MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik Examinator: Jonas Bergström Tentamensskrivning i Topologi MM7052 7,5 hp 2024-01-24

- (1) (a) [1 pt] Show that the collection $\mathcal{B} = \{[a,b) \subset \mathbb{R} : a < b\}$ is a basis for a topology \mathcal{T} on \mathbb{R} .
 - (b) [1 pt] What are the limit points of the set (0,1) with respect to \mathcal{T} ?
 - (c) [1 pt] What are the connected components of \mathbb{R} with respect to \mathcal{T} ?
 - (d) [1 pt] Show that \mathbb{R} with respect to \mathcal{T} is not compact.
 - (e) [1 pt] Show that \mathbb{R} with respect to \mathcal{T} is not second countable.

Solution: (a) First note that for all $x \in \mathbb{R}$ holds $x \in [x, x + 1)$, so that \mathcal{B} covers \mathbb{R} . Moreover, for any a < b and a' < b' in \mathbb{R} , we have $[a, b) \cap [a', b') = [\max(a, a'), \min(b, b'))$. This is an element of \mathcal{B} if it is non-empty. Hence, by Proposition 2.44, the set \mathcal{B} is a basis for a topology on \mathbb{R} .

(b) We claim that the set L of limit points of (0,1) in \mathcal{T} is equal to [0,1). Let $x \geq 1$. Then [1,x+1) is an open set disjoint from (0,1) that contains x; hence $x \notin L$.

Now let $x \in [0,1)$ and U a neighborhood of x. Then there is a basis element $B = [a,b) \in \mathcal{B}$ such that $x \in B \subseteq U$. In particular $\max(a,0) \le x < \min(b,1)$. Then, for any $y \in \mathbb{R}$ such that $x < y < \min(b,1)$, we have that $x \ne y \in [0,1) \cap B \subseteq [0,1) \cap U$. Hence $x \in L$.

Lastly, let x < 0. Then [x, 0) is an open set disjoint from (0, 1) that contains x; hence $x \notin L$.

Together, this proves the claim.

- (c) We claim that every point of $\mathbb R$ is its own connected component with respect to $\mathcal T$ (i.e. the space is totally disconnected). Assume, to the contrary, that there exists a connected component $C\subseteq\mathbb R$ with more than one point, and let $x\neq y$ be two points of C. Furthermore, choose some $t\in\mathbb R$ such that x< t< y. Note that $A=(-\infty,t)=\bigcup_{s< t}[s,t)$ and $B=[t,\infty)=\bigcup_{t< s}[t,s)$ are open with respect to $\mathcal T$. Hence $A\cap C$ and $B\cap C$ are two disjoint open subsets of C that together cover C. Both of them are non-empty since $x\in A\cap C$ and $y\in B\cap C$. Hence C is disconnected, which is a contradiction.
- (d) Consider the set $\mathcal{C} = \{[n, n+1) \mid n \in \mathbb{Z}\}$. This is an open cover of \mathbb{R} with respect to \mathcal{T} . Since each two of the elements of \mathcal{C} are disjoint, this cover does not have any finite subcover. Hence the space is not compact.
- (e) Let \mathcal{A} be any basis for the topology \mathcal{T} . For all $x \in \mathbb{R}$ there exists an element $A_x \in \mathcal{A}$ such that $x \in A_x \subseteq [x, x+1)$; in particular inf $A_x = x$. Hence, if $x \neq y \in \mathbb{R}$, then $A_x \neq A_y$. Thus $|\mathcal{A}| \geq |\mathbb{R}|$ and so \mathcal{T} does not have a countable basis.
- (2) Let X be any non-empty topological space, and define $CX = (X \times I)/(X \times I)$
 - $\{0\}$) which is called the cone on X.
 - (a) [3 pts] Show that CX is contractible.
 - (b) [2 pts] For any $n \geq 0$, show that $\mathbb{C}\mathbb{S}^n$ is homeomorphic to $\overline{\mathbb{B}}^{n+1}$.

Solution: (a) We will prove that the identity of CX is homotopic to the constant map with image $[(x_0,0)]$, where x_0 is any point of X. Denote by $q: X \times I \to CX$ the quotient map. First note that

$$q \times \mathrm{id}_I \colon (X \times I) \times I \longrightarrow CX \times I$$

is a quotient map by Lemma 4.72.

