Exam in MM5020 - Abstract Algebra 7.5 hp April 17th, 2024

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers. A correct answer without proper justification will not award full points.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved.

GOOD LUCK!

- 1. For each of the following statements, determine if it is true or false. Give a brief justification or a counterexample.
 - (a) (2 pts) Let G be a group and $H \triangleleft G$. If G/H is abelian, then Z(G) > H.
 - (b) (2 pts) \mathbb{Q}/\mathbb{Z} (where the operation in both groups is the usual addition) has elements of infinite order.
- 2. Recall that a subgroup H of a group G is *characteristic* if, for every $\sigma \in Aut(G)$, we have that $\sigma(H) = H$.
 - (a) (1 pt) Show that characteristic subgroups are normal.
 - (b) (2 pts) Show that if H is characteristic in N and $N \triangleleft G$, then $H \triangleleft G$.
 - (c) (2 pts) Show that if $P \in \text{Syl}_p(G)$, then P is characteristic in its normalizer $N_G(P)$.
- 3. Let $G < S_n$ act transitively on $\{1, 2, \ldots, n\}$.
 - (a) (3 pts) If $G_1 = \{g \in G \mid g \cdot 1 = 1\}$, show that $[G : G_1] = n$.
 - (b) (2 pts) If G is abelian, then |G| = n.
- 4. Show the following statements:
 - (a) (3 pts) There is no simple group of order $312 = 2^3 \cdot 39$.
 - (b) (2 pts) There is no simple group of order $200 = 2^3 \cdot 5^2$.
- 5. Let R be a unitary commutative ring and consider \mathfrak{J} , the intersection of all the maximal ideals of R.
 - (a) (1 pt) Show that \mathfrak{J} is an ideal of R.
 - (b) (2 pts) Show that if 1 ax is not a unit in R for some $a \in R$, then x cannot be in \mathfrak{J} .
 - (c) (2 pts) Conversely, suppose that $x \notin \mathfrak{J}$. Show that 1 ax is not a unit for a in R. (*Hint: if* $x \notin \mathfrak{m}$ for a maximal ideal \mathfrak{m} , what can we say about $x + \mathfrak{m}$ in R/\mathfrak{m} ?)
- 6. Consider the polynomial $p(x) = x^3 + x + 1$ in $\mathbb{Z}/5\mathbb{Z}[x]$.
 - (a) (2 pts) Explain why Z/5Z[x]/(p(x)) is a field.
 (Hint: you can use the following fact: a polynomial of degree 2 or 3 is irreducible over a field Fif, and only if it has no roots in F.)
 - (b) (2 pt) Let $\alpha = x + (p(x)) \mathbb{Z}/5\mathbb{Z}[x]/(p(x))$, and consider the field $F = \mathbb{Z}/5\mathbb{Z}(\alpha)$. Show that p(x) is the minimal polynomial of α over $\mathbb{Z}/5\mathbb{Z}$. Provide a basis of F over $\mathbb{Z}/5\mathbb{Z}$.
 - (c) (2 pt) With α as in the previous point, show that $\alpha^4 + \alpha = 4\alpha^2$. Express α^5 as a linear combination of the elements in the chosen basis.