

Introduction to Real Analysis

Lecture ⁻

Sofia Tirabassi

tirabassi@math.su.se

Logistic Information

• Book: Walter Rudin, *Principle of Mathematical Analysis (3:rd ed)*

Logistic Information

- Book: Walter Rudin, *Principle of Mathematical Analysis (3:rd ed)*
- Time and Place: Variable

Place: Zoom

Time: meeting at the beginning of a week every week

Logistic Information

- Book: Walter Rudin, *Principle of Mathematical Analysis (3:rd ed)*
- Time and Place:
- Final Exam: Look of the course web page / <u>scheme.su.se</u>

Grading

- The grade of the course (*G*) will be over 30 points ($0 \le G \le 30$).
- All students should take a written exam, which will consist of up to 5 problems. The score obtained in the written exam (*W*) will give a maximum of 24 points ($0 \le W \le 24$).
- Those students that obtain a score greater than $\underline{21}$ in the written exam ($21 \le W \le 24$) have the right to take an oral exam. The score of the oral exam (*O*) will give a maximum of 6 points ($0 \le O \le 6$).
- During the course three homework will be released, so that each student can obtain bonus points (*B*). Each homework will be graded over 1 point, so that a maximum of 3 bonus points can be obtained ($0 \le B \le 3$).
- If a student obtains a score smaller than 21 in the written exam $(0 \le W < 21)$, the grade will be given by G = W + B If a student obtains a score greater than 21 in the written exam $(21 \le W \le 24)$, the grade will be given by $G = \min(W + B, 24) + O$.

Section 1 Lecture 1

Lecture Plan

- Ordered sets (Rudin 1.5-1.11)
- Ordered fields (Rudin 1.12-1.18)
- The Real numbers (Rudin 1.13-1.22)
- Extended Real numbers (Rudin 1.23)
- The Complex numbers (Rudin 1.24-1.35)
- Cardinality (Rudin 2.4-2.14) 4- Containatorics

Section 2 Ordered Sets

Given a set S an order on S is a relation < on S such that O1 Given x and y in S, one, and only one of the following is true

$$x = y, \quad x < y, \quad y < x$$

O2 < is transitive. The pair (S, <) is called ordered set. Non Example S= {1, 2, 3} $(\mathcal{P}(s) \subseteq)$ is not ordered hot = {1,2} {2,3} - \$1,23 \$ \$2,33 {2,3} \$ \$1,2} _ usude "loss that") sofisfied. is not 01

Orders

Given a set *S* an order on *S* is a relation < on *S* such that O1 Given *x* and *y* in *S*, one, and only one of the following is true

$$x = y, \quad x < y, \quad y < x$$

O2 < is transitive.

The pair (S, <) is called ordered set.

Examples

- Given X a set with more than 1 element, then P(X) with ⊂ is not an ordered set.
- The number sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , with the usual < are ordered sets

Let (S, <) be an ordered set.

Bounded sets $S \leq X$ S < X or S = X

Let (S, <) be an ordered set. A subset $E \subseteq S$ is said to be bounded above (below) if there is an $s \in S$ such that $s \ge x$ ($s \le x$) for all $x \in E$. In this case we say that s is an upper (lower) bound for E.

If *E* is both bounded above and below we say that it is bounded.

Bounded sets

Let (S, <) be an ordered set. A subset $E \subseteq S$ is said to be bounded above (below) if there is an $s \in S$ such that $s \ge x$ ($s \le x$) for all $x \in E$. In this case we say that s is an upper (lower) bound for E.

If *E* is both bounded above and below we say that it is bounded.

Bounded sets

Let (S, <) be an ordered set. A subset $E \subseteq S$ is said to be bounded above (below) if there is an $s \in S$ such that $s \ge x$ ($s \le x$) for all $x \in E$. In this case we say that s is an upper (lower) bound for E.

If *E* is both bounded above and below we say that it is bounded.

Definition

Let $E \subseteq S$ bounded above (below) a supremum (infimum) for E is $\alpha \in S$ such that

• α is an upper (lower) bound for *E*;

(a) every upper (lower) bound for E, γ satisfies $\gamma \ge \alpha$ ($\gamma \le \alpha$).

If such α exists it is clearly unique and we denote it by

 $\alpha = \sup_{\mathcal{S}}(E) \quad (\inf_{\mathcal{S}}(E))$

Least upper bound property

We say that an ordered set (S, <) has the least upper bound property (LUP) if every non empty subset E, bounded above has a supremum

Least upper bound property

We say that an ordered set (S, <) has the least upper bound property (LUP) if every non empty subset *E*, bounded above has a supremum

We say that an ordered set (S, <) has the greatest lower bound property (GLP) if every non empty subset *E*, bounded below has a infimum

Examples the sup shald be
$$\sqrt{2} \notin \mathbb{Q}$$

• \mathbb{Q} has not the LUP since $E = \{x | x^2 < 2\}$ is nonempty, bounded above but has no sup.

 Is a consequence of the <u>well ordering of the integers that</u> Z has the LUP. In addition we have that sup(E) ∈ E.

