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(1)

Solution:

(a)

(b)

[1 pt] Show that the collection B = {[a,b) C R : a < b} is a basis for a
topology 7 on R.

[1 pt| What are the limit points of the set (0,1) with respect to 77

[1 pt] What are the connected components of R with respect to 77

[1 pt] Show that R with respect to T is not compact.

[1 pt] Show that R with respect to 7 is not second countable.

R. Moreover, for any a < b and o/ < b’ in R, we have [a,b) N [a/,}) =
[max(a,a’), min(b,b')). This is an element of B if it is non-empty. Hence,
by Proposition 2.44, the set B is a basis for a topology on R.

We claim that the set L of limit points of (0,1) in 7 is equal to [0, 1).
Let > 1. Then [1,241) is an open set disjoint from (0, 1) that contains
x; hence x ¢ L.

Now let € [0,1) and U a neighborhood of z. Then there is a basis
element B = [a,b) € B such that z € B C U. In particular max(a,0) <
x < min(b,1). Then, for any y € R such that < y < min(b, 1), we have
that z £y € [0,1)N B C [0,1)NU. Hence z € L.

Lastly, let « < 0. Then [z,0) is an open set disjoint from (0,1) that
contains x; hence x ¢ L.

Together, this proves the claim.

We claim that every point of R is its own connected component with
respect to T (i.e. the space is totally disconnected). Assume, to the
contrary, that there exists a connected component C' C R with more
than one point, and let x # y be two points of C'. Furthermore, choose
some t € R such that z <t < y. Note that A = (—o0,t) = (J,,[s,t) and
B = [t,00) = U,.,[t,s) are open with respect to 7. Hence AN C and
BN C are two disjoint open subsets of C' that together cover C. Both
of them are non-empty since * € ANC and y € BN C. Hence C is
disconnected, which is a contradiction.

Counsider the set C = {[n,n + 1) | n € Z}. This is an open cover of R
with respect to 7. Since each two of the elements of C are disjoint, this
cover does not have any finite subcover. Hence the space is not compact.
Let A be any basis for the topology 7. For all x € R there exists an
element A, € A such that z € A, C [z,z + 1); in particular inf A, = x.
Hence, if  # y € R, then A, # A,. Thus |A| > |R| and so T does not
have a countable basis.

(2) Let X be any non-empty topological space, and define CX = (X x I)/(X x

(a)
(b)

{0}) which is called the cone on X.

[3 pts] Show that C'X is contractible.
[2 pts] For any n > 0, show that C'S™ is homeomorphic to B

Solution: (a) We will prove that the identity of CX is homotopic to the constant map

with image [(x0,0)], where x is any point of X. Denote by ¢: X x I —
C'X the quotient map. First note that

gxidy: (X xI)xI—CXxI

is a quotient map by Lemma 4.72.
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Now let H: CX x I — CX be the function given by H([(x,s)],t) =
[(z,st)]. This is well-defined since H([(x,0)],t) = [(z,0)] = [(y,0)] =
H([(y,0)],t) for any z,y € X and t € I. The composite

G=Ho(¢gxid): X xIxI— CX

is given by G(z,s,t) = [(z,st)]. This is equal to g o (idx xu), where
w: I x I —1Tisgiven by u(s,t) = st. Since both ¢ and p are continuous,
so is G. As g x idj is a quotient map, this implies that H is continuous
as well.

Lastly note that H([(z,s)],1) = [(z,s)] and H([(z,s)],0) = [(z,0)] =
[(%0,0)]. Hence H is a homotopy between idcx and the constant map
with image [(xo,0)].

Let f: CS™ — B"* be the function given by f([(z,s)]) = sz, where we
consider S™ to be a subset of R"*1. Note that |sz| = s|z| < |z| = 1

. . —n+1 .
since 0 < s <1 and x € S", so that indeed sz € B""'. The composite
—=n+1 . . . . .
foq:S"xI — B s given by (z, s) — sz, which is continuous. Hence
f is continuous as well. Moreover, note that f is bijective, and that CS™

. . .. . . —n+1
is compact since it is a quotient of the compact space S™ x I. Since B
is Hausdorff, this implies, by Lemma 4.50, that f is a homeomorphism.

(3) We define a group action of Z? on R? by putting (m, n)-(z,y) = (x+m,y+n)
for any (m,n) € Z? and (z,y) € R

(a)
(b)

Solution: (a)

[2 pt] Show that this is a covering space action (also called a properly
discontinuous action).

