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@ Book: Walter Rudin, Principle of Mathematical Analysis (3:rd
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@ Book: Walter Rudin, Principle of Mathematical Analysis (3:rd
ed)

@ Time and Place:
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@ The grade of the course (G) will be over 30 points (0 < G < 30).

@ All students should take a written exam, which will consist of up
to 5 problems. The score obtained in the written exam (W) will
give a maximum of 24 points (0 < W < 24). C

@ Those students that obtain a score greater than 21 in the written
exam (21 < W < 24) have the right to take an oral exam. The
score of the oral exam (O) will give a maximum of 6 points
(0<0<6).

@ During the course three homework will be released, so that each
student can obtain bonus points (B). Each homework will be
graded over 1 point, so that a maximum of 3 bonus points can be
obtained (0 < B < 3).

@ If a student obtains a score smaller than 21_in the written exam
(0 < W < 21), the grade will be given bylG = W + B) If a student
obtains a score greater than 21 in the written exam
(21 < W < 24), the grade will be given by
G = min(W + B, 24) + O.
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@ Ordered sets (Rudin 1.5-1.11)

@ Ordered fields (Rudin 1.12-1.18)

@ The Real numbers (Rudin 1.13-1.22)

@ Extended Real numbers (Rudin 1.23)

@ The Complex numbers (Rudin 1.24-1.35)

o Cardinality (Rudin 2.4-2.14) d— Godoi wakoyicg
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Given a set S an order on Sis a relation < on S such that
O1 Given x and y in S, one, and only one of the following is true
2, G DTy DT U TR oW s
X=y, x<Jy, y<X

02 < is transitive.
The pair (S, <) is called ordered set.
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Given a set S an order on Sis a relation < on S such that
O1 Given x and y in S, one, and only one of the following is true

X=y, X<y, y<x

02 < istransitive.
The pair (S, <) is called ordered set.

@ Given X a set with more than 1 element, then P(X) with C is not
an ordered set.

@ The number sets N, Z, Q, R, with the usual < are ordered sets
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Bounded sets

Let (S, <) be an ordered set
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Let (S, <) be an ordered set.

A subset E C S is said to be bounded above (below) if there is an

s € Ssuchthat s > x (s < x) for all x € E. In this case we say that s
is an upper (lower) bound for E.

If E is both bounded above and below we say that it is bounded.
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Bounded sets

Let (S, <) be an ordered set.

A subset E C S is said to be bounded above (below) if there is an

s € Ssuchthat s > x (s < x) for all x € E. In this case we say that s
is an upper (lower) bound for E.

If E is both bounded above and below we say that it is bounded.

Definition
Let E C S bounded above (below) a supremum (infimum) for E is
a € S such that

@ o is an upper (lower) bound for E;

@ every upper (lower) bound for E, v satisfies v > o (v < ).
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Let (S, <) be an ordered set.

A subset E C S is said to be bounded above (below) if there is an

s € Ssuchthat s > x (s < x) for all x € E. In this case we say that s
is an upper (lower) bound for E.

If E is both bounded above and below we say that it is bounded.

Definition
Let E C S bounded above (below) a supremum (infimum) for E is
a € S such that

@ o is an upper (lower) bound for E;
@ every upper (lower) bound for E, ~ satisfies v > a (v < «).

If such « exists it is clearly unique and we denote it by

o = sups(E) (infs(E))
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We say that an ordered set (S, <) has the least upper bound property
(LUP) if every non empty subset E, bounded above has a supremum
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We say that an ordered set (S, <) has the least upper bound property
(LUP) if every non empty subset E, bounded above has a supremum

We say that an ordered set (S, <) has the greatest lower bound
property (GLP) if every non empty subset E, bounded below has a
infimum
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@ Q has not the LUP sirg_’E = {x|x? < 2} is nonempty, bounded
above but has no sup:

@ |s a consequence of the well ordering of the integers that Z has
the LUP. In addition we have that sup(E) € E.
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If (S, <) has the LUP then it has the GLP
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Recall the definition of field 5
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A fieldis a set F equipped with two binary operations, addition (+)
and multiplication (-), satisfying the following properties for all
elements a,b,c € F: wa e A, R C
@ Closure under Addition: a b c F. ’
@ Associativity of Addition: (a+ b) +c=a+ (b+ ¢).
© Existence of an Additive Identity: There exists an element
0 € Fsuchthata+0=aforallac F.
© Existence of Additive Inverses: For each a € F, there exists an
element (—a) € F such that a+ (—a) = 0.
@ Closure under Multiplication: a- b ¢ F.
@ Associativity of Multiplication: (a-b)-c=a- (b-c).
@ Existence of a Multiplicative Identity: There exists an element
1€ Fsuchthata-1=aforallae F, where 1 #0.
© Existence of Multiplicative Inverses: For each a € F such that
a# 0, there exists an element ' € Fsuchthata-a' = 1.
©Q Distributive Property: a- (b+c)=a-b+a-c.
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An ordered field is a field F with and order < such that
OF1 x+y<x+zforall x, y, zin Fwithy < z.
OF2 xy > Oforall x ad y in F with x > 0.
If x > 0 we say that it is positive. If x < O we say it is negative.
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An ordered field is a field F with and order < such that
OF1 x+y<x+zforall x, y, zin Fwith y < z.
OF2 xy > Oforall xad y in F with x > 0.0uwg 47 ©.