Stockholm University

Equivalence of LUP and GLP

b>x for all x e L b is are upper baud Lhas a sup sug L=: x ES Claim & = inf B Need i) tes au lover band for B 2) sound other lover bound for B is of being a $\leq d$ 1) let x < x then x & B all the elements of B are upper band for L whithe elements of B are > ~

If B> x = sups L L= 2 lower bands for B} Bel Bel Jsupl B¢ L =) B is not a laver band for B Cartrapositive 12 is a lower band for B >> B < d

Section 3 Fields

Recall the definition of field

A *field* is a set F equipped with two binary operations, addition (+)and multiplication (\cdot) , satisfying the following properties for all elements $a, b, c \in F$: Prototype Q, R, Γ O Closure under Addition: $a + b \in F$.

- **2** Associativity of Addition: (a + b) + c = a + (b + c).
- Existence of an Additive Identity: There exists an element $0 \in F$ such that a + 0 = a for all $a \in F$.
- **Solution** Existence of Additive Inverses: For each $a \in F$, there exists an element $(-a) \in F$ such that a + (-a) = 0.
- **Output** Closure under Multiplication: $a \cdot b \in F$.
- Solution: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- Existence of a Multiplicative Identity: There exists an element $1 \in F$ such that $a \cdot 1 = a$ for all $a \in F$, where $1 \neq 0$.
- Solution **Existence of Multiplicative Inverses:** For each $a \in F$ such that $a \neq 0$, there exists an element $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$.
- **Distributive Property:** $a \cdot (b+c) = a \cdot b + a \cdot c$.

Ordered fields

An ordered field is a field F with and order < such that OF1 x + y < x + z for all x, y, z in F with y < z. OF2 xy > 0 for all x ad y in F with x > 0. If x > 0 we say that it is positive. If x < 0 we say it is negative. , you count gree ou adar on a compatible with a on the & the multiplicatio Examples R we arenot decide example T, if i> o o ico -1=1.1 >0 (0€2) ico -izo 1=(-i)(-i) >0

Ordered fields

An ordered field is a field F with and order < such that OF1 x + y < x + z for all x, y, z in F with y < z. OF2 xy > 0 for all x ad y in F with x > 0 and y > 0. If x > 0 we say that it is positive. If x < 0 we say it is negative.

Proposition

The following are true in an ordered field (F, <). **1** \in F

(1.1) if
$$x \neq 0$$
 then $x^2 > 0$. In particular $1 > 0$.

o if 0 < x < y, then $0 < \frac{1}{y} < \frac{1}{x}$.

The field of comples numbers is not an ordered field.

The Real Numbers

Theorem

There is a unique ordered field with the LUP \mathbb{R} that contains \mathbb{Q} as a sub(ordered)field. (NO PROOF)

The Real Numbers

Theorem

There is a unique ordered field with the LUP $\mathbb R$ that contains $\mathbb Q$ as a sub(ordered)field.

The archimedian property

If x and y are real numbers with x > 0, then there is $n \in \mathbb{Z}$, n > 0, such that nx > y.

Density of \mathbb{Q}

Given two real numbers x < y then there is a rational number q such that x < q < y.

Proof (Archimedian) 2 20 <u> ५</u> ८ ४ if y so take nel e Z.* We can assure that y > 0 4≠A- fnx / ne k nso} =× =1.× Suppose by contradiction y's nx for all ne the y is a wup (bounded about) I sup A = ~ for A d>x x x>0 <-x << a-x is not an upper boud

$$\phi_{\pm} A = \left\{ \begin{array}{l} he 74 \left| h < n \times \right\} \right\} = -1$$
bauedod above by k.
It has a max (well ordering) h
$$\times < \frac{h + 1}{n} < y$$

$$\in \mathbb{Q}$$

$$\overline{h} < n \times +1 < n y$$

$$\bigcup$$

The complex numbers

The field of the complex number \mathbb{C} consist of pairs of real numbers (a, b) with the following binary operations

$$(a,b)+(c,d)=(a+c,b+d)$$

 $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$

The zero is given by the number (0,0) and the multiplicative identity is given by (1,0).

The complex numbers

The field of the complex number \mathbb{C} consist of pairs of real numbers (a, b) with the following binary operations

$$(a,b)+(c,d)=(a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac - bd, ad + bc)$

The zero is given by the number (0,0) and the multiplicative identity is given by (1,0). One can check that $i_{1}^{2} = (-1, 0)$

$$(a,b) = (a,0) + (0,1)(b,0),$$

Thus if we set i = (0, 1) and we identify $\{(a, 0) | a \in \mathbb{R}\}$ with the real numbers \mathbb{R} we can write

$$(a,b) = a + ib,$$

Given z = a + ib a complex number, the real number a is called the real part of z and it is denoted by $\Re(z)$, while $\underline{b} = \Im(\overline{z})$ is the imaginary part of z.

