
MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
Avd. Beräkningsmatematik
Examinator: Lars Arvestad

Tentamensskrivning i
DA3018 Datalogi för matematiker
7.5 hp
2024-02-07

• Write clearly. Hard-to-read answers risk zero points.
• Use one side of the paper.
• Justify your answers (unless otherwise stated).
• Grading thresholds: E: 20, D: 26, C: 32, B: 38, A: 44

1. (a) Why do we study asymptotic time complexity? (2p)
(b) Explain unit cost is in relation to time complexity. (2p)
(c) Explain what a single-linked list is, with illustration. (2p)
(d) Explain what a stack is in Computer Science, with illustration. (2p)

2. (a) Give a formal description of the computational problem of sorting of integers. (3p)
(b) What time complexity does a computer scientist expect from a standard sorting algorithm? (2p)
(c) Describe merge sort with pseudo code. (3p)

3. Suppose we want to use a hash table for storing strings with maximal length 100. We will use
chaining for handling collisions.

(a) Explain what chaining means in relation to hash tables. (2p)
(b) Explain what load means in relation to hash tables. (2p)
(c) Draw an illustration of a small hash table that stores the strings “DA3018”, “DA2004”, and

“MM2001”. The illustration should visualize the main features of a hash table for strings. (3p)
(d) Suggest, with pseudocode, a simple hash function for this problem and justify why the hash

function is suitable. (3p)

4. Describe an algorithm for multiplying two polynomials of degree k and analyze its time complexity.
The polynomials are given as arrays of size k containing coefficients. The element on position i is
the coefficient for the term with degree i. For example, x2 + 2x+ 4 is represented by [4, 2, 1]. (5p)

5. (a) What is a binary search tree? (2p)
(b) Suppose we implement a binary search tree for storing n data points containing geograph-

ical coordinates (latitude and longitude) stored as floats and a string containing up to 100
characters. How much memory is needed? Use and explain reasonable assumptions. (4p)

(c) Give a recursive algorithm for deciding whether x is found in the binary search tree or not. (3p)

6. The center of a tree. The distance between two vertices a and b in a tree T is the number of edges
on a path from a to b and is written d(a, b). The eccentricity of u in T is ecc(u) = maxv∈V (T) d(u, v),
i.e., the largest distance from u to any other vertex. The center of T are the vertices minimizing
eccentricity: {u : ecc(u) = minv∈V (T) ecc(v)}. One can prove that the center of a tree is always one
vertex or two vertices on an edge.

(a) The pseudocode in Figure 1 implements an algorithm for returning a center vertex (regardless
if there are one or two centers) for a binary tree T . Analyze its time complexity. (3p)

(b) What is the name of the algorithm technique used in the helper function get_eccentricity

(see Figure 1)? (2p)
(c) Suggest changes to the algorithm such that the time complexity improves to linear time. (5p)

1

def get_center_vertex(T):
candidate = NULL
min_eccentricity = |V(T)| # Initialize
for v in V(T):

v_ecc = get_eccentricity(v, T)
if v_ecc < min_eccentricity:

min_eccentricity = v_ecc
candidate = v

return candidate

def get_eccentricity(v, T):
for u in V(T):

visited[u] = False

Q = new Queue()
Q.enqueue(v)
visited[v] = True
d(v) = 0
while not Q.empty():

w = Q.dequeue()
for u in neighbors(w):

if not u.visited:
Q.enqueue(u)
u.visited = True
d(u) = d(w) + 1

eccentricity = 0
for u in V(T):

if d(u) > eccentricity:
eccentricity = d(u)

return eccentricity

Figure 1: An algorithm for computing the center of a tree. The helper function get_eccentricity(v,T)

computes the longest distance from v to a leaf in T .

2

