Sofia Tirabassi
 tirabassi@math.su.se

Logistic Information

- Book: Walter Rudin, Principle of Mathematical Analysis (3:rd ed)

Logistic Information

- Book: Walter Rudin, Principle of Mathematical Analysis (3:rd ed)
- Time and Place: Variable

Place: Zoom.
Time: meeting at the beginning of a week every week.

Logistic Information

- Book: Walter Rudin, Principle of Mathematical Analysis (3:rd ed)
- Time and Place:
- Final Exam: Loote at the course web page / scheme.su.se

Grading

- The grade of the course (G) will be over 30 points ($0 \leq G \leq 30$).
- All students should take a written exam, which will consist of up to 5 problems. The score obtained in the written exam (W) will give a maximum of 24 points ($0 \leq W \leq 24$).
- Those students that obtain a score greater than $\underline{21}$ in the written exam ($21 \leq W \leq 24$) have the right to take an oral exam. The score of the oral exam (O) will give a maximum of 6 points ($0 \leq 0 \leq 6$).
- During the course three homework will be released, so that each student can obtain bonus points (B). Each homework will be graded over 1 point, so that a maximum of 3 bonus points can be obtained ($0 \leq B \leq 3$).
- If a student obtains a score smaller than 21 in the written exam ($0 \leq W<21$), the grade will be given by $\langle G=W+B$ If a student obtains a score greater than 21 in the written exam
($21 \leq W \leq 24$), the grade will be given by
$G=\min (W+B, 24)+O$.

Section 1

 Lecture 1
Lecture Plan

- Ordered sets (Rudin 1.5-1.11)
- Ordered fields (Rudin 1.12-1.18)
- The Real numbers (Rudin 1.13-1.22)
- Extended Real numbers (Rudin 1.23)
- The Complex numbers (Rudin 1.24-1.35)
- Cardinality (Rudin 2.4-2.14) < Combinatorics

Stockholm
University

Orders
(Totally ordered sets)
Given a set S an order on S is a relation $<$ on S such that
O1 Given x and y in S, one, and only one of the following is true

$$
x=y, \quad x<y, \quad y<x
$$

$\mathrm{O} 2<$ is transitive.
The pair $(S,<)$ is called ordered set.
Non example

$$
S=\{1,2,3\}
$$

$(P(s) \subseteq)$ is not ordered

$$
\begin{array}{r}
\{1,2\} \quad\{2,3\}-\begin{array}{l}
\text { not }= \\
\{1,2\} \neq\{2,3\} \\
O 1 \text { is not setisfiod. }\{2,3\} \notin\{1,2\} \\
O \text { usude "less the }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { satisfiod. }<^{C} \text { usual "less thai") } \\
& \text { Example. }(R)
\end{aligned}
$$

Orders

Given a set S an order on S is a relation $<$ on S such that O1 Given x and y in S, one, and only one of the following is true

$$
x=y, \quad x<y, \quad y<x
$$

$\mathrm{O} 2<$ is transitive.
The pair $(S,<)$ is called ordered set.

Examples

- Given X a set with more than 1 element, then $\mathcal{P}(X)$ with \subset is not an ordered set.
- The number sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, with the usual $<$ are ordered sets

Bounded sets

Let $(S,<)$ be an ordered set.

Bounded sets

$$
\begin{aligned}
& s \leq x \\
& s<x \quad \text { or } \quad s=x
\end{aligned}
$$

Let $(S,<)$ be an ordered set.
A subset $E \subseteq S$ is said to be bounded above (below) if there is an $s \in S$ such that $s \geq x(s \leq x)$ for all $x \in E$. In this case we say that s is an upper (lower) bound for E.

If E is both bounded above and below we say that it is bounded.
Example
(Q<)

$$
E=\left\{x \in Q \mid x^{2} \leq 2\right\}
$$

$$
\text { bounded above } x \in E \Rightarrow x<2
$$

$$
\text { bonds below } x \in E \Rightarrow x>-2
$$

\Rightarrow This is Bombay
2 is a upper bound for $E \rightarrow$ there are - 2 is a lower baud for E

Bounded sets

Let $(S,<)$ be an ordered set.
A subset $E \subseteq S$ is said to be bounded above (below) if there is an $s \in S$ such that $s \geq x(s \leq x)$ for all $x \in E$. In this case we say that s is an upper (lower) bound for E.