2024-06-10 | Sofia Tirabassi - Lecture 1 |

The extended Real numbers

The extended real numbers are represented by the set

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\} \qquad \text{Not a field}$$

Addition and Multiplication: The addition and multiplication can be partially extended to the extended real numbers in teh. π_{∞}

$$a + (+\infty) = +\infty \quad \text{for any } a \in \mathbb{R}$$
$$a + (-\infty) = -\infty \quad \text{for any } a \in \mathbb{R}$$
$$a \cdot (\pm \infty) = \begin{cases} \pm \infty & \text{if } a > 0\\ \mp \infty & \text{if } a < 0 \end{cases}$$
$$a/(\pm \infty) = 0 \text{ if } a \neq 0$$

Undefined Cases:

- The sum $+\infty + (-\infty)$ is undefined.
- The product $0 \cdot (+\infty)$, $0 \cdot (-\infty)$, and $(+\infty) \cdot (-\infty)$ are undefined.

Section 4 Cardinality

Cardinality

Given two sets *A* and *B* we say that they have the same cardinality if there is a bijective function $f : A \rightarrow B$.

(the fact that this is well defined is a consequence of the axion of cloice)

Cardinality

Given two sets *A* and *B* we say that they have the same cardinality if there is a bijective function $f : A \rightarrow B$. This yields an equivalence relation \sim .

Cardinality

Given two sets *A* and *B* we say that they have the same cardinality if there is a bijective function $f: A \to B$. This yields an equivalence relation \sim .Consider the sets $J_n := \{1, 2, ..., n\}$ and $\underline{J} = \mathbb{Z}^+$

Definition

Given a set A we say that

- <u>A is finite</u> if $A \sim J_n$ for some *n*. In this case we have that *n* is unique and we set |A| = n. \neg the same H of clevest.
- A is infinite if it is not finite.
- A is countable if $A \sim J$
- A is uncountable if it is neither finite nor countable
- A is at most countable if it not uncountable.

A sequence on a set A (or with values in A) is a function $\overline{\mathbb{Z}}_{2,2,\bullet}$ $\underline{f: J \rightarrow A}$

Usually, the *n*-th term of the sequence f(n) is denoted by a_n or x_n .

Pn

A sequence on a set A (or with values in A) is a function

 $f: J \to A$

Usually, the *n*-th term of the sequence f(n) is denoted by a_n or x_n .

If *A* is a countable set then there is a bijective correspondence $f: J \rightarrow A$ so we can write

 $A = \{f(n) | n \in J\}$

In particular countable sets can be rearranged in sequences.

Proposition

A countable union of countable sets is countable

Corollary

An at most countable union of at most countable sets is at most countable.

$$\frac{Proof}{Frop} \left\{ \frac{En}{he} \frac{1}{2} \right\} = \left\{ \frac{En}{he} \frac{1}{2} \right\} = \left\{ \frac{En}{he} \frac{1}{2} \right\}$$

$$\frac{En}{he} = \left\{ \frac{X_{1,n}}{X_{2,n}} \frac{X_{2,n}}{1} \right\}$$

$$\frac{En}{he} = \left\{ \frac{X_{1,n}}{X_{2,n}} \frac{X_{2,n}}{1} \right\}$$

$$\frac{En}{he} = \left\{ \frac{X_{1,n}}{X_{2,n}} \right\}$$

$$\frac{En}{he} = \left\{ \frac{X_{1,n}}{1} \right\} = \left\{ \frac{X_{1,n}}{1} \right\}$$

$$\frac{En}{he} = \left\{ \frac{X_{1,n}}{1} \right\}$$

1

We weed to show that is autoined in autolde se $Z^+ \times Z^+ \longrightarrow \bigcup \mathcal{E}_n$ $Z^+ \times Z^+ \longrightarrow \bigcup \mathcal{E}_n$ $Z^+ \times Z^+ \longrightarrow \bigcup \mathcal{E}_n$ it migt not be injection We have Z & The x The such that is by actual Coutoble => !! V D is couteble J = Q⁺ = { m/m, n>0} ← Z × Z⁺

 $; \mathcal{Q}^{4} \longrightarrow \mathcal{Q}^{7}$ $\times \longmapsto -1$ by beck,

Products of countable sets

Recall that given a set A, the set

$$A^n := \{(a_1,\ldots,a_n) | a_i \in A\}$$

Proposition

If A is countable then A^n is countable

Corollary

If \mathbb{Q} is countable.

An uncountable set

Theorem

Let A be the set of sequences with values in $\{0, 1\}$. Then, A is not countable.

As a consequence we have that the set of real numbers is not countable.

Proof
$$E \leq A$$
 translable $\Longrightarrow E \neq A$
 $E = \{S_1, S_2, S_3, \dots, \}$ I create as now
sequence $S \in A$ such that $S \notin E$
 $S: 7 \leq 1 \longrightarrow A$
 $S: 7 \le 1$

sty for all set S=S, they have to assume the some volus 2(1) + 2°(1) SEE SEA Carollary => [0,1] iz not coudable IR not coulable $\chi \in \mathbb{R} \implies \chi = sequences in Self$ R - Soquerces of Sq1] [0,] > sources in {o,i}

Thank you for your attention!

