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Problem 1

a. We have that

P (Y = 1|X = x) = π(x) =
exp(α + βx)

1 + exp(α + βx)
. (1)

b. The predicted probability of bankruptcy for a person with income I = µ/8 and
predictor X = log2(I/µ) = −3, is

π̂(−3) =
exp(α̂− 3β̂)

1 + exp(α̂− 3β̂)
=

exp(−4.7 + 3 · 0.85)
1 + exp(−4.7 + 3 · 0.85)

=
exp(−2.15)

1 + exp(−2.15)
= 0.104.

c. We estimate the variance

Var(α̂− 3β̂) = Var(α̂)− 2 · 3 · Cov(α̂, β̂) + 32 · Var(β̂)
= Var(α̂)− 6 · Cov(α̂, β̂) + 9 · Var(β̂)

by the squared standard error

SE2 = V̂ar(α̂− 3β̂)

= V̂ar(α̂)− 6 · Ĉov(α̂, β̂) + 9 · V̂ar(β̂)
= 0.015 + 6 · 0.003 + 9 · 0.005
= 0.078.

This gives an approximate 95% confidence interval

(α̂− 3β̂ − 1.96 · SE, α̂− 3β̂ + 1.96 · SE)
=

(
−2.15− 1.96 ·

√
0.078,−2.15 + 1.96 ·

√
0.078

)
= (−2.697,−1.603)

for logit[π(−3)] = α− 3β, and an approximate 95% confidence interval(
exp(−2.677)

1 + exp(−2.677)
,

exp(−1.603)

1 + exp(−1.603)

)
= (0.0631, 0.1676)

for π(−3).
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d. Let I1 and I2 = I1/2 refer to Adam’s and Ben’s annual incomes. The corresponding
predictors are x1 = log2(I1/µ) and x2 = log2(I2/µ) = x1 − 1. Hence, the odds ratio
of bankruptcy between Adam and Ben, is

OR =
π(x1)/(1− π(x1))

π(x2)/(1− π(x2))
=

exp(α + βx1)

exp(α + βx2)
= exp(β).

Similarly as in part 1c) one shows that an approximate 95% confidence interval for
log(OR) = β is (

β̂ − 1.96 ·
√
V̂ar(β̂), β̂ + 1.96 ·

√
V̂ar(β̂)

)
=

(
−0.85− 1.96 ·

√
0.005,−0.85 + 1.96 ·

√
0.005

)
= (−0.989,−0.711).

The corresponding confidence interval for the odds ratio is

(exp(−0.989), exp(−0.711)) = (0.3721, 0.4910).

Consequently, with (approximate) probability 95%, the odds of bankruptcy for
Adam is between 37% and 49% of the odds of bankruptcy for Ben.

Problem 2

a. This is a case-control design where the column sums are fixed to 500. The two
columns have independent binomial distributions. That is, the number of individ-
uals in the high income group among the cases and controls are independent, with
binomial distributions.

b. The odds that a case belongs to the high income group is

P (X = 1|Y = 1)/P (X = 0|Y = 1),

and for a control individual, the odds of belonging to this income group is

P (X = 1|Y = 0)/P (X = 0|Y = 0).

This gives an odds ratio

OR∗ =
P (X = 1|Y = 1)/P (X = 0|Y = 1)

P (X = 1|Y = 0)/P (X = 0|Y = 0)
. (2)

c. In order to test H0 we check if β̂− β̂∗ is significantly different from zero. For this we
will use that the two parameter estimates are approximately normally distributed,
and from separate studies. They can therefore be regarded as independent random
variables, so that β̂ − β̂∗ is approximately normal, with a standard error

SE =
√
V̂ar(β̂) + V̂ar(β̂∗) =

√
0.005 + 0.007 = 0.1095.

This gives a Wald statistic

z =
β̂ − β̂∗

SE
=

−0.85− (−0.76)

0.1095
= −0.822.