If E is both bounded above and below we say that it is bounded.

Definition

Let $E \subseteq S$ bounded above (below) a supremum (infimum) for E is
$\alpha \in S$ such that
(1) α is an upper (lower) bound for E;
(2) every upper (lower) bound for E, γ satisfies $\gamma \geq \alpha(\gamma \leq \alpha)$.

The t from before has no sup rene in (Q) also 130 lefivere.

Example $\quad(\mathbb{R}<)$

$$
E=\{x \in \mathbb{R} / x<1\}
$$

This has a sup

$$
\sup _{\mathbb{R}} E=\xrightarrow{s}
$$

$1 \in \mathbb{R} \quad l>x$ for all $x \in \mathbb{R}$

$$
\gamma>x \text { for all } x \in \mathbb{R} \Rightarrow \gamma \geqslant 1
$$

Suppose othemise $r<1$
$\gamma+\frac{\gamma+1}{2}$ should be the mid pout of γ on 1

Bounded sets

Let $(S,<)$ be an ordered set.
A subset $E \subseteq S$ is said to be bounded above (below) if there is an $s \in S$ such that $s \geq x(s \leq x)$ for all $x \in E$. In this case we say that s is an upper (lower) bound for E.

If E is both bounded above and below we say that it is bounded.

Definition

Let $E \subseteq S$ bounded above (below) a supremum (infimum) for E is
$\alpha \in S$ such that
(1) α is an upper (lower) bound for E;
(2) every upper (lower) bound for E, γ satisfies $\gamma \geq \alpha(\gamma \leq \alpha)$.

If such α exists it is clearly unique and we denote it by

$$
\alpha=\sup _{S}(E) \quad\left(\inf _{S}(E)\right)
$$

Least upper bound property

We say that an ordered set $(S,<)$ has the least upper bound property (LUP) if every non empty subset E, bounded above has a supremum

Least upper bound property

We say that an ordered set $(S,<)$ has the least upper bound property (LUP) if every non empty subset E, bounded above has a supremum

We say that an ordered set $(S,<)$ has the greatest lower bound property (GLP) if every non empty subset E, bounded below has a infimum

Examples
tho sup shard be

- \mathbb{Q} has not the LUP singe $E=\left\{x \mid x^{2}<2\right\}$ is nonempty, bounded above but has no sup.
- Is a consequence of the well ordering of the integers that \mathbb{Z} has the LUP. In addition we have that $\sup (E) \in E$.
$\phi \neq E \subseteq \mathbb{Z}$ bounded below (above)
$\overrightarrow{\text { au }}$ E has a win (wax) maximal for $E_{x} \leqslant(S C)$ is an $\alpha \in E$ a minimum for $E_{\sum_{x}} \leqslant(S \angle)$ is an $\alpha \in E$ such that $\alpha \frac{x}{x} x$ for all $x \in E$ (a lower ben id that bolougs to the set)

Equivalence of LUP and GLP

Theorem
If $(S,<)$ has the LUP then it has the GLP
Proof) S LUP $E \leqslant S$ banded above HP \Rightarrow Shas a sup.
$P^{\prime} B \subseteq S$ beveled below want to show that it has are inf
$L=\{x \in S \quad \mid x \leq b$ for all b in $B\} \leq S$ $=\{x \in S \quad\{x$ is a lower bond for $B\} \neq \phi$
L L^{x} is banded above: take $b \in B(\neq \phi)$ by def of L we have that
$b \geqslant x$ for all $x \in L \quad b$ is are upper bound
Lias a sup sups $L=: \alpha \in S$
Claim $\quad \alpha=\inf _{8} B$
Need 1) $\alpha \in S$, an lower bond for B
2) Any then lower bond for B is

$$
\begin{equation*}
\leq \alpha \tag{Prop}
\end{equation*}
$$ sup

1) let $x<\alpha$ then $x \notin B$ all the elouacts of B are uppu band. for L
all the eleureuts of B the $\geqslant \alpha$.

