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Statistical models

Exam, 2023/05/17

The solution should be given in English. The answers to the tasks should be clearly formu-
lated and structured. All non-trivial steps need to be explained. Mathematical expressions in
the answers should be simplified as far as possible.

The grades will be given due to the following table

Grade A B C D E F
Points 100-90 89-80 79-70 69-60 59-50 < 50
Percent 100-90% 89-80% 79-70% 69-60% 59-50% < 50%

The final grade is determined by the sum of regular points and bonus points. In order to
pass the exam, students have to receive at least 50% of all points in both parts of the exam, i.e.
at least 50% of all points for theoretical questions (Problems 5 and 6) and at least 50% of all
points for computational problems (Problems 1-4).

Up to 10 bonus points (i.e., in addition to the ordinary 100 points) are given for the active
participation in the course. The bonus points can be used in the exams which will take place in
academic year 2022/2023 only.
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Problem 1 [19P]

Let Y be a negatively binomial distributed random variable with probability mass function given
by

f(y;π) =

(
y + k − 1
k − 1

)
πk(1− π)y, π ∈ (0, 1) and y ∈ {0, 1, 2, ...}

where k is a known integer.

(a) Show that Y belongs to the exponential family. What is the canonical statistic t(Y ) and
the canonical parameter θ in the minimal representation? [3P]

(b) Determine the norming constant C(θ). [3P]

(c) Derive µ = E(Y ). [4P]

(d) Show that Var(Y ) = µ+ µ2

k . [5P]

(e) Let y1, y2, ..., yn be realizations of Y1, Y2..., Yn (a sample with independent and identically
distributed observations from the distribution of Y ). Derive the maximum likelihood esti-
mator of µ. [2P]

(f) Using the results of part (e), provide the maximum likelihood estimator of π. [2P]

Problem 2 [17P]

Let Y1, Y2, ..., Yn be a sample with independent and identically distributed observations from the
gamma distribution with known mean µ > 0, unknown shape parameter ν > 0 and density of
Yi given by

f(yi; ν) =
1

Γ(ν)

(
ν

µ

)ν
yν−1
i exp

(
−ν
µ
yi

)
, yi > 0, i = 1, ..., n

(a) Show that the distribution of Yi belongs to a one-parameter exponential family with canon-
ical parameter ν and canonical statistics t(Yi) = log(Yi)− Yi/µ.[3P]

(b) Knowing that E(Yi) = µ and E(log(Yi)) = ψ(ν)− log(ν) + log(µ), prove that the maximum
likelihood estimator of ν satisfies the following equation

nψ(ν)− n log ν + n logµ− n =
n∑
i=1

log yi −
1

µ

n∑
i=1

yi,

where y1, y2, ..., yn are realizations of Y1, Y2..., Yn and ψ(ν) = ∂ log Γ(ν)/∂ν is the digamma
function. [4P]

(c) Let ν̂ML be the maximum likelihood estimator of ν, the solution of the likelihood equation
in part (b). Show that the observed Fisher information is given by [3P]

J(ν̂ML) = n{ψ′(ν̂ML)− 1/ν̂ML}.

(d) Determine an expression for the likelihood ratio L(ν0)/L(ν̂ML) in terms of ν0 and ν̂ML. [3P]

(e) Derive the saddlepoint approximation for the distribution of ν̂ML in a point ν0. [4P]
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Problem 3 [16P]

Let Y1,Y2, ...,Yn, n > 2, be a sample with independent and identically distributed observations
from a p-dimensional multivariate normal distribution with density of Yi given by

f(yi;µ,Σ0) = (2π)−p/2det(Σ0)
−1/2 exp

(
−1

2
(yi − µ)⊤Σ−1

0 (yi − µ)

)
, µ ∈ Rp, yi ∈ Rp, i = 1, ..., n

where Σ0 is a positive definite known covariance matrix. Let

Ȳ =
1

n

n∑
i=1

Yi and S =
1

n

n∑
i=1

(Yi − Ȳ)(Yi − Ȳ)⊤

be the sample mean vector and the sample covariance matrix, respectively. Prove that Ȳ and
S are independent.

Problem 4 [23P]

Let Y1 and Y2 be two independent random variables with Y1 ∼ Po(λ) (Poisson distribution with
parameter λ) and Y2 ∼ Po(cλ), respectively.

