
Suggested solutions for DA3018 exam on 2023-08-
15
The preliminary point scoring rules is indicated for some questions. We may
adjust the scoring.

1. (a) To understand how resource needs (like time and memory) is affected
by data-set size. It describes how the resource needs scale.

(b) “Unit cost” means that we decides that the basic operations, that
we use to measure the resource use, all have the same size/cost. For
example, we say that an assignment takes the same time as a mul-
tiplication. The actual hardware may have different time needs for
different operations, but a unit cost assumption simplifies analysis
without losing much in usefulness.

(c) A single-linked list is a datastructure built by elements with two cells,
one for values and one for a pointer/reference to the next element.
The next pointer in the last element is Null, or similar value. The
figure illustrates a single-linked list with three elements, containing
values 17, 3, and 4711. The first element, often named ”head” is in-
dicated.

17 4711 Null3

Head

(d) A stack is Last-In-First-Out datastructure whe-
re you have operations for putting an element on
the ”top” of the stack, ”push”, and removing an
element, ”pop”. The predicate ”empty?” is typi-
cally also defined. The illustration on the right
shows a stack where 4711, 3, and 17 have been
pushed onto the stack, in that order, meaning
that 17 is at the top. The ”top” arrow shows
where the next pushed element will end up.

17

3

4711

top

2. (a) • Input: an array of n integers.
• Output: an array a = (a1, a2, . . . an) with the input integers or-

dered such that ai ≤ aj , for all i, j ∈ [1, n].

(b) O(n lg n) is expected when there are no specific assumptions on the
input and you count the number of comparisons needed.

(c) With a Python-inspired pseudocode:

mergesort(a):
if len(a) < 2:

return a
else:

mid = len(a)/2
half1 = mergesort(a[:mid])
half2 = mergesort(a[mid:])
return merge(half1, half2)

1

merge(lst1, lst2):
if empty(lst1):

return lst2
elif empty(lst2):

return lst1
elif lst1[0] < lst2[0]:

return lst1[0] ++ merge(lst1[1:], lst2)
else:

return lst2[0] ++ merge(lst1, lst2[1:])

The ++ operation is ”append”.

3. (a) Chaining refers to the practice of resolving collisions, occurring due
to more than one inserted element getting the same hash, by storing
those elements in linked lists.

(b) Load is the fraction n/m if n is the number of elements inserted into
the hash table and m is the number of entries in the hash table. It is
a measure of how full the datastructure is.

(c) The following simple illustration shows a hash table with capacity 8.
The three strings have been inserted, and two of the have been hashed
to the same index (2), and the collision is handled using chaining.

(d) A good hash function spreads elements uniformly over the hash table,
and makes use of all bits in the elements to be inserted. This way,
collisions are reduced. Say that we have m slots in the hash table.
Since we are working with strings of limited size, we can easily loop
over all characters to use the whole input element. One can treat the
characters as integers and aggregate a large number to map to the
range [0,m− 1].

hash(string s):
int data = 0
for c in s: // Loop over characters of s

data = data + code(c) // Adding character codes
int hash = ((a * data + b) mod large_prime) mod m
return hash

Here large_prime is a prime ≫ m and a > 0 and b are some arbit-
rary integers.
This is a simple hash function that makes use of the whole input
string. The calculation of the hash value is done using a function
that has proven to work well for hashing.

4. Consider the following algorithm in pseudo-Python. It ended up being
more general than working with only degree k polynomials.

2

def multiply_polynomials(p, q):
deg_p = degree(p)
deg_q = degree(q)
deg_product = deg_p + deg_q // degree of output polynomial
product = array(size= (deg_product + 1)) // output array

// Initialize output array:
for i from 0 to deg_product:

product[i] = 0

// Do the term-wise multiplication
idx_p = 0 // Index of current p coefficient
for p_coefficient in p:

idx_q = 0 // Index of current q coefficient
for q_coefficient in q:

idx = idx_p + idx_q // Index of output term
product[idx] += p_coefficient * q_coefficient
idx_q += 1

idx_p += 1
return product

The first three lines will take O(1) time, if arrays are given in some simple
way. Initializing the output array involves looping over all its k + k + 1
elements. With a simple assignment in the loop, initialization is O(k). We
are then using a double for-loop, causing (k+1)×(k+1) executions of the
innermost lines where we have addition, multiplication and assignment, all
unit cost operations. Hence, the double loop is O(k2).

