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(1) (a) [1 pt] Show that the collection B = {[a, b) ⊂ R : a < b} is a basis for a
topology T on R.

(b) [1 pt] What are the limit points of the set (0, 1) with respect to T ?
(c) [1 pt] What are the connected components of R with respect to T ?
(d) [1 pt] Show that R with respect to T is not compact.
(e) [1 pt] Show that R with respect to T is not second countable.

Solution: (a) First note that for all x ∈ R holds x ∈ [x, x + 1), so that B covers
R. Moreover, for any a < b and a′ < b′ in R, we have [a, b) ∩ [a′, b′) =
[max(a, a′),min(b, b′)). This is an element of B if it is non-empty. Hence,
by Proposition 2.44, the set B is a basis for a topology on R.

(b) We claim that the set L of limit points of (0, 1) in T is equal to [0, 1).
Let x ≥ 1. Then [1, x+1) is an open set disjoint from (0, 1) that contains
x; hence x /∈ L.
Now let x ∈ [0, 1) and U a neighborhood of x. Then there is a basis
element B = [a, b) ∈ B such that x ∈ B ⊆ U . In particular max(a, 0) ≤
x < min(b, 1). Then, for any y ∈ R such that x < y < min(b, 1), we have
that x 6= y ∈ [0, 1) ∩B ⊆ [0, 1) ∩ U . Hence x ∈ L.
Lastly, let x < 0. Then [x, 0) is an open set disjoint from (0, 1) that
contains x; hence x /∈ L.
Together, this proves the claim.

(c) We claim that every point of R is its own connected component with
respect to T (i.e. the space is totally disconnected). Assume, to the
contrary, that there exists a connected component C ⊆ R with more
than one point, and let x 6= y be two points of C. Furthermore, choose
some t ∈ R such that x < t < y. Note that A = (−∞, t) =

⋃
s<t[s, t) and

B = [t,∞) =
⋃
t<s[t, s) are open with respect to T . Hence A ∩ C and

B ∩ C are two disjoint open subsets of C that together cover C. Both
of them are non-empty since x ∈ A ∩ C and y ∈ B ∩ C. Hence C is
disconnected, which is a contradiction.

(d) Consider the set C = {[n, n + 1) | n ∈ Z}. This is an open cover of R
with respect to T . Since each two of the elements of C are disjoint, this
cover does not have any finite subcover. Hence the space is not compact.

(e) Let A be any basis for the topology T . For all x ∈ R there exists an
element Ax ∈ A such that x ∈ Ax ⊆ [x, x+ 1); in particular inf Ax = x.
Hence, if x 6= y ∈ R, then Ax 6= Ay. Thus |A| ≥ |R| and so T does not
have a countable basis.

(2) Let X be any non-empty topological space, and define CX = (X × I)/(X ×
{0}) which is called the cone on X.
(a) [3 pts] Show that CX is contractible.

(b) [2 pts] For any n ≥ 0, show that CSn is homeomorphic to Bn+1
.

Solution: (a) We will prove that the identity of CX is homotopic to the constant map
with image [(x0, 0)], where x0 is any point of X. Denote by q : X × I →
CX the quotient map. First note that

q × idI : (X × I)× I −→ CX × I

is a quotient map by Lemma 4.72.
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Now let H : CX × I → CX be the function given by H([(x, s)], t) =
[(x, st)]. This is well-defined since H([(x, 0)], t) = [(x, 0)] = [(y, 0)] =
H([(y, 0)], t) for any x, y ∈ X and t ∈ I. The composite

G = H ◦ (q × idI) : X × I × I −→ CX

is given by G(x, s, t) = [(x, st)]. This is equal to q ◦ (idX ×µ), where
µ : I × I → I is given by µ(s, t) = st. Since both q and µ are continuous,
so is G. As q × idI is a quotient map, this implies that H is continuous
as well.
Lastly note that H([(x, s)], 1) = [(x, s)] and H([(x, s)], 0) = [(x, 0)] =
[(x0, 0)]. Hence H is a homotopy between idCX and the constant map
with image [(x0, 0)].

(b) Let f : CSn → Bn+1
be the function given by f([(x, s)]) = sx, where we

consider Sn to be a subset of Rn+1. Note that |sx| = s|x| ≤ |x| = 1

since 0 ≤ s ≤ 1 and x ∈ Sn, so that indeed sx ∈ Bn+1
. The composite

f ◦q : Sn× I → Bn+1
is given by (x, s) 7→ sx, which is continuous. Hence

f is continuous as well. Moreover, note that f is bijective, and that CSn

is compact since it is a quotient of the compact space Sn×I. Since Bn+1

is Hausdorff, this implies, by Lemma 4.50, that f is a homeomorphism.