Since |z| ≤ 1.96, we do not reject H0.
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d. From Bayes’ Theorem we deduce

P (X = i|Y = j) =
P (Y = j|X = i)P (X = i)

P (Y = j)
.

Inserting this formula into (2), we find that

exp(β∗) = OR∗

=
P (Y =1|X=1)P (X=1)

P (Y =1)
/
P (Y =1|X=0)P (X=0)

P (Y =1)
P (Y =0|X=1)P (X=1)

P (Y =0)
/
P (Y =0|X=0)P (X=0)

P (Y =0)

= P (Y=1|X=1)/P (Y=0|X=1)
P (Y=1|X=0)/P (Y=0|X=0)

= π(1)/(1−π(1))
π(0)/(1−π(0))

= exp(α+β)
exp(α)

= exp(β),

(3)

where in the fourth step the logistic regression model (1) of Problem 1 was assumed.

Problem 3

a. The loglinear parametrization of (XY,Z) is

µijk = exp(λ+ λX
i + λY

j + λZ
k + λXY

ij ) (4)

for 1 ≤ i, j, k ≤ 2. Assume that X = 2, Y = 2 and Z = 2 are chosen as baseline
levels. Then all loglinear parameters are put to zero for which at least one index i,
j or k equals 2. The remaining parameters are

β = (λ, λX
1 , λ

Y
1 , λ

Z
1 , λ

XY
11 ). (5)

b. It follows from (4) that
µijk = AijBk,

with Aij = exp(λ+ λX
i + λY

j + λXY
ij ) and Bk = exp(λZ

k ). Then

µij+ = AijB+,
µ++k = A++Bk,
µ+++ = A++B+.

Consequently,
µij+µ++k

µ+++

=
AijB+ · A++Bk

A++B+

= AijBk = µijk.

An alternative solution uses cell probabilities

πijk =
µijk

µ+++

of the multinomial model, obtained by conditioning the Poisson model on the total
cell count n+++. Since Z is independent of X, Y , we have that

µijk = µ+++ · πijk = µ+++ · πij+π++k = µ+++ · µij+

µ+++

· µ++k

µ+++

=
µij+µ++k

µ+++

,

as was to be proved.
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c. The ML-estimates
µ̂ijk =

nij+n++k

n

of all expected cell counts of model (XY,Z) are found by replacing µij+, µ++k and
µ+++ in the definition of µijk by their corresponding observed values nij+, n++k

and n = n+++. By summing data from the two partial tables we get the following
marginal table for X and Y :

Values of nij+

j = 1 j = 2

i = 1 85 74
i = 2 48 53

Since the total number of observations of the two partial tables are n++1 = 174 and
n++2 = 86, and the total number of observations is n = 174 + 86 = 260, we get

µ̂111 =
n11+n++1

n
=

85 · 174
260

= 56.88,

for cell (1, 1, 1). A similar calculation of all other µ̂ijk gives the following result:

Values of µ̂ij1:

j = 1 j = 2

i = 1 56.88 49.52
i = 2 32.12 35.47

Values of µ̂ij2:

j = 1 j = 2

i = 1 28.11 24.48
i = 2 15.88 17.53

d. Let M refer to a loglinear model that data is drawn from. The chisquare statistic
for testing the null hypothesis H0 : M = (XY,Z) against the alternative hypothesis
Ha : M = (XY Z) but not M = (XY,Z), is

X2(XY,Z) =
∑

ijk
(nijk−µ̂ijk)

2

µ̂ijk

= (65−56.88)2

56.88
+ . . .+ (15−17.53)2

17.53

= 8.419
> χ2

3(0.05) = 7.81.

