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Abstract

The textbook for the course MM5023- Mathematics III Combinatorics, given at the
department of Mathematics of Stockholm University has been for more than a decade
Grimaldi’s Discrete and Combinatorial Mathematics an Applied Introduction. The
textbook is rich of examples and provide a good collection of exercises, many of which are
the same level of the exam. However, it lacks the structure Definition-Statement-Proof
typical of mathematics literature. However no other textbook is as wide in scope as
Grimaldi’s, no book presents so many worked out examples, and the exercises proposed
in other textbooks are, in my opinion, lacking. The theoretical ones are too theoretical
and difficult, the computational ones are too easy. With theselecture notes I aim at
integrating Grimaldi’s book with some theoretical foundations, and give more structure
to the material covered in the lectures.
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Notation

We will denote the standard number sets by the usual letter in blackboard bold:

N, Z Q, R.

We follow the convention that 0 is a natural number. We are also going to use the
standard decorations. For example

R+ := {x ∈ R |x > 0}

R− := {x ∈ R |x < 0}

R∗ := {x ∈ R |x ̸= 0}

R≥0 := {x ∈ R |x ≥ 0}

The symbol := appearing above means equal by definition.

Given a set X we have that P(X) denotes the power set of X, that is the family
of all the subsets of X.

Quantifiers and other logic symbols

Sometimes we are going to use the following notation from logic

• ∀ means "for all";

• ∃ means "exist";

• ̸ ∃ means "it does not exist;

• ⇒ means "implies";

• ⇔ means "equivalence"

xi





LECTURE 1

Review

Lecture Plan
1.1 Review of (naive) set theory . . . . . . . . . . . . . . . . . . . . . 1
1.2 Review of functions . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Functions and Relations (that is functions done right) . . . . . . 5
1.4 Counting with functions . . . . . . . . . . . . . . . . . . . . . . . 6

Formal rule of sum . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Formal rule of product . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Review of Counting Vocabulary . . . . . . . . . . . . . . . . . . . 9

1.1 Review of (naive) set theory

A set is a well defined collection of objects, which we call elements. To say that an
object x belongs to a set A we write

x ∈ A.

If otherwise x is not an element of A then we write x /∈ A.

Example 1.1.1. There are many ways to describe a given set. We can (especially if the
set is finite) list its element, describe them with words or via a mathematical law.

A = {1, 2, 3} = {Integers between 1 and 3 included} = {x ∈ Z | 0 < x < 4}

We denote the empty set, the only set with no elements, by ∅.

Given two sets A and B, we say that A is equal to B if and only if they have the
same elements. We say that A is a subset of B, and we write A ⊆ B if every element
of A is also an element of B. We say that A is a proper subset of B - and we write
A ⊊ B or A ⊂ B - if A ⊆ B and there is an element b ∈ B such that b /∈ A.

Example 1.1.2. Observe that the empty set is a subset of every set. In fact, suppose
that this is not the case and there is a set A such that∅ ̸⊆ A. This means that there is
an element of the empty set that is not in A, contradicting the definition of the empty
set as the set with no elements.

Proposition 1.1.3. We have that A = B if and only if A ⊆ B and B ⊆ A.

Proof. Omitted. ■

1



1. Review

A B

Figure 1.1: Complementary of A

A B

Figure 1.2: Excision

Example 1.1.4. Attention about sets that are elements of a set! If we have the following
set

A := {{1, 2}, 3, 4, 5, {6}}

We have that {1, 2} ∈ A and 6 /∈ A. In the same way, {6} ̸⊂ A, but {6} ∈ A and
{{6}} ⊆ A

In order to leave barbers (and associated paradoxes) shaving themselves without
any trouble, we will assume that all the sets that we encounter will be subsets of a
given subset S, which will be our universe. Given a set S and A a subset of S, the
complementary of A is

Ac := {x ∈ S | x /∈ A}

Example 1.1.5.

• If A = S then Ac = ∅.

• If A = ∅, then Ac = S

• If S = R and A = (0, 1] then Ac = (−∞, 0] ∪ [1,∞).