If $\beta>\alpha=\sup _{8} L$
$L=\{$ lower bonds for $B\}$
$\beta \notin L$

$$
\beta \in L \quad \beta \in L
$$

$\Rightarrow \beta$ is not a laver baud for B
Contrapositive B is a lower bowl for B

$$
\Rightarrow \beta<\alpha
$$

Questions?

Stockholm
University

Section 3 Fields

Recall the definition of field

A field is a set F equipped with two binary operations, addition (+) and multiplication (\cdot), satisfying the following properties for all elements $a, b, c \in F$:

- Closure under Addition: $a+b \in F$.
(2) Associativity of Addition: $(a+b)+c=a+(b+c)$.
(3) Existence of an Additive Identity: There exists an element $0 \in F$ such that $a+0=a$ for all $a \in F$.
(4) Existence of Additive Inverses: For each $a \in F$, there exists an element $(-a) \in F$ such that $a+(-a)=0$.
(5) Closure under Multiplication: $a \cdot b \in F$.
(3) Associativity of Multiplication: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
(Existence of a Multiplicative Identity: There exists an element $1 \in F$ such that $a \cdot 1=a$ for all $a \in F$, where $1 \neq 0$.
(8) Existence of Multiplicative Inverses: For each $a \in F$ such that $a \neq 0$, there exists an element $a^{-1} \in F$ such that $a \cdot a^{-1}=1$.
(0) Distributive Property: $a \cdot(b+c)=a \cdot b+a \cdot c$.

Ordered fields

An ordered field is a field F with and order \leq such that
OF $x+y<x+z$ for all x, y, z in F with $y<z$.
OF $x y>0$ for all x ad y in F with $x>0$.
If $x>0$ we say that it is positive. If $x<0$ we say it is negative.

Ordered fields

An ordered field is a field F with and order $<$ such that
OF $x+y<x+z$ for all x, y, z in F with $y<z$.
OF $x y>0$ for all x ad y in F with $x>0 \operatorname{ang} y>0$.
If $x>0$ we say that it is positive. If $x<0$ we say it is negative.

Proposition

The following are true in an ordered field $(F,<)$.
1も
(1) if $x>0$ then $-1 \cdot x=-x<0$
(2) if $x>0$ and $y<z$, then $x y<x z$.
(3) if $x<0$ and $y<z$, then $x y>x z$. .
(4) if $x \neq 0$ then $x^{2}>0$. In particular $1>0$. $1=(1 \cdot 1)$
(c) if $0<x<y$, then $0<\frac{1}{y}<\frac{1}{x}$.

Not hand \leadsto if you have moblems just write

Example

The field of comples numbers is not an ordered field.

The Real Numbers

Theorem

There is a unique ordered field with the LUP \mathbb{R} that contains \mathbb{Q} as a sub(ordered)field. (NO PROOF)

The Real Numbers

Theorem

There is a unique ordered field with the LUP \mathbb{R} that contains \mathbb{Q} as a sub(ordered)field.

The archimedian property

If x and y are real numbers with $x>0$, then there is $n \in \mathbb{Z}, n>0$, such that $n x>y$.

Density of \mathbb{Q}

Given two real numbers $x<y$ then there is a rational number q such that $x<q<y$.

Proof (Archimediom) $\quad x>0$

$$
\text { if } y \leqslant 0 \quad y<x \quad \text { take } n=1 \text { e } \mathbb{z}^{+}
$$

We car assume that $y>0$

$$
\phi \neq A=\left\{n \times / n \in \mathbb{Z}_{1} n>0\right\} \Rightarrow x=1 \cdot x
$$

Suppose by coutraoliction
$y \geq n x$ for ale $n \in Y_{a}^{+} \quad y$ is amur for A (bounded labor) $\exists \sup _{\mathbb{R}} A=\alpha$ $\alpha \geqslant x^{\epsilon^{A}} \quad x>0 \quad \alpha-x<\alpha$
$\alpha-x$ is not an uppa bouol
\exists

$$
\begin{aligned}
& m \cdot x>\alpha-x \\
& { }_{A}^{m} \Rightarrow(m+1) \cdot x>\alpha
\end{aligned}
$$

α is not an uppen boud.

