Exam: Introduction to Finance Mathematics (MT5009), 2024-05-23

Examiner: Kristoffer Lindensjö; kristoffer.lindensjo@math.su.se, 08-16 4507
Allowed aid: Calculator (provided by the department).
Return of exam: To be announced via the course webpage or the course forum.
The exam consists of five problems. Each problem gives a maximum of 10 points.

- The reasoning should be clear and concise.
- Answers should be motivated (unless otherwise stated).
- Any assumptions should be clearly stated and motivated.
- Start every problem on a new sheet of paper.
- Clearly number each sheet with problem number and sheet order.
- Write your code number (but no name) on each sheet.

Preliminary grading:

A	B	C	D	E
46	41	36	30	25

Good luck!

Problem 1

Let the continuously compounded interest rate be $r=0.1$. The present time is $t=0$.
(A) Consider a bond that matures in 2 years with face value $F=100$ and annual coupons $C=10$ (the first coupon is paid exactly one year from now). Find the present value of the bond.
(B) Consider a unit zero coupon bond (face value 1) that matures in 10 years. What is the bond worth 2 years from now? How many years after the present time $(t=0)$ will the bond be worth 0.9 ?

Problem 2

(A) Explain in words what a replicating portfolio strategy is (in the context of derivative pricing in a multi-period financial market model).
(4 p)
(B) Consider a market with two dates $t=0,1$. Let $V(0)$ denote the value of a portfolio. If the portfolio value $V(0)$ satisfies three conditions then it corresponds to an arbitrage opportunity. One of these conditions is $V(0)=0$. State the other two conditions (in terms of mathematical expressions).

Problem 3

Consider the two-period binomial model for financial markets with $t=0,1,2$, $S(0)=100, U=0.1, D=-0.1$, and $R=0.05$. Consider a European call option with strike price $X=100$ and maturity at time 2 .
(A) Find the current value $C_{E}(0)$ of the option using the method of risk-neutral valuation.
(B) Find a replicating portfolio strategy for the option.

Problem 4

We have two shares with return standard deviations given by σ_{1} and σ_{2}. The covariance is denoted by c_{12}, and we assume that the corresponding correlation satisfies $\rho_{12}<1$. Denote by s the weight in share 1 and by $1-s$ the weight in share 2.
(A) Determine the minimum variance portfolio for

$$
\begin{aligned}
\sigma_{1}^{2} & =0.06 \\
\sigma_{2}^{2} & =0.07 \\
c_{12} & =0.0021
\end{aligned}
$$

Hint: use the information provided in (B).
(B) Show that the minimum variance portfolio is attained when s is given by

$$
\begin{equation*}
s_{0}=\frac{\sigma_{2}^{2}-c_{12}}{\sigma_{2}^{2}+\sigma_{1}^{2}-2 c_{12}} \tag{5p}
\end{equation*}
$$

Problem 5

Consider a Black-Scholes financial market. Consider a European derivative with two years left until maturity and the payoff function

$$
10 I_{\{x<1\}} .
$$

Describe/interpret the derivative in financial terms with one sentence.
Derive a pricing formula (as explicit as possible) for this derivative.
Hint: recall that the indicator function $I_{\{x<c\}}$ takes the value 1 in case $x<c$ and the value 0 otherwise.