Given two sets A and B we have that the excision of A by B is

A\B := {x ∈ A | x /∈ B}

Let S be a set (it will be our Universe). Given a (possible infinite) set of indeces I, for
every i ∈ I we consider a subset Ai of S. Then we define⋃

i∈I

Ai := {x ∈ S | ∃ i ∈ I such that x ∈ Ai}

2



1.1. Review of (naive) set theory

A B

(a) Intersection

A B

(b) Union

Figure 1.3: Intersection and Union

⋂
i∈I

Ai := {x ∈ S | ∀ i ∈ I x ∈ Ai}

Example 1.1.6. Let S = R and I = N (during this class we will work under the
convention that 0 is not a natural number).

•
⋃

n∈N[−n, n] = R

•
⋂

n∈N[−n, n] = [−1, 1]

•
⋃

n∈N
[
0, 1

n

]
= [0, 1]

•
⋂

n∈N
[
0, 1

n

]
= {0}

Theorem 1.1.7 (De-Morgan). Given a set of indeces I, a set S and a collection of subsets
of S indexed by I, {Ai}i∈I , then the following statements are true.

1.
(⋃

i∈I Ai

)c =
⋂

i∈I Ac
i

2.
(⋂

i∈I Ai

)c =
⋃

i∈I Ac
i

Proof. We are just going to prove the first assertion and we leave the second as an
exercise.

Let x ∈
(⋃

i∈I Ai

)c, this means by definition that (is equivalent to) x /∈
⋃

i∈I Ai.
So it is not true that there is an i ∈ I such that x ∈ Ai. Equivalently for every i ∈ I,
x /∈ Ai. But by definition of intersection we have that this is in turn equivalent to
x ∈

⋂
i∈I Ac

i . ■

Theorem 1.1.8 (Distributivity). Given a set of indeces I, a set S and a collection of
subsets of S, {Ai}i∈I , and another subset of S, B, then the following statements are
true.

1. B ∩
(⋃

i∈I Ai

)
=
⋃

i∈I(Ai ∩B)

2. B ∪
(⋂

i∈I Ai

)
=
⋂

i∈I(Ai ∪B)

Proof. We show the first statement and leave the second as an exercise.

3



1. Review

Suppose first that x ∈ B ∩
(⋃

i∈I Ai

)
. By definition this is equivalent to x ∈ B and

x ∈
⋃

i∈I Ai). Again, this is equivalent to x being an element of B and to the fact that
there is some î ∈ I such that x ∈ Aî ∩B. In particular we deduce that x ∈

⋃
i∈I(Ai ∩B)

and that B ∩
(⋃

i∈I Ai

)
⊂
⋃

i∈I(Ai ∩B)
Suppose conversely that x ∈

⋃
i∈I(Ai ∩B), then there is an î ∈ I such that x ∈ Aî ∩B.

Therefore x ∈ B and x ∈ Aî. In particular x ∈ B and x ∈
⋃

i∈I Ai. We deduce that
x ∈ B ∩

(⋃
i∈I Ai

)
, and therefore B ∩

(⋃
i∈I Ai

)
⊃
⋃

i∈I(Ai ∩B). Then equality of the
two sets is proven. ■

Definition 1.1.9 (Disjoint Union). We say that a set C is the disjoint union of two sets
A and B - and we write C = A ⊔B - if C = A ∪B and A ∩B = ∅.

Example 1.1.10. The set of integers Z is the disjoint union of the set of even integers
and the set of odd integers.

1.2 Review of functions

Given two sets A and B, a function f : A→ B is an assignment that to each element a

of A associate a unique element b of B. We write b = f(a), or a 7→ b. The set A is called
the domain of f , while B is called the codomain of f . Two functions f : A→ B and
g : A1 → B1 are equal if and only if they have same domain (A = A1), same codomain
(B = B1) and for every a ∈ A f(a) = g(a) (same law).

Example 1.2.1.

• The assignation from R→ R+ that send x to x2 is not a function, since there is no
f(0).

• Let A = {1, 2, 3} and B = {{1, 2}, {2, 3}}, the assignation f : A → B such that
f(a) = b if and only if a ∈ b is not a function, since there is not just a unique
output for 2.

• f : R→ R defined by x 7→ x2 (f(x) = x2) is not equal to g : R→ R≥0 defined by
g(x) = x2, since they do not have the same codomain.

Given a function f : A→ B, the range or image of f is

f(A) := {b ∈ B | ∃ a ∈ A such that b = f(a)} ⊂ B.

More generally, if A1 is a subset of A, the image of A1 under f is

f(A1) := {b ∈ B | ∃ a ∈ A1 such that b = f(a)} ⊂ B.