Proof (Deusity)

$$
x, y \in \mathbb{R} \quad x_{<} y \quad y-x>0
$$

Archiwedean $\exists n \in \mathbb{Z}^{+} \quad n(y-x)>1$

$$
n y>1^{1+}+n x \quad 1>-n x
$$

Archimed te te. $1>n x$

$$
-1<n x<k
$$

$$
\phi \pm A=\{h \in \mathbb{Z} \mid h<n x\} \geqslant-1
$$

bacolod above by k.
It has a max (well ordering) \bar{h}

$$
\begin{gathered}
x<\frac{\bar{h}+1}{n}<y \\
\bar{n}<n x<\overline{Q_{+1}} \quad x<\frac{\bar{h}+1}{n} \\
\quad<n x+1<n y
\end{gathered}
$$

Questions?

The complex numbers

The field of the complex number \mathbb{C} consist of pairs of real numbers (a, b) with the following binary operations

$$
\begin{gathered}
(a, b)+(c, d)=(a+c, b+d) \\
(a, b) \cdot(c, d)=(a c-b d, a d+b c)
\end{gathered}
$$

The zero is given by the number $(0,0)$ and the multiplicative identity is given by $(1,0)$.

The complex numbers

The field of the complex number \mathbb{C} consist of pairs of real numbers (a, b) with the following binary operations

$$
\begin{gathered}
(a, b)+(c, d)=(a+c, b+d) \\
(a, b) \cdot(c, d)=(a c-b d, a d+b c)
\end{gathered}
$$

The zero is given by the number $(0,0)$ and the multiplicative identity is given by $(1,0)$. One can check that

$$
i^{2}=(-1,0)
$$

$$
(a, b)=(a, 0)+(0,1)(b, 0)
$$

Thus if we set $i=(0,1)$ and we identify $\{(a, 0) \mid a \in \mathbb{R}\}$ with the real numbers \mathbb{R} we can write

$$
(a, b)=a+i b,
$$

Given $z=a+i b$ a complex number, the real number a is called the real part of z and it is denoted by $\Re(z)$, while $\underline{b}=\Im(\underline{z}$ is the imaginary part of z.
$!$ Not ib.

The extended Real numbers

The extended real numbers are represented by the set

$$
\overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty,-\infty\} \quad \text { NOT a field }
$$

Addition and Multiplication: The addition and multiplication can be partially extended to the extended real numbers inteh the

$$
\left.\begin{array}{rl}
a+(+\infty) & =+\infty \quad \text { for any } a \in \mathbb{R} \\
a+(-\infty) & =-\infty \quad \text { for any } a \in \mathbb{R}
\end{array}\right\} \begin{array}{ll}
\pm \cdot(\pm \infty) & = \begin{cases} \pm \infty & \text { if } a>0 \\
\mp \infty & \text { if } a<0\end{cases} \\
a /(\pm \infty)=0 \text { if } a \neq 0
\end{array}
$$

Undefined Cases:

- The sum $+\infty+(-\infty)$ is undefined.
- The product $0 \cdot(+\infty), 0 \cdot(-\infty)$, and $(+\infty) \cdot(-\infty)$ are undefined.

Questions?

Section 4 Cardinality

Cardinality

Given two sets A and B we say that they have the same cardinality if there is a bijective function $f: A \rightarrow B$.
(the fact that this is well olofined is a consequence of the axiom of choice)

Cardinality

Given two sets A and B we say that they have the same cardinality if there is a bijective function $f: A \rightarrow B$. This yields an equivalence relation \sim.