Now let $H: CX \times I \to CX$ be the function given by H([(x,s)],t) = [(x,st)]. This is well-defined since H([(x,0)],t) = [(x,0)] = [(y,0)] = H([(y,0)],t) for any $x,y \in X$ and $t \in I$. The composite

$$G = H \circ (q \times id_I) \colon X \times I \times I \longrightarrow CX$$

is given by G(x,s,t)=[(x,st)]. This is equal to $q\circ(\operatorname{id}_X\times\mu)$, where $\mu\colon I\times I\to I$ is given by $\mu(s,t)=st$. Since both q and μ are continuous, so is G. As $q\times\operatorname{id}_I$ is a quotient map, this implies that H is continuous as well.

Lastly note that H([(x,s)],1) = [(x,s)] and $H([(x,s)],0) = [(x,0)] = [(x_0,0)]$. Hence H is a homotopy between id_{CX} and the constant map with image $[(x_0,0)]$.

- (b) Let $f \colon C\mathbb{S}^n \to \overline{\mathbb{B}}^{n+1}$ be the function given by f([(x,s)]) = sx, where we consider \mathbb{S}^n to be a subset of \mathbb{R}^{n+1} . Note that $|sx| = s|x| \le |x| = 1$ since $0 \le s \le 1$ and $x \in \mathbb{S}^n$, so that indeed $sx \in \overline{\mathbb{B}}^{n+1}$. The composite $f \circ q \colon \mathbb{S}^n \times I \to \overline{\mathbb{B}}^{n+1}$ is given by $(x,s) \mapsto sx$, which is continuous. Hence f is continuous as well. Moreover, note that f is bijective, and that $C\mathbb{S}^n$ is compact since it is a quotient of the compact space $\mathbb{S}^n \times I$. Since $\overline{\mathbb{B}}^{n+1}$ is Hausdorff, this implies, by Lemma 4.50, that f is a homeomorphism.
- (3) We define a group action of \mathbb{Z}^2 on \mathbb{R}^2 by putting $(m,n)\cdot(x,y)=(x+m,y+n)$ for any $(m,n)\in\mathbb{Z}^2$ and $(x,y)\in\mathbb{R}^2$.
 - (a) [2 pt] Show that this is a covering space action (also called a properly discontinuous action).
 - (b) [3 pt] Show that $\mathbb{R}^2/\mathbb{Z}^2$ is homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^1$.

Solution: (a) This is a special case of Proposition 12.15 since \mathbb{R}^2 is a connected and locally path-connected topological group and \mathbb{Z}^2 is a discrete subgroup such that the action is precisely given by translation.

- (b) Denote by $\varepsilon \colon \mathbb{R}^1 \to \mathbb{S}^1$ the exponential map $\varepsilon(x) = e^{2\pi i x}$. We consider \mathbb{S}^1 to be a subgroup of the multiplicative group \mathbb{C}^* . Then ε is a surjective group homomorphism with kernel \mathbb{Z} . Hence $\varepsilon \times \varepsilon$ is a surjective group homomorphism with kernel $\mathbb{Z} \times \mathbb{Z}$, and thus it induces an isomorphism of groups $f \colon \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{S}^1 \times \mathbb{S}^1$; in particular f is a bijection. Since $\varepsilon \times \varepsilon$ is continuous and $q \colon \mathbb{R}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ is a quotient map, the induced map f is also continuous. Note that $\mathbb{R}^2/\mathbb{Z}^2$ is equal to $q([0,1] \times [0,1])$ and hence compact. Since $\mathbb{S}^1 \times \mathbb{S}^1$ is Hausdorff, this implies, by Lemma 4.50, that f is a homeomorphism.
- (4) Let $q: E \to X$ be a covering map.
 - (a) [3 pt] Show that if X is Hausdorff then E is Hausdorff.
 - (b) [2 pt] Show that if q is proper then $q^{-1}(x)$ consists of finitely many points for all $x \in X$.

Solution: (a) Let $e \neq e'$ be two points of E. If $q(e) \neq q(e')$, then these images have disjoint open neighborhoods U and V in X and $q^{-1}(U)$ and $q^{-1}(V)$ are disjoint open neighborhoods of e and e'. If q(e) = q(e'), then this image x has an evenly covered neighborhood $U \subseteq X$. In particular $q^{-1}(U)$ is a disjoint union of open subsets of E, each of which contains exactly one preimage of x. Hence e and e' are contained in two different of these open subsets; this yields disjoint open neighborhoods of e and e'.