If B1 is a subset of B the preimage of B1 under f is

f−1(B1) = {a ∈ A | f(a) ∈ B1} ⊂ A.

If B = {b} is a singlet (a set with just one element) then we write f−1({b}) as simply
f−1(b). Attention: this is not to be mixed with the image of b through the inverse
function of f (see later).

Example 1.2.2. Let f : R→ R given by f(x) = x2, then f([−2, 1]) = [0, 2], f−1(−1) = ∅,
f−1(4) = {2,−2}.

4



1.3. Functions and Relations (that is functions done right)

A
B

A1

f(A)

f(A1)

a1
b

a2

Figure 1.4: Graphical visualization of a function

We say that a function f : A→ B is injective (one-to-one) if f(x) = f(y) implies
that x = y. Observe that this is equivalent to the fact that for every b ∈ B, f−1(b) has at
most one element. We say that it is surjective (onto) if f(A) = B (this is equivalent to
f−1(b) being nonempty for every b ∈ B.). A function that is both injective and surjective
is said to be bijective (a one-to-one correspondence). In this case we can define the
inverse of f as the function f−1 : B → A such that f−1(b) = a if and only if f(a) = b.
Observe that this is indeed a function. In fact, since f is surjective, every b in B can be
written as b = f(a) and so every b admit an assignation through f−1 in addition this
assignation is unique since the injectivity of f grants that there is just one a ∈ A such
that f(a) = b.

Example 1.2.3.

• Let A be a set, idA : A → A is the function defined by a 7→ a. It is called the
identity function of A. It is both injective and surjective.

• Let B be a set and A ⊂ B. We can define a function iA : A→ B by the assignation
a 7→ a. This is the canonical immersion of A into B. It is injective but not
surjective unless A = B (in that case iA = idA).

If f : A → B is a function and g : B → C is another function then we can define
the composition of f and g as the function g ◦ f : A→ B which to each a ∈ A assigns
the element g(f(a)) in C, that is g ◦ f(a) = g(f(a)).

1.3 Functions and Relations (that is functions done right)

The Cartesian product of two sets A and B is

A×B := {(a, b) | a ∈ A and b ∈ B}

Definition 1.3.1 (Relation). A relation R from a set A to a set B is a subset of A×B.
If (x, y) ∈ R we write xRy and we say that x is in relation with y.

5



1. Review

f
A

a

B

f(a)

g
C

g
(
f(a)

)

Figure 1.5: Composition of functions

When A = B we say that a relation R is reflexive if xRx for every x ∈ A. The
relation is symmetric if yRx whenever xRy. It is transitive if xRz whenever xRy

and yRz.

Using relations we can give a more formal definition of function:

Definition 1.3.2 (Formal definition of function). A function f : A → B is a relation
Γ ⊆ A×B such that

For every x ∈ A there is a unique y ∈ B, denoted by f(x) such that xΓy.

Remark 1.3.3. We are basically identifying a function with its graph: let f : A→ B as
in the Section 1.2. The graph of f is

Γf := {(x, y) ∈ A×B | y = f(x)} ⊆ A×B.

Then Γf is a relation from A to B satisfying the condition of Definition 1.3.2

1.4 Counting with functions

Let n be a positive integer, we introduce the following set:

n := {1, 2, . . . , n}.

The main idea behind counting with functions is that we want to say that a set has n

elements if and only if there is a bijection between it and n. For this to be well defined
we have to ensure that there are no bijections between n and m, when n ̸= m. This is
ensured by the pigeonholes principle:

Principle 1.4.1. (Pigeonholes principle) There is an injective function f : n→ m if, and
only if m ≥ n.

Remark 1.4.2. We call this a principle, because its analogue for sets of infinite
cardinality/size cannot be proven, but has to be taken as an axiom.
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1.4. Counting with functions

Proof. This is a consequence of the well ordering of the Natural numbers. That is
that every nonempty subset of the Natural numbers has a minimum. Suppose, by
contradiction that the principle fails. Then the following set is non-empty:

S := {m ∈ N | ∃ n ∈ N, n > m and f : n→ m injective}.