Cardinality

$$
J_{0}=\phi
$$

Given two sets A and B we \$ay that they have the same cardinality if there is a bijective function $f: A \rightarrow B$. This yields an equivalence relation \sim.Consider the sets $J_{n}:=\{1,2, \ldots, n\}$ and $J=\mathbb{Z}^{+}$

Definition

Given a set A we say that

- A is finite if $A \sim J_{n}$ for some n. In this case we have that n is unique and we set $|A|=n . \rightarrow$ the souve t of clenart.
- A is infinite if it is not finite.
- A is countable if $A \sim J$
- A is uncountable if it is neither finite nor countable
- A is at most countable if it not uncountable.

Sequences

A sequence on a set A（or with values in A ）is a function

$$
\begin{gathered}
\text { 《プ・ } \\
f: A \\
\hline
\end{gathered}
$$

Usually，the n－th term of the sequence $f(n)$ is denoted by a_{n} or x_{n} ． Pn

Sequences

A sequence on a set A (or with values in A) is a function

$$
f: J \rightarrow A
$$

Usually, the n-th term of the sequence $f(n)$ is denoted by a_{n} or x_{n}.
If A is a countable set then there is a bijective correspondence $f: J \rightarrow A$ so we can write

$$
A=\{f(n) \mid n \in J\}
$$

In particular countable sets can be rearranged in sequences.

Unions of (at most) countable sets

Proposition
A countable union of countable sets is countable
Corollary
An at most countable union of at most countable sets is at most countable.

Proof (Pop) $\left\{E_{n}\right\}_{n \in \mathbb{Z}^{+}}$a (contrite) collection of cantablo sets

$$
\begin{aligned}
\underset{r}{ } E_{n u t o b h e . ~}^{E} & =\left\{x_{1, n} x_{2, n} \cdots\right\} \\
E_{1} \subseteq \bigcup_{n=1}^{\infty} E_{n} & =\left\{x_{i, j}\right\}_{i, \lambda} \in \mathbb{Z}_{i}^{+}
\end{aligned}
$$ is not finito

We veed to shou thatis coutained ins arteble se.

it migt not be injectin
We have $Z \in \frac{\pi_{c}^{+} \times{C^{+}}^{+}}{L}$ such Hat is bijecto

$$
J \subset \mathbb{Q}^{+}=\left\{\left.\frac{m_{1}}{n} \right\rvert\, m, n>0\right\} \quad \longleftarrow \mathbb{Z}_{1}^{+} \times \mathbb{Z}^{+}
$$

$$
\begin{aligned}
& \mathbb{Q}=\mathbb{Q}^{+} \cup\{0\} \cup \mathbb{Q}^{-} \\
&- \\
&-\mathbb{Q}^{+} \longrightarrow \mathbb{R}^{-} \text {cantable } \\
& x \longmapsto-1
\end{aligned}
$$

Products of countable sets

Recall that given a set A, the set

$$
A^{n}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in A\right\}
$$

Proposition

If A is countable then A^{n} is countable

Corollary

If \mathbb{Q} is countable.

An uncountable set

Theorem
Let A be the set of sequences with values in $\{0,1\}$. Then, A is not countable.

As a consequence we have that the set of real numbers is not countable.
Proof $E \leq A \stackrel{\text { at mort }}{\text { ratable }} \Rightarrow E \neq A$
$E=\left\{S, S_{2}, S_{3} \cdots\right\}$, 1 create an new sephere $S \in A$ such Hat $S \notin E$

$$
\begin{aligned}
\delta: & \mathbb{C}^{+} \\
S(i) & A \\
1 & \text { if }
\end{aligned} \begin{array}{lll}
0 & \text { eth digit of } \delta_{i} & \text { is } 1 \\
1 & \text { iso }
\end{array}
$$

$s \neq s_{j}$ for all $s_{j} \in E$
$S=S$, they have to assure tho soure volus

$$
\delta(j) \neq S_{j}(j)
$$

set $\quad s \in A$
Corollayy $\Rightarrow\left[\begin{array}{l}0,1] \\ \mathbb{R}\end{array} \quad\right.$ is not courtabe couble
$x \in \mathbb{R} \Rightarrow x=$ sepuaces in $\{0 i\}$.
$\mathbb{R} \leftrightarrow$ Seperves of $\{0,1\}$
$[0,1] \Leftrightarrow$ seplanos in $\{0,1\}$

Thank you for your attention!

