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A metric space is a pair (X, d), where X is a set, whose element we
will call points, and d : X x X — R is a function, called distance,
satisfying the following properties for all x, y,z € X:

@ Non-negativity: d(x, y) > 0.

@ Identity of indiscernibles: d(x, y) = 0if and only if x = y.
© Symmetry: d(x,y) = d(y, x).

@ Triangle inequality: d(x,z) < d(x,y) + d(y, 2).
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@ The Euclidean distance

1
n 2
d(x,y) = (Z(Xj - yj)z)
=Y
gives a distance in R".
@ The sup distance

d(x,y) = max; {|x; — yjl}

gives a distance in R".

@ If (X, d) is a metric space and Y C X, then restrictingdto Y x Y
yields a distance on Y.
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Vocabulary

Let (X, d) be a metric space.
@ Given p € X and r € R™, the neighbourhood of p with radius r is

Ni(p) = {x € X|d(x,p) < r}

Observe that if Y C X and p in Y, the neighbourhood of radius r of p
in Yis
N:(p) Y
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Let (X, d) be a metric space.
@ Given p € X and r € R™, the neighbourhood of p with radius r is

Nr(p) = {x € X|d(x,p) < r}

Observe that if Y C X and p in Y, the neighbourhood of radius r of p
in Yis
N:(p)nY

@ Given E C X, p € X is a limit point for E if, for every r > 0 we

have that “w
(Ni(p) ( ENip} 20, ©XC

We denote by E’ the set of limits points of E.

@ A point p € E which is not a limit point is called an isolated point
of E.
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Let (X, d) be a metric space.
@ E C X is closed if contains all its limit points.

@ Given E C X, p € X is ainterior point for E if, there is an r > 0
such that N;(p) € E We denote by E the set of limits points of E.

@ Eisopenif E=E.

@ E is perfect if ti is closed and every point of E is a limit point of E.
@ E C Xis bounded if E C N,(p) forsome p € X and r > 0.

@ E isdensein X if every point of X is a limit point of E.
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Open neighbourhood B

Theorem
Every neighbourhood is open.
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Many points close to a limit point St

Theorem

If p € E is a limit point, then for every neighbourhood N of p we have
that NN E is infinite.

Corollary
Finite sets do not have limit points.
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% Aset Eis open if, and only if, its complementary E€ is closed.

Corollary

A set E is closed if, and only if, E{ is open.
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tg Unions of open sets are open

@ Intersections of closed sets are closed
@ Finite intersection of open sets are open
© Finite union of closed sets are closed.
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@ Unions of open sets are open

@ |Intersections of closed sets are closed
© Einite intersection of open sets are open
© Finite union of closed sets are closed.

The intersection of open intervals of the form (—E, E) is {0} which is
not open.

ol 5r\c"/m'/m] Gy ) ‘
xyo,. 3 N L% e (:"/H!/r\\

\
oo w W Y LE ™



o

4, ’? &
Closure Stockholm
University

Given E C X, its closure is

E=EUF

Theorem

@ Eis closed
@ Eisclosed if, and only if, E = E.

Q If Cisclosed and C D E, then C D E. That s E is the smallest
closed set containing E.
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Let E be a non-empty subset of R, bounded above. Then sup(E) € E.
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Relatively opens sets Sk

If Y C X and E C Y we could have that E is open in Y (relatively to
Y) but not in X
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If Y C X and E C Y we could have that E is open in Y (relatively to
Y) but not in X

Theorem
A set E C Y is open relatively to Y if, and only if, there is an open set
of X, Uwith E=YnU.
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Section 2
Compact sets and
relatively compact sets
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Given E C X, an open covering of E is a collection {U, }.ca of open
sets of X such that
EcUla
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Given K C X, we say that it is compact if, for every open covering
{U., }aca there are finitely many a4, ..., a, such that
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If K C YT X we have that K is compact realtively to Y if, and only if,
it is compact in X.
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Thank you for your attention!
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