Denote by d the minimum of S and take an n > d and an injective map f : n → d.
Up to permuting the elements of d we can assume that n 7→ d. Then we can consider
g : n− 1 → d− 1, obtained by restricting f to n− 1. Clearly, g is injective, and
m− 1 > d− 1, contradicting the minimality of d. ■

Exercise 1.4.3 (Challenging Exercise). There is a team chess tournament. There are 5
teams of two players each. The rules are

• No one can play a game with their partner;

• No one can play a game with the same adversary twice.

At the end of the tournament Aragorn asks to everyone how many games have they
played, and he gets different answers. How many games has Bilbo (Aragorn’s teammate)
played?

Now we can define the following.

Definition 1.4.4 (Finite set). We say that a set is finite if there is a positive integer
n and a bijective function f : A → n. If this is the case then we say that A has size
(cardinality) n, and we write |A| = n.

Remark 1.4.5. Is this is a correct definition? Can it happen that A admits bijections to
n and m for distinct n andm? The answers to these questions are YES and NO, thanks
to the pigeonholes principle. In fact suppose that m > n. Let f : A→ n and g :: A→ m

be bijections. Then g−1 ◦ f : m→ n would be a bijection. In particular we would have
an injective map m→ n contradicting the Pigeonhole principle.

Remark 1.4.6. The usual Pigeonholes principle is stated as follows

If there are n + 1 pigeons and n nests then there is at least a nest with two
pigeons.

This is a direct consequence of the Principle stated above. Let N be the set of nests and
P be the set of pigeons. Now let f : P → N be the function that assign to each pigeon
its nest. By Principle 1.4.1 f cannot be injective. In particular there is a nest y such
that f−1(y) has size at least 2.

Formal rule of sum

Proposition 1.4.7.

|A ⊔B| = |A|+ |B|
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1. Review

Proof. Let |A| = n and |B| = m, so that there are bijective functions fA : A→ n and
fB : B → m. Let us define a function f : A ⊔B → m + n via the assignation

f(x) =
{

fA(x) if x ∈ A

n + fB(x) if x ∈ B

This is a well defined function because A ∩B = ∅. This is surjective because both fA

and fB are, and it is injective because both fA and fB are so. ■

The rule of sum as stated in the book says

If a task can be performed in n ways and a second task can be performed in m

ways, then, provided that the two tasks cannot be performed simultaneously
we have that we have n + m choices of actions to perform.

One can translate this in the formal rule of sum by setting

A := {ways to perform task 1}

B := {ways to perform task 2}

then we have that

A ⊔B := {ways to perform task 1 OR task 2}

Thus we see that we can apply the rule of sums whenever we are faced with mutually
exclusive options. As an application of the rule of sum we can prove the generalized
pigeoholes principle.

Proposition 1.4.8 (Generalized pigeonholes principle). If m ≥ kn then for every function
f : m→ m, there is a point h such that |f−1(h)| ≥ k + 1.

Proof. Suppose that |f−1(h)| ≤ k for every h ∈ n. Since f is a function we can write

m = ⊔n
h=1f−1(h).

By the formal rule of sum we get

m =
n∑

h=1
|f−1(h)| ≤ kn.

■

Remark 1.4.9. Observe that this uses the concept of size, so implicitly assumes the
Pigeonholes principle.

Formal rule of product

Proposition 1.4.10. Let A and B be two finite sets, then

|A×B| = |A| · |B|

8



1.5. Review of Counting Vocabulary

Proof. Without loss of generality we can assume that A = n and B = m. We reason by
induction on n. If n = 1 then the assignation (1, x) 7→ x yields a bijection n→ m, and
the statement is proven. Suppose now that the statement is true for some n = k ≥ 1, we
want to prove it for n = k + 1. We observe that we can write k + 1×m as the disjoint
union of two sets:

C1 := {(a, b) | a ≤ k}
C2 := {(k + 1, b) | a ≤ k}

By the rule of sums we have that

|A×B| = |C1|+ |C2|.

Now we observe that C1 has the same size as k × m which we know to be (by the
inductive hypothesis) km. At the same time we have that C2 has the same size as m.
Thus we have that

|A×B| = km + m = (k + 1)m.

■

The rule of product as stated in the book says

If a task can be performed in n ways and a second task can be performed in
m ways, then, provided that the two are performed simultaneously, we can
performs the two tasks in nm ways

One can translate this in the formal rule of product by setting

A := {ways to perform task 1}

B := {ways to perform task 2}
then we have that

A×B := {ways to perform task 1 AND task 2}
Thus we see that we can apply the rule of product whenever we are faced with simultaneous
choices.