(a) Derive the joint probability mass function of Y1 and Y2. [2P]

(b) Prove that the canonical statistic is t(Y1, Y2) = (v, u)T with v = Y2 and u = Y1 + Y2.
Determine the canonical parameter vector θ. [2P]

(c) Calculate the marginal probability mass function f(u). [2P]

(d) Specify the conditional distribution f(v|u). [2P]

(e) Using the conditional principle derive the exact test of the hypothesis c = 1. Present the
conditional distribution f0(v|u) under H0. [2P]

(f) Calculate the p-value of the test from (e) if y1 = 2 and y2 = 6 are realizations of Y1 and Y2,
respectively. Is the null hypothesis rejected at significance level 0.1? [6P]

(g) Derive the statistic of the deviance test for the null hypothesis from (e). What is the
asymptotic null distribution of this test statistic? [6P]

(h) Perform the deviance test from (g) at significance level 0.1 by using y1 = 2 and y2 = 6 as
realizations of Y1 and Y2, respectively. [1P]
Hint:

� If Y ∼ Po(β), then its probability mass function is given by

f(y;β) =
βy

y!
e−β for β > 0 and y = 0, 1, ...

� Important quantiles of the χ2-distribution at various degrees of freedom are:

x 1 2 3 4 5

χ2
0.9(df = x) 2.71 4.61 6.25 7.78 9.24

χ2
0.95(df = x) 3.84 5.99 7.81 9.49 11.07

χ2
0.975(df = x) 5.02 7.38 9.35 11.14 12.83
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Problem 5 [10P]

Let Y be a p-dimensional multivariate normally distributed random vector with mean vector µ
and covariance matrix Σ, that is Y ∼ Np(µ,Σ). Let X = AY+b where A : q× p and b : q× 1
are deterministic. Using the expression of moment generating function of Y given by

MY(t) = exp

(
t⊤µ+

1

2
t⊤Σt

)
, t ∈ Rp,

where t⊤ denotes the transpose of t, prove that X ∼ Nq(Aµ+ b,AΣA⊤).

Problem 6 [15P]

Provide the definition of the completeness of a test statistic. Using the fact that the canonical
statistic in a full exponential family is complete, state and prove Basu’s theorem.
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Some formulas
� Hölder’s Inequality : If S is a measurable subset of Rn with the Lebesgue measure, and f
and g are measurable real- or complex-valued functions on S, then Hölder’s inequality is∫

S
|f(x)g(x)|dx ≤

(∫
S
|f(x)|pdx

) 1
p
(∫

S
|g(x)|qdx

) 1
q

.

� Moment-generating function of the canonical statistics t:

M(ψ) = Eθ(exp(ψ
T t)) =

C(θ + ψ)

C(θ)
.

� The saddlepoint approximation of a density f(t) = f(t; θ0) in an exponential family is

f(t; θ0) = (2π)−
k
2 det(Vt(θ̂(t)))

− 1
2
C(θ̂(t))

C(θ0)
exp

(
(θ0 − θ̂(t))T t

)
.

The corresponding approximation of the structure function is

g(t) ≈ (2π)−
k
2 det(Vt(θ̂(t)))

− 1
2C(θ̂(t)) exp

(
−θ̂(t)T t

)
.

� The saddlepoint approximation for the density of the ML estimator ψ̂ = ψ̂(t) in any
smooth parametrization of a regular exponential family is

f(ψ̂;ψ0) ≈ (2π)−
k
2

√
det I(ψ̂) · L(ψ0)

L(ψ̂)
.

� Principle of exact tests of H0 : ψ = 0 vs. H1 : ψ ̸= 0

1. Use v as test statistic, with null distribution density f0(v|u)
2. Reject H0, if the probability to observe vobs|uobs or a more extreme value (towards

the alternative) is too unlikely. One general approach to formulate this p-value is

p = Pr(f0(v|uobs) ≤ f0(vobs|uobs)),

and reject if, say, p < α. Note: p can be calculated as∫
{v:f0(v|uobs)≤f0(vobs|uobs)}

f0(v|uobs)dv.

If v is discrete the integration is replaced by a summation.

� Large sample approximation of the exact test : In an exponential family, with parametriza-
tion using (θu, ψ), canonical statistic t = (u, v) and null-hypothesis H0 : ψ = 0 the score
test is

Wu = (v − µv(θ̂u, 0))
T
(
I(θ̂u, 0)

−1
)
vv

(v − µv(θ̂u, 0))
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� Asymptotically equivalent tests:

– Deviance

W = 2 log
L(θ̂)

L(θ̂0)
,

where θ̂ = (ψ̂, λ̂) and θ̂0 = (ψ0, λ̂0 = λ̂(ψ0)).

