MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
Avd. Matematik
Examinator: Sofia Tirabassi

Exam in
MM5020 - Abstract Algebra
7.5 hp

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers. A correct answer without proper justification will not award full points.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved.

1. For each of the following statements, determine if it is true or false. Give a brief justification or a counterexample.
(a) (2 pts) Let G be a group and $H \triangleleft G$. If G / H is abelian, then $Z(G)>H$.
(b) (2 pts) \mathbb{Q} / \mathbb{Z} (where the operation in both groups is the usual addition) has elements of infinite order.
2. Recall that a subgroup H of a group G is characteristic if, for every $\sigma \in \operatorname{Aut}(G)$, we have that $\sigma(H)=H$.
(a) (1 pt) Show that characteristic subgroups are normal.
(b) (2 pts) Show that if H is characteristic in N and $N \triangleleft G$, then $H \triangleleft G$.
(c) (2 pts) Show that if $P \in \operatorname{Syl}_{p}(G)$, then P is characteristic in its normalizer $N_{G}(P)$.
3. Let $G<S_{n}$ act transitively on $\{1,2, \ldots, n\}$.
(a) (3 pts) If $G_{1}=\{g \in G \mid g \cdot 1=1\}$, show that $\left[G: G_{1}\right]=n$.
(b) (2 pts) If G is abelian, then $|G|=n$.
4. Show the following statements:
(a) (3 pts) There is no simple group of order $312=2^{3} \cdot 39$.
(b) (2 pts) There is no simple group of order $200=2^{3} \cdot 5^{2}$.
5. Let R be a unitary commutative ring and consider \mathfrak{J}, the intersection of all the maximal ideals of R.
(a) $(1 \mathrm{pt})$ Show that \mathfrak{J} is an ideal of R.
(b) (2 pts) Show that if $1-a x$ is not a unit in R for some $a \in R$, then x cannot be in \mathfrak{J}.
(c) (2 pts) Conversely, suppose that $x \notin \mathfrak{J}$. Show that $1-a x$ is not a unit for a in R. (Hint: if $x \notin \mathfrak{m}$ for a maximal ideal \mathfrak{m}, what can we say about $x+\mathfrak{m}$ in R / \mathfrak{m} ?)
6. Consider the polynomial $p(x)=x^{3}+x+1$ in $\mathbb{Z} / 5 \mathbb{Z}[x]$.
(a) (2 pts) Explain why $\mathbb{Z} / 5 \mathbb{Z}[x] /(p(x))$ is a field.
(Hint: you can use the following fact: a polynomial of degree 2 or 3 is irreducible over a field Fif, and only if it has no roots in F.)
(b) (2 pt) Let $\alpha=x+(p(x)) \mathbb{Z} / 5 \mathbb{Z}[x] /(p(x))$, and consider the field $F=\mathbb{Z} / 5 \mathbb{Z}(\alpha)$. Show that $p(x)$ is the minimal polynomial of α over $\mathbb{Z} / 5 \mathbb{Z}$. Provide a basis of F over $\mathbb{Z} / 5 \mathbb{Z}$.
(c) (2 pt) With α as in the previous point, show that $\alpha^{4}+\alpha=4 \alpha^{2}$. Express α^{5} as a linear combination of the elements in the chosen basis.