1.5 Review of Counting Vocabulary

In this final section we review some basic vocabulary and facts about counting.

A permutation of size r of n objects is an injective map r → n. The number of
permutations of size r of n objects is denoted by P (n, r) and we have that

P (n, r) =
{

n!
(n−r)! if r ≤ n

0 otherwise.

A combination of size r of n objects is a subset of n of size r. The number of
permutations of size r of n objects is denoted by C(n, r) and we have that

C(n, r) = P (n, r)
r! =

{
n!

r!(n−r)! if r ≤ n

0 otherwise
=:
(

n

r

)
.

9



1. Review

Theorem 1.5.1. (Binomial Theorem)

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Proposition 1.5.2. There are
(

n+r−1
r

)
ways to chose r objects out of n types allowing

repetitions.

Given a non-negative integer n and non-negative integers r1, . . . rk such that
r1 + · · ·+ rk = n we define multinomial coefficient(

n

r1 . . . rk

)
:= n!

r1! · · · rk! .

] It computes the number of ways we can arrange n objects of k different types such that
there are exactly ri objects of type i.
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LECTURE 2

Inclusion Exclusion

Lecture Plan
2.1 The principle of Inclusion Exclusion . . . . . . . . . . . . . . . . 11

Connection with notation used by the textbook . . . . . . . . . . 12
2.2 Generalized principle of inclusion exclusion . . . . . . . . . . . . 13
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Applications to Arithmetics . . . . . . . . . . . . . . . . . . . . . 14
Derangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 The principle of Inclusion Exclusion

Theorem 2.1.1 (Inclusion/Exclusion). Let S be a finite set and let A1,...An be subsets
of S. Then ∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

j=1
(−1)j+1αj ,

where

αj :=
∑
I⊆n
|I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Before proceeding with the proof we have to introduce some tools. Given an universe

set S and a set A the characteristic function (or indicator function) of A is the
function 1A : S → R defined by

s 7→

{
1 if s ∈ A;
0 if s /∈ A.

It is straightforward to see that

|A| =
∑
s∈S

1A(s). (2.1)

Proof of Theorem 2.1.1. Let us consider the function f : S → R defined by

s 7→
n∑

j=1
(−1)j+1

∑
I⊆n
|I|=j

1⋂
i∈I

Ai
(s).
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2. Inclusion Exclusion

Then, using (2.1), we have that

∑
s∈S

f(s) =
∑
s∈S

n∑
j=1

(−1)j+1
∑
I⊆n
|I|=j

1⋂
i∈I

Ai
(s)

=
n∑

j=1
(−1)j+1

∑
I⊆n
|I|=j

∑
s∈S

1⋂
i∈I

Ai
(s)

=
n∑

j=1
(−1)j+1

∑
I⊆n
|I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =
n∑

j=1
(−1)j+1αj

Thus, to prove the statement we need only to show that f = 1⋃n

i=1
Ai

. To this aim, let
A :=

⋃n
i=1 Ai and s ∈ S, if s does not belong to A, then we have that s is not an element

in any of the intersections Ai1 ∩ · · · ∩Aij
and thus f(s) = 0. Now we have just to show

that f(s) = 1 when s ∈ A. Thus, let s ∈ A and denote by r = r(s) ≤ n the number of
the set Ai to which s belongs. Observe that s cannot belong to any intersection of the
form Ai1 ∩ · · · ∩Aij with j > r. On the other side, when j ≤ r, s belongs to exactly

(
r
k

)
intersections of the form Ai1 ∩ · · · ∩Aij . Using this, we can write

f(s) =
n∑

j=1
(−1)j+1

∑
I⊆n
|I|=j

1⋂
i∈I

Ai
(s)

=
r∑

j=1
(−1)j+1

∑
I⊆n
|I|=j

1⋂
i∈I

Ai
(s)

=
r∑

j=1
(−1)j+1

(
r

j

)

= (−1)

 r∑
j=0

(−1)j

(
r

j

)
− (−1)0

(
r

0

)
(−1) ((1 + (−1))r − 1) = 1, (2.2)

where (2.2) is a consequence of the Binomial Theorem (see 1.5.1).
Thus the proof is concluded. ■

If we set α0 = |S|, then we have an immediate corollary:

Corollary 2.1.2. In the same assumption and notation of Theorem 2.1.1, we have∣∣∣∣∣
n⋂

i=1
Ac

i

∣∣∣∣∣ =
n∑

j=0
(−1)jαj .