If x > 0 we say that it is positive. If x < 0 we say it is negative.

The following are true in an ordered field (F, <). 1ex \ ex
Q ifx>0then—1.-x=—-x<0 ~ T

Q if x >0and y < z, then xy < xz. -

Q if x<0andy < z, then xy > xz. -

Q if x £ 0 then x? > 0. In particular 1 > 0. 4 - (4-4)

Q@ ifo<x<ythen0< <3
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The field of comples numbers is not an ordered field.
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There is a unique ordered field with the LUP R that contains Q as a

sub(ordered)field.  (No YRoox D)
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The Real Numbers

Theorem

There is a unique ordered field with the LUP R that contains Q as a
sub(ordered)field.

The archimedian property

If x and y are real numbers with x > 0, then thereis n€ Z, n > 0,
such that nx > y.

Density of

Given two real numbers x < y then there is a rational number g such
that x < g < y.
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The complex numbers Stockigim

The field of the complex number C consist of pairs of real numbers
(a, b) with the following binary operations
(a,b)+(c,d)=(a+c,b+d)
(a,b)-(c,d) = (ac — bd, ad + bc)

The zero is given by the number (0,0) and the multiplicative identity is
given by (1,0).



The complex numbers Stockigim

The field of the complex number C consist of pairs of real numbers
(a, b) with the following binary operations

(a,b)+(c,d)=(a+c,b+d)
(a,b)-(c,d) = (ac — bd, ad + bc)
The zero is given by the number (0,0) and the multiplicative identity is
given by (1,0). One can check that L (=, O)
(a.b) = (a,0) +(0,1)(b,0),

Thus if we set i = (0, 1) and we identify {(a, 0)|a € R} with the real
numbers R we can write

\ ia,b}:a+ib,) &

Given z = a+ ib a complex number, the real number ais called the
real part of z and it is denoted by R(z), while b = i‘i}j'i's the
imaginary part of z. bRNeT i
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The extended real numbers are represented by the set
R :=RU {+00, —00} NoT a_ Leoed

Addition and Multiplication: The addition and multiplication can be
partially extended to the extended real numbers indieh tho

a-+ (+o0) =+occ foranyaeR
a+ (—o)=-occ foranyaeR

a-(:l:oo):{

a/(+0)=0ifa#0

+oo ifa>0
Foo ifa<O

Undefined Cases:
@ The sum +o0 + (—0c0) is undefined.
@ The product 0 - (+o0), 0 - (—o0), and (4o00) - (—o0) are undefined.
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Cardinality

Given two sets A and B we say that they have the same cardinality if
there is a bijective function f: A — B.

(He Sock Wak Wis w well dofiued s a
CousRuougs ] Ha axrew f deie )
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Given two sets A and B we say that they have the same cardinality if
there is a bijective function f : A — B. This yields an equivalence

relation ~.
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Given two sets A and B we gay that they have the same cardinality if
there is a bijective function f{: A — B. This yields an equivalence
relation ~.Consider the sets'J, := {1,2,...,n} and J = Z*

Definition
Given a set A we say that

@ Ais finite if A~ J, for some n. In this case we have that nis
unique and we set |A| =n. — *lo ssuse 4 § SleoTh.

@ Ais infinite if it is not finite.

@ Ais countable if A~ J

@ Ais uncountable if it is neither finite nor countable
@ Ais at most countable if it not uncountable.
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A sequence on a set A (or with values in A) is a function
f:d=A
TJ=A

Usually, the n-th term of the sequence f(n) is denoted by a, or xp.

P
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A sequence on a set A (or with values in A) is a function
f:d—A

Usually, the n-th term of the sequence f(n) is denoted by a, or xp.

If Ais a countable set then there is a bijective correspondence
f:J — Asowe can write

A= {f(n)|ne J}

In particular countable sets can be rearranged in sequences.
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A countable union of countable sets is countable

Corollary

An at most countable union of at most countable sets is at most
countable.
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Products of countable sets

Recall that given a set A, the set

A" .= {(ay,...,an)|a € A}

Proposition
If Ais countable then A” is countable

Corollary
If Q is countable.
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Theorem

Let A be the set of sequences with values in {0, 1}. Then, A is not
countable.

As a consequence we have that the set of real numbers is not
countable.
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Thank you for your attention!