(6)

Therefore we reject H0 at level 5%. In the last step of (6) we used that the number
of degrees of freedom is

df = p(XY Z)− p(XY,Z) = 8− 5 = 3,

since the saturated model has one parameter for each cell, and there are 2×2×2 = 8
cells in the table. From (5) we also know that the parameter vector β of (XY,Z)
contains 5 parameters.
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Problem 4

a. Submodel (X ∗ W + Z ∗ W ) has one intercept, three types of main effects (X, Z
and W ) and two types of second order interactions (XW and ZW ). It follows that

P (Y = 1|X = i, Z = k,W = h) =
exp(α + βX

i + βZ
k + βW

h + βXW
ih + βZW

kh )

1 + exp(α + βX
i + βZ

k + βW
h + βXW

ih + βZW
kh )

.

b. The number of parameters of (X ∗W + Z ∗W ) is

p = 1 + (3− 1) + (3− 1) + (3− 1) + (3− 1)(3− 1) + (3− 1)(3− 1) = 15,

where the first term corresponds to an intercept, each main effect contributes with
3− 1 = 2 parameters (one per level; excluding the baseline level), and each second
order interaction adds (3 − 1)(3 − 1) = 4 parameters (one for each pair of levels,
none of which is a baseline level).

c. Reasoning as in 4a), each main effect, second order interaction and third order
interaction adds 3 − 1 = 2, (3 − 1)2 = 4 and (3 − 1)3 = 8 parameters. Since each
model is balanced, we know how many main effects, second order interactions and
third order interactions there are. This gives the following completion of the given
table:

M G2(M) p(M)

(X ∗ Z ∗W ) 0 27
(X ∗ Z +X ∗W + Z ∗W ) 7.70 19
(X ∗ Z +X ∗W ) 15.27 15
(X ∗ Z + Z ∗W ) 31.76 15
(X ∗W + Z ∗W ) 20.43 15
(X + Z ∗W ) 36.11 11
(Z +X ∗W ) 24.57 11
(W +X ∗ Z) 38.61 11
(X + Z +W ) 41.57 7
None 117.78 1

d. The deviance G2(M) = 2 [L(X ∗ Z ∗W )− L(M)] of M is a log likelihood ratio
test statistic when M is tested against the saturated model (X ∗ Z ∗W ). We can
therefore write Akaike’s information criterion as

AIC(M) = −2L(M) + 2p(M) = −2L(X ∗ Z ∗W ) +G2(M) + 2p(M).

Since −2L(X ∗Z ∗W ) does not depend on the model M , minimizing AIC(M) with
respect to M is equivalent to minimizing the sum of the second and twice the third
columns of the above table. This gives
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M G2(M) + 2p(M)

(X ∗ Z ∗W ) 54.00
(X ∗ Z +X ∗W + Z ∗W ) 45.70
(X ∗ Z +X ∗W ) 45.27
(X ∗ Z + Z ∗W ) 61.76
(X ∗W + Z ∗W ) 50.43
(X + Z ∗W ) 58.11
(Z +X ∗W ) 46.57
(W +X ∗ Z) 60.61
(X + Z +W ) 55.57
None 119.78

The chosen model, with lowest AIC(M) is therefore (X ∗ Z +X ∗W ).

e. In forward inclusion (FI), we start to test the “None” model against (X +Z +W ),
the one with three main effects. This gives a likelihood ratio statistic

G2(None, X + Z +W ) = G2(None)−G2(X + Z +W )
= 117.78− 41.57 = 76.21
> χ2

7−1(0.05) = 12.59,

where “None” is rejected. We continue to test (X+Z+W ) against all three models
with one second order interaction effect, and obtain

G2(X + Z +W,W +X ∗ Z) = 41.57− 38.61 = 2.96 < χ2
11−7(0.05) = 9.49,

G2(X + Z +W,Z +X ∗W ) = 41.57− 24.57 = 17.00 > χ2
11−7(0.05) = 9.49,

G2(X + Z +W,X + Z ∗W ) = 41.57− 36.11 = 5.46 < χ2
11−7(0.05) = 9.49, .

