

Introduction to Real Analysis

Lecture 3: Compact and Connected sets

Sofia Tirabassi tirabassi@math.su.se

Lecture Plan

- Compact spaces (Rudin 2.31-2.42)
- Connected sets (Rudin 2.45-2.47)

Section 1 Compact sets continued

Given $E \subseteq X$, an open cover of E is a collection $\{U_{\alpha}\}_{\alpha \in A}$ of open sets of X such that

$E \subseteq \bigcup U_{\alpha}$

Open covering

Definition: Compact set

Given $K \subseteq X$, we say that it is compact if, for every open covering $\{U_{\alpha}\}_{\alpha \in A}$ there are finitely many $\alpha_1, \ldots, \alpha_n$ such that

$$E\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

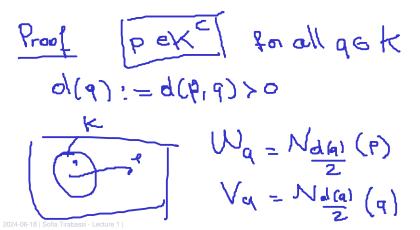
$$E \subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

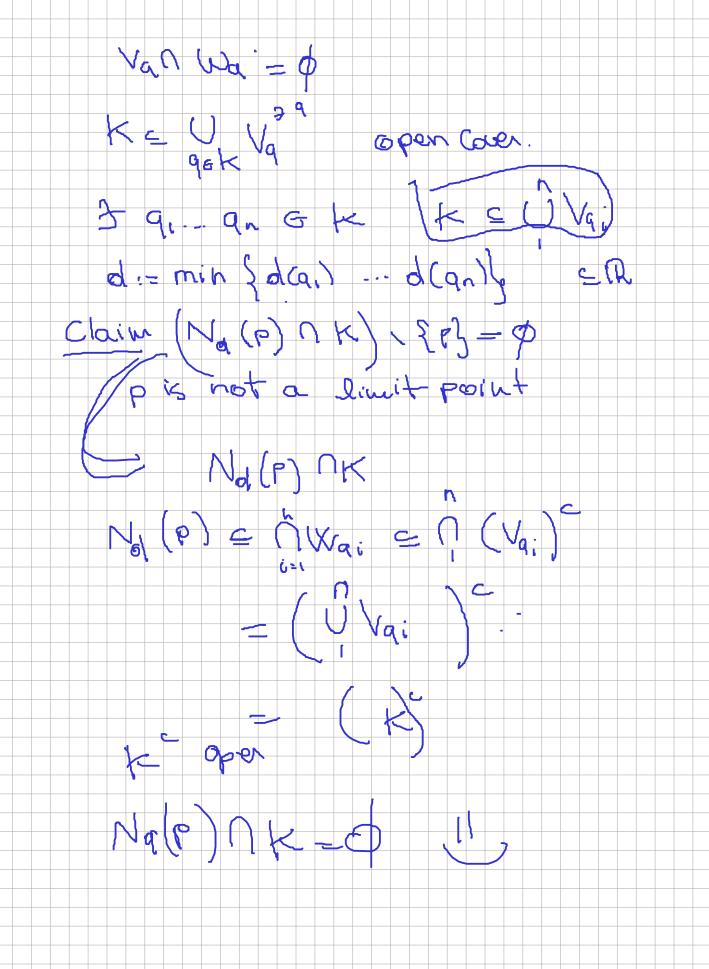
Compact and closed

Ċ

Theorem

Compact sets are closed.





Compact and closed 2

Theorem

Let *K* be a compact set and $C \subseteq K$ a closed set (relatively to *X*). Then *C* is compact.

Corollary

If *C* is closed and *K* is compact then $C \cap K$ is compact.

Intersection of compact

Theorem

Let $\{K_{\alpha}\}$ a collection of compact sets such as any finite intersection is non-empty. Then,

 $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$

Corollary

If $\{K_n\}$ is a sequence of compact sets such that $K_n \supset K_{n+1}$ then we have that

$$\bigcap_n K_n \neq \emptyset$$

Limits in compact sets

Theorem

Any infinite subset of a compact set K has a limit point in K.

Compact subsets of \mathbb{R}^n

Let (X, d) be \mathbb{R}^k with the Euclidean distance. We want to prove the following theorem

Theorem: Heine–Borel

For $E \subseteq \mathbb{R}^k$ the following are equivalent

- E is closed and bounded
- E is compact
- every infinte subset of *E* has a limit point in *E*.

k-cells

A (closed) *k*-cell *I* is a subset of \mathbb{R}^k which is a product of (closed) intervals. That is there are (a_1, \ldots, a_k) and (b_1, \ldots, b_k) , with $b_i \ge a_i$ such that

$$I = \{(x_1, \ldots, x_k) \in \mathbb{R} \mid a_i \leq x_i \leq b_i\}$$

If we set

$$\delta(I) := \left(\sum_{i=1}^k (b_i - a_i)^2\right)^{\frac{1}{2}}$$

we have that

 $d(x,y) < \delta(I)$

for all x and y in I.

Proposition

We have that $E \subseteq \mathbb{R}$ is bounded if, and only if, it is contained in a *k*-cell.

Lemma

The intersection of a sequence of nested interval in $\ensuremath{\mathbb{R}}$ is not empty.

Lemma

The intersection of a sequence of nested k-cells in \mathbb{R}^k is not empty.

The main technical step

Theorem

Every *k*-cell is a compact subset of \mathbb{R}^k .

Weierstrass Theorem

Theorem

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Section 2 Connected sets

Definiton (usual connected set)

A subset E of X is said to be connected if it cannot be written as union as a union of two disjoint, nonempty sets open with respect to the restricted metric

Definiton (usual connected set)

A subset E of X is said to be connected if it cannot be written as union as a union of two disjoint, nonempty sets open with respect to the restricted metric

In other words, if there are two open sets U_1 and U_2 in X such that

- $E \subseteq U_1 \cup U_2$
- $E \cap U_1 \cap U_2 = \emptyset$

Then $E \cap U_1 = \emptyset$ or $E \cap U_2 = \emptyset$

Connected sets - A la Rudin

Two subsets A and B of a metric space X are said to be separated if

 $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$

Connected sets - A la Rudin

Two subsets A and B of a metric space X are said to be separated if

 $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$

Definiton

A subset E of X is said to be connected if it cannot be written as union of two nonempty separtaed subsets.

Connected sets - A la Rudin

Two subsets A and B of a metric space X are said to be separated if

 $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$

Definiton

A subset E of X is said to be connected if it cannot be written as union of two nonempty separtaed subsets.

The two definitions are equivalent. This is a nice exercise to do :).

Connected subset of the real line

A subset $E \subseteq \mathbb{R}$ is connected if, and only if, for all x < y in E we have that $[x, y] \subseteq E$

Thank you for your attention!

