{p\})$ inside $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$.
- (6) [5 pts] Prove the following theorem:

Theorem 1. (Homotopy invariance of π_1 .) If $\varphi: X \to Y$ is a homotopy equivalence, then for any point $p \in X$, $\varphi_*: \pi_1(X,p) \to \pi_1(Y,\varphi(p))$ is an isomorphism.