Only in one of the three tests is (X + Z +W ) rejected, when tested against (Z +
X ∗ W ). In the next step this model is tested against the two models with one
additional second order interaction:

G2(Z +X ∗W,X ∗W + Z ∗W ) = 24.57− 20.43 = 4.14 < χ2
15−11(0.05) = 9.49,

G2(Z +X ∗W,X ∗ Z +X ∗W ) = 24.57− 15.27 = 9.30 < χ2
15−11(0.05) = 9.49.

Since Z + X ∗ W is not rejected in any of the two tests, this model is eventually
selected by the FI scheme. Notice that this model is smaller than the one obtained
with the AIC procedure.

Problem 5

a. The number of accidents for drivers in bonus class i, has probability function

fYi
(yi) = exp(−tiµi)

(tiµi)
yi

yi!
.

Since these Poisson variables are independent, it follows that the log likelihood is

L(α, β) =
4∑

i=1

log [fYi
(yi)] =

4∑
i=1

[yi log(µi)− tiµi] + const,

where the constant is independent of α and β.
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b. Since ∂µi/∂α = µi and ∂ log(µi)/∂α = 1, the score function component for α is

u1(α, β) =
∂L(α, β)

∂α
=

4∑
i=1

(yi − tiµi).

The maximum likelihood estimator α̂0 of α under the assumption β = 0, is obtained
from

u1(α̂0, 0) = 0 ⇐⇒
4∑

i=1

[yi − ti exp(α̂0)] .

This equation has the explicit solution

α̂0 = log

∑4
i=1 yi∑4
i=1 ti

= 4.032.

c. Using that ∂µi/∂β = xiµi and ∂ log(µi)/∂β = xi, we first obtain the score compo-
nent

u2(α, β) =
∂L(α, β)

∂β
=

4∑
i=1

xi(yi − tiµi)

for β. Evaluation of the score vector components at (α̂0, 0) gives

u1(α̂0, 0) = 0,
u2(α̂0, 0) =

∑
i xi(yi − ti exp(α̂0))

=
∑

i xiyi −
∑

i
xiti
∑

i
yi∑

i
ti

= −378.61.

Differentiating u1 and u2 with respect to α and β, we obtain the elements

H11(α, β) = ∂2L/∂α2 = −∑i tiµi,
H12(α, β) = H21(α, β) = ∂2L/(∂α∂β) = −∑i xitiµi,

H22(α, β) = ∂2L/∂β2 = −∑i x
2
i tiµi,

of the Hessian matrix. Evaluation of these elements at (α̂0, 0) gives

H11(α̂0, 0) = − exp(α̂0)
∑

i ti = −∑i yi = −2812,
H12(α̂0, 0) = H21(α̂0, 0) = − exp(α̂0)

∑
i xiti = −∑i xiti

∑
i yi/

∑
i ti = −7684,

H22(α̂0, 0) = − exp(α̂0)
∑

i x
2
i ti = −∑i x

2
i ti
∑

i yi/
∑

i ti = −24077.

Since the Newton-Raphson procedure in each step maximizes a second order Taylor
expansion of L(α, β) around the previous iterate,

(α(1), β(1)) = (α̂0, 0)− (u1(α̂0, 0), u2(α̂0, 0))

(
H11(α̂0, 0) H12(α̂0, 0)
H21(α̂0, 0) H22(α̂0, 0)

)−1

.

Inserting numerical values, we find that

(α(1), β(1)) = (4.032, 0)− (0,−378.61)

(
−2812 −7684
−7684 −24077

)−1

= (4.3679,−0.1229).
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d. The Fisher scoring algorithm differs from the Newton-Raphson algorithm in that the
Hessian matrix elements Hij(α, β) are replaced by the negative Fisher information
elements −Jij(α, β) = E [Hij(α, β)] at all places. But since the Hessian matrix does
not depend on data Yi it is non-stochastic, so that −Jij(α, β) = Hij(α, β). Therefore
the Fisher scoring algorithm is identical to Newton-Raphson (due to the fact that
this model uses a log link, which is canonical for Poisson data). In particular,
(α(1), β(1)) = (4.3679,−0.1229).
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