Connection with notation used by the textbook

Let c be a condition on a set S, for example "s ≥ 2", by c we denote the negation of c

( if we keep the above example c is "s < 2". For conditions c1, . . . cn, we introduce the

12



2.2. Generalized principle of inclusion exclusion

following notation

N(c1, . . . , cn) := |{s ∈ S | s satisfies all the conditions c1, . . . cn}| .

By definition we also set N(∅) = |S| The principle of inclusion/exclsion as stated in the
textbook is

N(c1, . . . , cn) =
n∑

j=0
(−1)j

∑
I⊆n
|I|=j

N(ci|i ∈ I).

Observe that this is a simple rewriting of Corollary 2.1.2. In fact, if we set

Ai := {s ∈ S | s satisfies ci},

we will have that N(c1, . . . , cn) is precisely |
⋂n

i=1 Ac
i | and N(∅) = α0, and, for j > 0,

∑
I⊆n
|I|=j

N(ci|i ∈ I) =
∑
I⊆n
|I|=j

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = αj .

2.2 Generalized principle of inclusion exclusion

In the notation above, we want to determine the sizes of the following subsets of S:

Ek := {s ∈ S | s satisfies exactly k of the conditions ci}.

We have the following

Theorem 2.2.1. In the notation above we have that

|Ek| =
n∑

j=k

(−1)j−k

(
j

j − k

)
αj ,

where, as before,
αj =

∑
I⊆n
|I|=j

N(ci|i ∈ I)

Proof. This is Theorem 8.1 in the textbook. We refer to that. ■

Observe that, if k = 0 we find again Corollary 2.1.2. Let now

Lk := {s ∈ S | s satisfies at least k of the conditions ci}.

Then we have the following

Corollary 2.2.2. In the previous notation

|Lm| =
n∑

j=k

(−1)j−k

(
j

k − 1

)
αj
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2. Inclusion Exclusion

2.3 Applications

Applications to Arithmetics

The Euler ϕ-functionis the function ϕ : N≥2 → N defined by

ϕ(n) := |{m ∈ N | 1 ≤ m ≤ n, gcd(m, n) = 1}.|

Theorem 2.3.1. The Euler ϕ-function can be expressed with the follwing law:

ϕ(n) = n ·
∏
p|n

p prime

(
1− 1

p

)

Proof. We want to apply the principle of inclusion exlusion on the universe set S = n. To
set up our problem, we let p1, . . . , pt be the prime divisors of n. Consider the following
subsets of n:

Ai := {s ∈ n | pi|s}.

It is clear that ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = n∏
i∈I pi

.

Hence

ϕ(n) =

∣∣∣∣∣
t⋂

i=1
Ac

i

∣∣∣∣∣
=

t∑
j=0

(−1)j
∑
I⊆t

|I|=j

n∏
i∈I pi

= n ·

∑t
j=0(−1)j

∑
I⊆t

|I|=t−j

∏
i∈I pi∏t

i=1 pi

= n ·
∏t

i=1(pi − 1)∏t
i=1 pi

= n

t∏
i=1

(
1− 1

pi

)
■

Derangements

Definition 2.3.2 (Derangement). A derangement of n is a permutation σ : n→ n such
that σ(i) ̸= i for every i ∈ n.

Proposition 2.3.3. If we denote by dn the number of derangements of n, we have that
dn ≈ n!e−1 when n >> 0. More precisely we have that

|dn − n!e−1| ≤ 1
n + 2 .
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2.3. Applications

Proof. We apply the principle of inclusion exclusion 2.1.1 and we find that

dn =
n∑

k=0
(−1)k

(
n

k

)
(n− k)!

= n!
n∑

k=0
(−1)k 1

k! .

Thus

|n!e−1 − dn| =

∣∣∣∣∣n!
n∑

k=n+1
(−1)∞ 1

k!

∣∣∣∣∣
≤ 1

n + 1 −
1

(n + 1)(n + 2) = 1
n + 2 .

■
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LECTURE 3

Rook Polynomials

Lecture Plan
3.1 Rook Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Arrangements with forbidden positions . . . . . . . . . . . . . . . 18

3.1 Rook Polynomials

Let C be a chessboard - a grid with cells, some of which are shaded (which are forbidden
places). The k-th rook number of C is the number of ways in which we can place
k rook in C such that no two rooks lies in the same row or column. By definition we
assume that r0(C) = 1 for any chessboard C.