(3) We define a group action of Z2 on R2 by putting (m,n) ·(x, y) = (x+m, y+n)
for any (m,n) ∈ Z2 and (x, y) ∈ R2.
(a) [2 pt] Show that this is a covering space action (also called a properly

discontinuous action).
(b) [3 pt] Show that R2/Z2 is homeomorphic to S1 × S1.

Solution: (a) This is a special case of Proposition 12.15 since R2 is a connected and
locally path-connected topological group and Z2 is a discrete subgroup
such that the action is precisely given by translation.

(b) Denote by ε : R1 → S1 the exponential map ε(x) = e2πix. We consider S1
to be a subgroup of the multiplicative group C∗. Then ε is a surjective
group homomorphism with kernel Z. Hence ε × ε is a surjective group
homomorphism with kernel Z × Z, and thus it induces an isomorphism
of groups f : R2/Z2 → S1 × S1; in particular f is a bijection. Since ε× ε
is continuous and q : R2 → R2/Z2 is a quotient map, the induced map f
is also continuous. Note that R2/Z2 is equal to q([0, 1]× [0, 1]) and hence
compact. Since S1 × S1 is Hausdorff, this implies, by Lemma 4.50, that
f is a homeomorphism.

(4) Let q : E → X be a covering map.
(a) [3 pt] Show that if X is Hausdorff then E is Hausdorff.
(b) [2 pt] Show that if q is proper then q−1(x) consists of finitely many

points for all x ∈ X.

Solution: (a) Let e 6= e′ be two points of E. If q(e) 6= q(e′), then these images have
disjoint open neighborhoods U and V in X and q−1(U) and q−1(V ) are
disjoint open neighborhoods of e and e′. If q(e) = q(e′), then this image
x has an evenly covered neighborhood U ⊆ X. In particular q−1(U) is a
disjoint union of open subsets of E, each of which contains exactly one
preimage of x. Hence e and e′ are contained in two different of these
open subsets; this yields disjoint open neighborhoods of e and e′.

(b) Since the subspace {x} ⊆ X is compact and q is proper, the preimage
q−1(x) is compact. Since q is a covering map, the fiber q−1(x) is also
discrete. But compact discrete spaces are finite.
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(5) [5 pts] Let B2
denote the closed disc with boundary S1. Fix a point p ∈ S1.

Compute the fundamental group of the union (S1 × S1) ∪ (B2 × {p}) inside
B2 × S1 .

Solution: Let X = (S1× S1)∪ (B2×{p}) and let Y be the space obtained by attaching
a disk B2

to S1 × S1 along the map

ϕ : ∂B2
= S1 ∼= S1 × {p} −→ S1 × S1

given by the inclusion. We claim that X ∼= Y . Let f : (S1× S1)qB2 → X be
the continuous map given by the identity on S1×S1 and by f(b) = (b, p) on B2

.
Since f(ϕ(b)) = f(b) for all b ∈ ∂B2

, it induces a continuous map g : Y → X.
Note that g is a bijection. Moreover X ⊆ B2 × S1 is Hausdorff and Y is
compact since it is a quotient of (S1×S1)qB2

. Hence g is a homeomorphism
by Lemma 4.50. In particular the fundamental group of X is isomorphic to
the one of Y .

Now, by Proposition 10.13, the fundamental group of Y (based at a point
represented by (x0, p) ∈ S1 × S1 for some x0 ∈ S1) is isomorphic to the
quotient of π1(S1 × S1) by the normal closure of ϕ∗(α), where α corresponds
to 1 under the isomorphism π1(∂B2

) = π1(S1) ∼= Z. Note that the map
Ψ: π1(S1×S1)→ π1(S1)×π1(S1) given by Ψ(γ) = ((pr1)∗(γ), (pr2)∗(γ)) is an
isomorphism by Proposition 7.34. Hence π1(Y ) is isomorphic to the quotient
of π1(S1) × π1(S1) by the normal closure of Ψ(ϕ∗(α)). But pr1 ◦ ϕ = idS1

and pr2 ◦ ϕ is constant with value p. Hence Ψ(ϕ∗(α)) = (α, e), where e
is the neutral element of π1(S1). Using the isomorphism π1(S1) ∼= Z, this
implies that π1(Y ) is isomorphic to the quotient of Z × Z by the normal
closure of (1, 0). This normal closure is the subgroup Z × {0}, and hence
π1(Y ) ∼= (Z× Z)/(Z× {0}) ∼= Z.

(6) [5 pts] Prove the following theorem:

Theorem 1. (Homotopy invariance of π1.) If ϕ : X → Y is a homotopy
equivalence, then for any point p ∈ X, ϕ∗ : π1(X, p) → π1(Y, ϕ(p)) is an
isomorphism.

Solution: This is Theorem 7.40 from the book, and its proof can be found there.
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