3. Homework "DA7065 Computational Biology"

Exercise 1: Additive Metrics and Ultrametric $5+(5+5)=15$ p
Let $D: X \times X \rightarrow \mathbb{R}$ be a symmetric map that satisfies $D(x, y)=0$ precisely if $x=y$.
(a) Prove the 3-point condition:
D is an ultrametric if and only if for all $x, y, z \in X$ the two largest elements in $\{D(x, y), D(y, z), D(x, z)\}$ are equal.
(b) Prove or disprove:
(i) Every ultrametric is an additive metric.
(ii) Every additive metric is an ultrametric.

Exercise 2: UPGMA and Parsimony $5+5=10$ p
Let us consider the following four "genes"

$$
\mathrm{a}=\mathrm{TTAA} ; \quad \mathrm{b}=\mathrm{TCGG} ; \quad \mathrm{c}=\mathrm{AACT} ; \quad \mathrm{d}=\mathrm{AATC}
$$

Assume, for simplicity, that the evolutionary distances between two genes are given by the respective Hamming distance, which results in a distance matrix D for these four genes.
(a) Apply UPGMA on D and provide the resulting tree T together with respective branch-length.

Given that the evolutionary distances in D are the true distances, do you rely in the respective computes tree? Shortly Explain.
(b) Use the rooted tree T obtained with UPGMA on D and assign ancestral sequences to T such that the parsimony score of T gets minimized.

Exercise 3: BUILD, Compatibilty Graphs and Triples $5+5=10 \mathrm{p}$
To recall, for a triple set R and a leaf-set L, the comparabilty graph $G[R, L]$ is an undirected graph with vertex set L and edges $\{x, y\}$ precisely if there is a triple $x y \mid z \in R$ with $x, y, z \in L$
(a) Determine whether the triple sets $R_{1}=\{a b|g, a c| g, d e|g, e f| g, d f \mid g\} \quad$ and $\quad R_{2} \quad=$ $\{a b|g, a c| g, d e|g, e f| g, d f|g, c d| g, e c|d, c f| d, f d \mid e\}$ are compatible. To this end, apply the BUILDalgorithm and give the resulting tree obtained with BUILD, if there is one.
(b) Let R be a compatible triple set and assume that $R^{\prime}=R \cup\{a b \mid c\}$ is not compatible. Let $L=$ $\cup_{x y \mid z \in R^{\prime}}\{x, y, z\}$.
Show, there is a subset $L^{\prime} \subseteq L$ with $\left|L^{\prime}\right| \geq 3$ such that $G\left[R, L^{\prime}\right]$ has exactly two connected components, one containing a and the other b.
HINT: Recheck the proof for the correctness of BUILD sas provided in the lecture video.

Exercise 4: Orthologs $7.5+7.5=15 p$

Let A, B, C, D be four different species from which we extracted some genetic material, i.e., a set of genes $\mathcal{G}=\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, d_{1}\right\}$ where Each gene $x_{i} \in \mathcal{G}$ is contained in the particular species $X \in\{A, B, C, D\}$. Using multiple sequence alignments we obtained the (symmetric) similarity scores for the genes in \mathcal{G} as provided in the following matrix:

	b_{1}	b_{2}	c_{1}	d_{1}
a_{1}	4	2	1	1
a_{2}	2	3	1	1
b_{1}			1	1
b_{2}			1	1
c_{1}				1

(a) Apply the graph-based approach (as explained in lecture - see slide no 10) on the similarity scores and determine the estimated orthology relation $\widehat{R} \bullet$ for the genes in \mathcal{G}.
(b) Explain why the estimated orthology relation \widehat{R}_{\bullet} is "feasible" and determine the gene tree T together with its duplication and speciation labels t such (T, t) explains \widehat{R}_{\bullet}.
Try to add branch-length to this tree to reflect the similarity scores.

\star-exercises

Exercise 5*: 7.5

Let R be a consistent triple set and assume that $R^{\prime}=R \cup\{a b \mid c\}$ is not consistent. Let $\mathcal{L}=$ $\cup_{x y \mid z \in R^{\prime}}\{x, y, z\}$.
Show, there is a subset $L \subseteq \mathcal{L}$ with $|L| \geq 3$ such that the Ahograph $[R, L]$ has exactly two connected components, one containing a and the other b.

Exercise 6*: 7.5

Show that the two definitions for cographs are equivalent:

Def 1:

- K_{1} is a cograph.
- The disjoint union of two cographs is a cograph.
- The complement of a cograph is a cograph.

Def 2:

- K_{1} is a cograph.
- The disjoint union of two cographs is a cograph.
- The join of two cographs is a cograph.

Deadline: ASAP, but before the exams!