Definition 3.1.1 (Rook Polynomial). The rook polynomial of C is

r(C, x) :=
∞∑

k=0
rk(C)xk.

Remark 3.1.2. Observe that this is indeed a polynomial as rk(C) = 0 whenever k is
bigger than minimum between the number of columns and the number of rows of C.

Definition 3.1.3 (Disjoint Union of Chessboards). We say that a chessboard C is composed
by the disjoint boards C1 and C2 if the boards Ci cover C and they have no column or
row in common.

Proposition 3.1.4. If C is composed of disjoint boards C1 and C2, then

r(C, x) = r(C1, x) · r(C2, x)

Proof. We have to show that the right-hand side and the left-hand side above have the
same coefficients. To this end, we observe that the degree k coefficient in the left-hand
side is exactly rk(C), which counts the way to place k rooks in C. Given k rooks, in
order to place them in C we have to place some of them, say i in C1 and the remaining
k − i in C2. By the rule of products there are ri(C1)rk−i(C2) ways to do that has the
two placement are independent. By the rule of sum, we have that

rk(C) =
k∑

i=0
ri(C1)rk−i(C2).
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3. Rook Polynomials

We conclude by observing that the latter expression is exactly the coefficient of degree k

of r(C1, x) · r(C2, x). ■

Proposition 3.1.5. Let C be a chessboard and F an allowed cell in C. Let Cs be the
chessboard arising form C by removing the column and the row of F . Let Ce be the
chessboard arising from C by forbidding F . Then

r(C, x) = r(Ce, x) + xr(Cs, x).

Proof. As before we want to show that the degree k coefficients of the two expression
coincide. To place k rooks in C there are two mutually exclusive cases

1. either we place a rook in F ,

2. or we do not place a rook in F .

If the first, then we have to place the remaining k − 1 rooks in Cs. If the latter then our
placement of k-rooks in C is an admissible placemen of k rooks in Ce. By the rule of
sum we get

rk(C) = rk(Ce) + rk−1(Cs).
We conclude by observing that the right-hand side above is exactly the coefficient of
degree k of r(Ce, x) + xr(Cs, x). ■

Arrangements with forbidden positions

Let A and B be two sets with |A| ≤ |B|. Given a family {Ba}a∈A of subsets of B indexed
by A, we can build a chessboard C in the following way: C has rows indexed by A and
columns indexed by B and the only allowed fields are of the form (a, b) with b ∈ Ba.

Proposition 3.1.6. The number of injective functions f : A→ B such that f(a) /∈ Ba

for every a ∈ A is
n∑

k=0
(−1)krk(C)P (|A| − k, |B| − k).

Proof. Let S be the set of all injective functions f : A → B and denote by ca the
condition "f(a) ∈ Ba". To construct a function that satisfies at least k of this conditions
we can choose k elements in A and their respective images in Ba, and then choose an
injective functions between the remaining elements in A and B. There are rk(C) ways
to make the first choice, and P (|A| − k, |B| − k) ways to make the second choice. By the
rule of product, we have that the number of functions that satisfies at least k of these
conditions is

rk(C) · P (|A| − k, |B| − k).
By the inclusion-exclusion principle we have that

N(ca : |a ∈ A) =
n∑

k=0
(−1)krk(C) · P (|A| − k, |B| − k)

is the number of functions in S that satisfy none of the condition ca, so such that
f(a) /∈ Ba for every a ∈ A. ■

Exercise 3.1.7. Use the rook polynomials to compute the numbers d3 and d4.
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LECTURE 4

Generating functions

Lecture Plan
4.1 Review of Power Series . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Review of Power Series

A formal power series with real coefficients is a symbol
∞∑

n=0
anxn

with an ∈ R. A formal power series S(x) has positive radius of convergence ρ > 0 if
for every |x| < ρ the sequence of functions

fk(x) =
k∑

n=0
anxn

converges absolutely to some function f : (−ρ, ρ)→ R. When a power series is absolutely
convergent, we have nice formulas to compute sum, products limits, derivatives and
primitive for the limit function. In particular we have the following

Theorem 4.1.1. Let
∑∞

n=0 anxn and
∑∞

n=0 bnxn two power series absolutely converging
to functions f(x) and g(x) with convergence radii ρ1 and ρ2. Then, for every
|x| < min(ρ1, ρ2), we have

1. the series
∑∞

n=0(an + bn)xn converges absolutely to f(x) + g(x);

2. if we set cn :=
∑n

k=0 akbn−k, the series
∑∞

n=0 cnxn converges absolutely to the
function f(x) · g(x),

3. the series
∑∞

n=1 nanxn−1 converges absolutely to d
dx f(x).