– Quadratic form

W ∗
e = (θ̂0 − θ̂)T I(θ̂0)(θ̂0 − θ̂)

– Score test

Wu = U(θ̂0)
T I(θ̂0)

−1U(θ̂0)

– Wald test

We = (ψ̂ − ψ0)
T Iψψ(θ̂)−1(ψ̂ − ψ0)

� Likelihood equations in the GLM : The likelihood equation system for a GLM with canonical
link function θ ≡ η = Xβ is

XT [y − µ(β)] = 0.

For a model with non-canonical link, the equation system is

XTG′(µ(β))−1Vy(µ(β))
−1[y − µ(β)] = 0,

where G′(µ) and Vy(µ) are n × n diagonal matrices with diagonal elements g′(µi) and
vy(µi) = Var(yi;µi), respectively.

� Deviance (or residual deviance) for a GLM

D = D(y,µ(β̂)) = 2[log(L(y;y))− log(L(µ(β̂);y))]

� The observed and expected information matrices for a GLM with canonical link function
are identical and are given by

J(β) = I(β) = XTVy(µ(β))X,

which is a weighted sums of squares of the regressors. With non-canonical link the Fisher
information is given by

I(β) =

(
∂θ

∂β

)T
Vy(µ(β))

(
∂θ

∂β

)
= XTG′(µ(β))−1Vy(µ(β))

−1G′(µ(β))−1X.

� Exponential family with an additional dispersion parameter :

f(yi; θi, ϕ) = exp

(
θiyi − logC(θi)

ϕ

)
h(yi;ϕ),

where C(θi) is the normalization factor in the special linear exponential family where
ϕ = 1.
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� Jacobian matrix : Let g : Rn → Rn and y = g(x) = (g1(x), . . . , gn(x))
T with x =

(x1, . . . , xn)
T ∈ Rn then

(
∂y

∂x

)
=


∂g1(x)
∂x1

· · · ∂g1(x)
∂xn

. . .
∂gn(x)
∂x1

· · · ∂gn(x)
∂xn


� Score function:

U(θ) =
d

dθ
logL(θ),

where L(θ) is the likelihood function.

� Observed information:

J(θ) = − d2

dθdθT
logL(θ)

� Expected information:

I(θ) = −Eθ
(

d2

dθdθT
logL(θ)

)
� Reparametrization lemma: If ψ and θ = θ(ψ) are two equivalent parametrizations of the
same model then the score functions are related by

Uψ(ψ; y) =

(
∂θ

∂ψ

)T
Uθ(θ(ψ); y).

Furthermore, the expected information matrices are related by

Iψ(ψ) =

(
∂θ

∂ψ

)T
Iθ(θ(ψ))

(
∂θ

∂ψ

)
and the observed information at the MLE by

Jψ(ψ̂) =

(
∂θ

∂ψ

)T
Jθ(θ(ψ̂))

(
∂θ

∂ψ

)
.

� Change of variables in multivariate density: Let X has a density fX(x) and let Y = g(X)
with g : Rk → Rk. Then

fY(y) = det

(
∂g(x)

∂x

)−1

fX(x(y))

� Taylor’s theorem in several variables: Suppose f : Rn → R be a k times differentiable
function at the point a ∈ Rn. Then

f(x) =
∑
|α|≤k

Dαf(a)

α!
(x− a)α +Ra,k(h),

where Ra,k denotes the remainder term and |α| denotes the sum of the derivatives in the
n components (i.e. |α| = α1 + · · ·+ αn).
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In the above notation

Dαf(x) =
∂|α|f(x)

∂xα1
1 · ∂xαn

n
, |α| ≤ k.

� Multivariate Newton-Raphson:
Input: Gradient function g′(θ), Hesse matrix g′′(θ) and start value θ(0).

While not converged, do

θ(k+1) = θ(k) −
[
g′′(θ(k))

]−1
g′(θ(k))

� Inverse of partitioned matrix:
Let A be symmetric and positive definite and let

A =

(
A11 A12

A21 A22

)
and A−1 = B =

(
B11 B12

B21 B22

)
Then

B11 = (A11 −A12A
−1
22 A21)

−1,

B12 = −B11A12A
−1
22

B21 = BT
12,

B22 = (A22 −A21A
−1
11 A12)

−1.

� Vector/matrix derivatives:

– ∂x⊤Ax
∂x = 2Ax for a symmetric matrix A and a vector x;

– ∂tr[X⊤A]
∂X = 2A − diag(A) for symmetric matrices A and X where diag(A) denotes

the diagonal matrix consisting of the diagonal elements of A;

– ∂ log(det(X))
∂X = 2X−1−diag(X−1) for a symmetric matrix X where diag(X−1) denotes

the diagonal matrix consisting of the diagonal elements of X−1.
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