5. (a) A binary search tree (BST) is a tree where each node has at most two
children and contains a key. The BST property demands that nodes
in the ”left” subtree of a node v have keys smaller than the key in v,
and nodes in the ”right” subtree have keys that are larger.

(b) A vertex contains a geographical position and string. The position
can probably be represented using two floats in double precision,
using 8 bytes. An old-school string (using ASCII or similar encoding)
can store a character in a byte. Using a modern encoding like UTF-
8 might require more, so let us assume 1 byte/char for simplicity.
Ensuring that we can manage strings with 100 characters means that
we allocate about 100 bytes for the string (we might need a stop byte
in some programming languages or store the string length in others,
but that detail can probably be ignored here).
The BST also requires that nodes have pointers/references to its
children. A modern computer uses 8 bytes per pointer. We can now
add up how many bytes we are allocating for node: two references to
children, two floats, and a string, which is 2× 8 + 2× 8 + 100 = 132
bytes.
If we are storing n data points, our BST is going to use about 132n
bytes.

(c) Example solution:

def check_key(bst, x):
if not bst: # The null tree: nothing here

return False
else:

3

if key(bst) == x: # Found it
return True

elif key(bst) < x: # Possibly in the right
subtree
return check_key(right(bst), x)

else:
return check_key(left(bst), x)

The base cases are when the input tree is Null or when we have found
the key in the root of the (sub-) tree. If there tree is there but the
root does not contain x, then we look in subtree where it ought to
be due to the BST property and returns the result.

6. (a) Let n = |V (T)|. The main function, get_center_vertex, makes n
iterations and calls to the helper function get_eccentricity(v,T),
and some constant-time operations (assignments and comparisons).
We can recognize the helper function as a breadth-first search, im-
plying a O(|V | + |E|) time complexity, with an added loop to find
the maximum eccentricity in O(n). Since the BFS is run in a tree,
we have |V | = |E|+ 1 and O(|V |+ |E|) = O(n).
The whole algorithm is therefore n×O(n) = O(n2).

(b) Breadth-first search, or BFS.

(c) The algorithm is making n calls to get_eccentricity(v, T), me-
aning that almost the same function call is reapeated n times. To
improve on O(n2) one should try to find a way to avoid the repeti-
tion.
Suppose u and v are the vertices that are furthest apart from each
other in T and let puv be the path from u to v. Let c be a vertex
on puv such that d(c, u) − d(c, v) ≤ 1, implying that c is a center
on puv, because it is in the middle of the path. One can see that c
must be a center also for T , because otherwise there must be another
vertex w being the center and it would be one path longer than puv,
contradicting that u and v are furthest apart.
It is therefore sufficient to find the vertices with maximum eccentri-
city, because the center will be in the middle on the path between
them. This can be done in two steps. First, pick an arbitrary ver-
tex s and call a modified version of get_eccentricity(s, T) that
also returns the vertex with maximum eccentricity. Call that vertex
v′. Then call get_eccentricity(v, T) to get the vertex u′ furthest
away from v′. Claim: (u, v) = (u′, v′), which can be proved as follows.
Assume without loss of generality that d(s, v) ≥ d(s, u). Can we have
d(s, v′) ≥ d(s, v)? Let w be a vertex on puv where the path from
s to v intersects. Since d(s, v) ≥ d(s, u), then d(w, v) ≥ d(w, u). If
d(s, v′) ≥ d(s, v), then d(v′, v) ≥ d(u, v), and puv would not be the
longest path in T .
Calling get_eccentricity twice and finding a center on its path
takes O(|V |) steps, so linear time.

4

