3. Homework "DA7065 Computational Biology"

Exercise 1: Additive Metrics and Ultrametric 5+(5+5) = 15p

Let $D: X \times X \to \mathbb{R}$ be a symmetric map that satisfies D(x, y) = 0 precisely if x = y.

- (a) Prove the 3-point condition: D is an ultrametric if and only if for all $x, y, z \in X$ the two largest elements in $\{D(x, y), D(y, z), D(x, z)\}$ are equal.
- (b) Prove or disprove:
 - (i) Every ultrametric is an additive metric.
 - (ii) Every additive metric is an ultrametric.

Exercise 2: UPGMA and Parsimony 5+5 = 10pLet us consider the following four "genes"

$$a = TTAA;$$
 $b = TCGG;$ $c = AACT;$ $d = AATC$

Assume, for simplicity, that the evolutionary distances between two genes are given by the respective Hamming distance, which results in a distance matrix D for these four genes.

- (a) Apply UPGMA on D and provide the resulting tree T together with respective branch-length.
 - Given that the evolutionary distances in D are the true distances, do you rely in the respective computes tree? Shortly Explain.
- (b) Use the rooted tree T obtained with UPGMA on D and assign ancestral sequences to T such that the parsimony score of T gets minimized.

Exercise 3: BUILD, Compatibility Graphs and Triples 5+5 = 10p

To recall, for a triple set R and a leaf-set L, the comparability graph G[R, L] is an undirected graph with vertex set L and edges $\{x, y\}$ precisely if there is a triple $xy|z \in R$ with $x, y, z \in L$

- (a) Determine whether the triple sets $R_1 = \{ab|g, ac|g, de|g, ef|g, df|g\}$ and $R_2 = \{ab|g, ac|g, de|g, ef|g, df|g, cd|g, cd|g, ec|d, cf|d, fd|e\}$ are compatible. To this end, apply the BUILDalgorithm and give the resulting tree obtained with BUILD, if there is one.
- (b) Let R be a compatible triple set and assume that $R' = R \cup \{ab|c\}$ is not compatible. Let $L = \bigcup_{xy|z \in R'} \{x, y, z\}.$

Show, there is a subset $L' \subseteq L$ with $|L'| \ge 3$ such that G[R, L'] has exactly two connected components, one containing a and the other b.

HINT: Recheck the proof for the correctness of BUILD sas provided in the lecture video.

Exercise 4: Orthologs 7.5+7.5 = 15p

Let A, B, C, D be four different species from which we extracted some genetic material, i.e., a set of genes $\mathcal{G} = \{a_1, a_2, b_1, b_2, c_1, d_1\}$ where Each gene $x_i \in \mathcal{G}$ is contained in the particular species $X \in \{A, B, C, D\}$. Using multiple sequence alignments we obtained the (symmetric) similarity scores for the genes in \mathcal{G} as provided in the following matrix:

- (a) Apply the graph-based approach (as explained in lecture see slide no 10) on the similarity scores and determine the estimated orthology relation \hat{R}_{\bullet} for the genes in \mathcal{G} .
- (b) Explain why the estimated orthology relation \widehat{R}_{\bullet} is "feasible" and determine the gene tree T together with its duplication and speciation labels t such (T, t) explains \widehat{R}_{\bullet} .

Try to add branch-length to this tree to reflect the similarity scores.

\star -exercises

Exercise 5*: 7.5

Let R be a consistent triple set and assume that $R' = R \cup \{ab|c\}$ is not consistent. Let $\mathcal{L} = \bigcup_{xy|z \in R'} \{x, y, z\}.$

Show, there is a subset $L \subseteq \mathcal{L}$ with $|L| \geq 3$ such that the Ahograph [R, L] has exactly two connected components, one containing a and the other b.

Exercise 6*: 7.5

Show that the two definitions for cographs are equivalent:

- Def 1:
 - K_1 is a cograph.
 - The disjoint union of two cographs is a cograph.
 - The complement of a cograph is a cograph.

Def 2:

- K_1 is a cograph.
- The disjoint union of two cographs is a cograph.
- The join of two cographs is a cograph.

Deadline: ASAP, but before the exams!