[3 pt] Show that R?/Z? is homeomorphic to St x S.

This is a special case of Proposition 12.15 since R? is a connected and
locally path-connected topological group and Z?2 is a discrete subgroup
such that the action is precisely given by translation.

Denote by e: R! — S! the exponential map e(z) = ¢*™*. We consider S!
to be a subgroup of the multiplicative group C*. Then ¢ is a surjective
group homomorphism with kernel Z. Hence € x ¢ is a surjective group
homomorphism with kernel Z x Z, and thus it induces an isomorphism
of groups f: R?/Z? — S' x S!; in particular f is a bijection. Since ¢ x €
is continuous and ¢: R? — R?/Z? is a quotient map, the induced map f
is also continuous. Note that R?/Z? is equal to ¢([0, 1] x [0, 1]) and hence
compact. Since S! x S! is Hausdorff, this implies, by Lemma, 4.50, that
f is a homeomorphism.

(4) Let g : E — X be a covering map.

(a)
(b)

Solution: (a)

[3 pt] Show that if X is Hausdorff then E is Hausdorff.

[2 pt] Show that if ¢ is proper then ¢~!(x) consists of finitely many
points for all x € X.

Let e # €’ be two points of E. If g(e) # q(e’), then these images have
disjoint open neighborhoods U and V in X and ¢~ !(U) and ¢~ (V) are
disjoint open neighborhoods of e and €’. If g(e) = g(e’), then this image
x has an evenly covered neighborhood U C X. In particular ¢~ 1(U) is a
disjoint union of open subsets of E, each of which contains exactly one
preimage of . Hence e and ¢’ are contained in two different of these
open subsets; this yields disjoint open neighborhoods of e and ¢’.

Since the subspace {x} C X is compact and ¢ is proper, the preimage
q~!(z) is compact. Since ¢ is a covering map, the fiber ¢~!(x) is also
discrete. But compact discrete spaces are finite.

20f 3



(5)

Solution:

(6)

Solution:

[5 pts] Let B° denote the closed disc with boundary S!. Fix a point p € S'.
Compute the fundamental group of the union (S* x S!) U (@2 x {p}) inside
—2

B xSt.

Let X = (S! x SHU (E2 x {p}) and let Y be the space obtained by attaching
a disk B to S' x S! along the map
0: 9B =S'=S! x {p} — S! x S!

given by the inclusion. We claim that X =Y. Let f: (S' x S!) 1B — X be
the continuous map given by the identity on S' xS! and by f(b) = (b, p) on B
Since f(¢(b)) = f(b) for all b € 8@27 it induces a continuous map g: ¥ — X.
Note that g is a bijection. Moreover X C B x S! is Hausdorff and Y is
compact since it is a quotient of (S! x S!) I1B°. Hence g is a homeomorphism
by Lemma 4.50. In particular the fundamental group of X is isomorphic to
the one of Y.

Now, by Proposition 10.13, the fundamental group of Y (based at a point
represented by (zo,p) € S' x St for some zq € S!) is isomorphic to the
quotient of 71 (St x S!) by the normal closure of ¢, (a), where a corresponds
to 1 under the isomorphism 771(8@2) = m(S') = Z. Note that the map
U: oy (ST x SY) — 7w (SY) x 7y (S?) given by W(vy) = ((pry)«(7), (pry)«(7)) is an
isomorphism by Proposition 7.34. Hence m1(Y) is isomorphic to the quotient
of m1(S') x m1(S!) by the normal closure of ¥(p.(a)). But pr; o ¢ = idgs
and pr, o @ is constant with value p. Hence ¥(p.(a)) = (a,e), where e
is the neutral element of 7;(S'). Using the isomorphism 1 (S') = Z, this
implies that m1(Y) is isomorphic to the quotient of Z x Z by the normal

closure of (1,0). This normal closure is the subgroup Z x {0}, and hence
m(Y) = (ZxZ)/(Z x {0}) = Z.

[5 pts] Prove the following theorem:

Theorem 1. (Homotopy invariance of m.) If ¢ : X — Y is a homotopy
equivalence, then for any point p € X, ¢, : m(X,p) — m(Y,o(p)) is an
isomorphism.

This is Theorem 7.40 from the book, and its proof can be found there.
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