

Introduction to Real Analysis Lecture 2: Metric spaces

Sofia Tirabassi tirabassi@math.su.se

Lecture Plan

- Metric spaces (Rudin 2.15-2.30)
- Compact sets I (Rudin 1.31-1.33)

Section 1 Metric spaces

Definition

A metric space is a pair (X, d), where X is a set, whose element we will call points, and $d: X \times X \to \mathbb{R}$ is a function, called distance, satisfying the following properties for all $x, y, z \in X$:

- **Non-negativity:** $d(x, y) \ge 0$.
- **2** Identity of indiscernibles: d(x, y) = 0 if and only if x = y.
- **3** Symmetry: d(x, y) = d(y, x).
- **Triangle inequality:** $d(x, z) \le d(x, y) + d(y, z)$.

Examples

• The Euclidean distance

$$d(\mathbf{x},\mathbf{y}) = \left(\sum_{j=\frac{1}{2}}^{n} (x_j - y_j)^2\right)^{\frac{1}{2}}$$

gives a distance in \mathbb{R}^n .

The sup distance

$$d(\mathbf{x},\mathbf{y}) = \max_{j} \{|x_j - y_j|\}$$

gives a distance in \mathbb{R}^n .

If (X, d) is a metric space and Y ⊆ X, then restricting d to Y × Y yields a distance on Y.
 Extrcise: Show thet a y y
 Grives you a distance

Let (X, d) be a metric space.

• Given $p \in X$ and $r \in \mathbb{R}^+$, the neighbourhood of p with radius r is

 $N_r(p) = \{x \in X | d(x,p) < r\}$

Remark

Observe that if $Y \subseteq X$ and p in Y, the neighbourhood of radius r of p in Y is

 $N_r(p) \cap Y$

Vocabulary

Let (X, d) be a metric space.

• Given $p \in X$ and $r \in \mathbb{R}^+$, the neighbourhood of p with radius r is

 $N_r(p) = \{x \in X | d(x,p) < r\}$

Remark

Observe that if $Y \subseteq X$ and p in Y, the neighbourhood of radius r of p in Y is

 $N_r(p) \cap Y$

• Given $E \subseteq X$, $p \in X$ is a limit point for E if, for every r > 0 we have that

$$(N_r(\rho) \cap E) \setminus \{\rho\} \neq \emptyset,$$

We denote by E' the set of limits points of E.

 A point p ∈ E which is not a limit point is called an isolated point of E.

(O,1) NOT CLOSED Vocabulary II

Let (X, d) be a metric space.

- *E* ⊂ *X* is closed if contains all its limit points.
- Given $E \subseteq X$, $p \in X$ is a interior point for E if, there is an r > 0such that $N_r(p) \subseteq E$ We denote by \mathring{E} the set of limits points of *E*.
- *E* is open if $E = \mathring{E}$.
- E is perfect if ti is closed and every point of E is a limit point of E.
- *E* ⊆ *X* is bounded if *E* ⊆ *N_r(p)* for some *p* ∈ *X* and *r* > 0. *E* is dense in *X* if every point of *X* is a limit point of *E*.

Open neighbourhood

Theorem

Every neighbourhood is open.

Trool rold r-ol(9,p) PtX C > QqENr(9) モン $N_r(p)$ NF (q) ENr (p)

Many points close to a limit point

nelt

Nry (P) NE = 0

Theorem

If $p \in E$ is a limit point, then for every neighbourhood *N* of *p* we have that $N \cap E$ is infinite.

Corollary

Finite sets do not have limit points.

 $N = N_r(r)$

Mr (P)nE

Theorem

A set E is open if, and only if, its complementary E^c is closed.

Corollary A set E is closed if, and only if, E^{g} is open. E^{e} open $N_{f}(p) \subseteq E$ for all $p \in E$ curl somer ≥ 0

Theorem Unions of open sets are open 0 Intersections of closed sets are closed Finite intersection of open sets are open Finite union of closed sets are closed. Proof

Theorem

- Unions of open sets are open
- Intersections of closed sets are closed
- Einite intersection of open sets are open
- Finite union of closed sets are closed.

Example

The intersection of open intervals of the form $\left(-\frac{1}{n}, \frac{1}{n}\right)$ is $\{0\}$ which is not open.

HCX

(-r, r)

xel (-'mi ki)

Closure

Given $E \subset X$, its closure is

$\overline{E} = E \cup E'$

Theorem

- E is closed
 is
 is
- 2 *E* is closed if, and only if, $E = \overline{E}$.
- If C is closed and $C \supseteq E$, then $C \supseteq \overline{E}$. That is \overline{E} is the smallest closed set containing E.

Limit and sup

$$\mathbb{R} = \chi$$
 $\mathscr{A}(\chi_{1}\chi_{1}) = |\chi - \chi_{1}|$ $\mathbb{E} \stackrel{\text{Stockholm}}{\mathbb{E}} \stackrel{\text{Stockhom}}{\mathbb{E}} \stackrel$

Relatively opens sets

If $Y \subseteq X$ and $E \subseteq Y$ we could have that E is open in Y (relatively to Y) but not in X

Relatively opens sets

If $Y \subseteq X$ and $E \subseteq Y$ we could have that E is open in Y (relatively to Y) but not in X

Theorem

A set $E \subseteq Y$ is open relatively to Y if, and only if, there is an open set of X, U with $E = Y \cap U$.

 $N_r^{Y}(p) = N_i^{X}(p) \cap Y = U \cap Y \in E$

Section 2 Compact sets and relatively compact sets

Given $E \subseteq X$, an open covering of E is a collection $\{U_{\alpha}\}_{\alpha \in A}$ of open sets of X such that

$$E\subseteq \bigcup_{\alpha}U_{\alpha}$$

Given $K \subseteq X$, we say that it is compact if, for every open covering $\{U_{\alpha}\}_{\alpha \in A}$ there are finitely many $\alpha_1, \ldots, \alpha_n$ such that

$$E\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

Relatively compact sets

Thank you for your attention!