(b) Since the subspace $\{x\} \subseteq X$ is compact and q is proper, the preimage $q^{-1}(x)$ is compact. Since q is a covering map, the fiber $q^{-1}(x)$ is also discrete. But compact discrete spaces are finite.

(5) [5 pts] Let $\overline{\mathbb{B}}^2$ denote the closed disc with boundary \mathbb{S}^1 . Fix a point $p \in \mathbb{S}^1$. Compute the fundamental group of the union $(\mathbb{S}^1 \times \mathbb{S}^1) \cup (\overline{\mathbb{B}}^2 \times \{p\})$ inside $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$.

Solution: Let $X = (\mathbb{S}^1 \times \mathbb{S}^1) \cup (\overline{\mathbb{B}}^2 \times \{p\})$ and let Y be the space obtained by attaching a disk $\overline{\mathbb{B}}^2$ to $\mathbb{S}^1 \times \mathbb{S}^1$ along the map

$$\varphi \colon \partial \overline{\mathbb{B}}^2 = \mathbb{S}^1 \cong \mathbb{S}^1 \times \{p\} \longrightarrow \mathbb{S}^1 \times \mathbb{S}^1$$

given by the inclusion. We claim that $X \cong Y$. Let $f : (\mathbb{S}^1 \times \mathbb{S}^1) \coprod \overline{\mathbb{B}}^2 \to X$ be the continuous map given by the identity on $\mathbb{S}^1 \times \mathbb{S}^1$ and by f(b) = (b,p) on $\overline{\mathbb{B}}^2$. Since $f(\varphi(b)) = f(b)$ for all $b \in \partial \overline{\mathbb{B}}^2$, it induces a continuous map $g : Y \to X$. Note that g is a bijection. Moreover $X \subseteq \overline{\mathbb{B}}^2 \times \mathbb{S}^1$ is Hausdorff and Y is compact since it is a quotient of $(\mathbb{S}^1 \times \mathbb{S}^1) \coprod \overline{\mathbb{B}}^2$. Hence g is a homeomorphism by Lemma 4.50. In particular the fundamental group of X is isomorphic to the one of Y.

Now, by Proposition 10.13, the fundamental group of Y (based at a point represented by $(x_0, p) \in \mathbb{S}^1 \times \mathbb{S}^1$ for some $x_0 \in \mathbb{S}^1$) is isomorphic to the quotient of $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1)$ by the normal closure of $\varphi_*(\alpha)$, where α corresponds to 1 under the isomorphism $\pi_1(\partial \overline{\mathbb{B}}^2) = \pi_1(\mathbb{S}^1) \cong \mathbb{Z}$. Note that the map $\Psi \colon \pi_1(S^1 \times S^1) \to \pi_1(\mathbb{S}^1) \times \pi_1(\mathbb{S}^1)$ given by $\Psi(\gamma) = ((\operatorname{pr}_1)_*(\gamma), (\operatorname{pr}_2)_*(\gamma))$ is an isomorphism by Proposition 7.34. Hence $\pi_1(Y)$ is isomorphic to the quotient of $\pi_1(\mathbb{S}^1) \times \pi_1(\mathbb{S}^1)$ by the normal closure of $\Psi(\varphi_*(\alpha))$. But $\operatorname{pr}_1 \circ \varphi = \operatorname{id}_{\mathbb{S}^1}$ and $\operatorname{pr}_2 \circ \varphi$ is constant with value p. Hence $\Psi(\varphi_*(\alpha)) = (\alpha, e)$, where e is the neutral element of $\pi_1(\mathbb{S}^1)$. Using the isomorphism $\pi_1(\mathbb{S}^1) \cong \mathbb{Z}$, this implies that $\pi_1(Y)$ is isomorphic to the quotient of $\mathbb{Z} \times \mathbb{Z}$ by the normal closure of (1,0). This normal closure is the subgroup $\mathbb{Z} \times \{0\}$, and hence $\pi_1(Y) \cong (\mathbb{Z} \times \mathbb{Z})/(\mathbb{Z} \times \{0\}) \cong \mathbb{Z}$.

(6) [5 pts] Prove the following theorem:

Theorem 1. (Homotopy invariance of π_1 .) If $\varphi: X \to Y$ is a homotopy equivalence, then for any point $p \in X$, $\varphi_*: \pi_1(X,p) \to \pi_1(Y,\varphi(p))$ is an isomorphism.

Solution: This is Theorem 7.40 from the book, and its proof can be found there.