Theory for oral exam

- 1. Basic topology and continuity
 - 2.12 Countable union of countable sets is countable
 - 2.14 The set of binary sequences is not countable
 - 2.40 k-cells are compact.
 - 2.41 In \mathbb{R}^k a set *E* is closed and bounded \Leftrightarrow *E* is compact \Leftrightarrow Every infinite subset of *E* has a limit point in *E*.
 - 3.7 Set of subsequential limits is closed.
 - 3.11 Cauchy sequences and convergence
 - 3.33 Root test & 3.39 Power series
 - 3.34 Ratio test
 - 4.8 Continuity: Inverse image of open sets are open.
 - 4.14 Images of compact sets are compact
 - 4.22 Images of connected sets are connected
 - 4.30 Monotone function has countable set of discontinuities
- 2. Interchange of limit processes
 - 6.8 Continuity implies integrability
 - 6.10 Disjoint points of discontinuity implies integrability
 - 6.12 Linearity of integrals
 - 7.11 Uniform convergence implies $\lim_{t\to x} \lim_{n\to\infty} f_n(t) = \lim_{n\to\infty} \lim_{t\to x} f_n(t)$
 - 7.15 C(X) is complete
 - 7.16 Integration of uniformly convergent sequence.
 - 7.17 Derivation of uniformly convergent sequence
 - *7.26 The Stone-Weierstrass theorem
- 3. Functions of several variables
 - 9.7 Inequalities for ||A||
 - 9.8 Properties of $GL_n(\mathbb{R})$.
 - 9.11 Definition of differentiability
 - 9.15 Chain rule
 - 9.19 Estimation of difference of function values
 - 9.23 Fixed point theorem
 - *9.24 Inverse function theorem
 - *9.28 Implicit function theorem

For those topics marked with *, only the statement of the respective results and their possible applications could be evaluated.