We conclude this review paragraph with an useful criterion for absolute convergence:
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4. Generating functions

Proposition 4.1.2. Suppose that there is a positive constant C such that |an| < Cn for
every n >> 0. Then we have that the power series

∑∞
n=0 anxn converges absolutely for

every |x| < 1
C

4.2 Generating functions

Definition 4.2.1 (Generating Series and Generating Functions). Let (an)n∈N be a sequence
of real numbers. The generating series of the sequence is the formal power series

∞∑
n=0

anxn.

If this, for some |x| < ρ, converges absolutely to a function f(x), we say that f(x) is the
generating function of the sequence (an)n∈N.

Example 4.2.2. The rook polynomial of a chessboard C is the generating function of the
sequence (rn(C))n∈N.

Fix k a positive integer, the polynomial (1 + x)k is the generating function of the
sequencence

((
k
n

))
n∈N

.

If an = 1 for n ≤ k and an = 0 otherwise. Then we have that the generating
functions of (an)n∈N is

k∑
n=0

xn = 1− xk+1

1− x
.

If an = 1 for every n, we have that the generating series of the sequence (an) is∑∞
n=0 xn. This converge absolutely to the function f(x) = 1

1−x for every |x| < 1.

If an = n, the generating series of (an)n∈N is
∞∑

n=0
nxn = 0x0 +

∞∑
n=1

nxn

=
∞∑

n=1
nxn

= x

( ∞∑
n=1

nxn−1

)
.

Since
∑∞

n=0 xn converge absolutely to 1
1−x , by Theorem 4.1.1, we have that

∑∞
n=1 nxn−1

converges absolutely to d
dx

1
1−x = 1

(1−x)2 . We conclude that the generating function of
(n)n∈N is

f(x) = x

(1− x)2 .

If an = n2, the generating series of (an)n∈N is
∞∑

n=0
n2xn =

∞∑
n=1

n2xn

= x

( ∞∑
n=1

n(n)xn−1

)
.
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4.3. Partitions

Since
∑∞

n=0 nxn converge absolutely to x
(1−x)2 , we reason as before and conclude that

the generating function of (n)n∈N is

f(x) = x
d

dx

x

(1− x)2 = x(x + 1)
(1− x)3 .

4.3 Partitions

Compositions

Definition 4.3.1 (Composition of a natural number). Given n a natural number, a
composition of n is a way to write it as a sum

n = n1 + · · ·+ nk

such that the ni’s are positive integers and the order matters (that is 1+2 and 2+1 are
two different compositions of 3).

We want to compute c(n), the number of composition for n for every positive natural
number. In order to do that, we will first compute, for given n and k positive integers,
the number ck

n of composition of n with exactly k summands. We observe that this is
the precisely the coefficient of degree n of the polynomial

(x + x2 + x3 + · · ·xn)k.

As higher degree terms do not change the coeffient of degree n, this is exactly the coeffient
of degree n of the (a priori formal) power series( ∞∑

n=0
xn+1

)k

.

Since
∑∞

n=0 xn+1 converges absolutely somewhere (we can, for example use Proposition
4.1.2), we have that this is, indeed, generating function of the sequence of compositions.

Thus the generating function of the ck
n for any fixed k is given by

(
x

1−x

)k

. By the rule
of sum (cfr. Proposition 1.4.7) we have that

c(n) =
∞∑

k=1
ck

n,

that is c(n) is the coefficient of degree n of the series
∞∑

k=1

(
x

1− x

)k

= x

1− x

∞∑
k=0

(
x

1− x

)
. (4.1)

Now observe that if |x| < 1
2 , we have that

∣∣∣ x
1−x

∣∣∣ < 1, and the series in (4.1) converges
absolutely to

f(x) = x

1− x

1
1− x

1−x

= x

1− 2x
.

In particular we have that f(x) the generating functions of the c(n). On the other side
we can write

f(x) = x

∞∑
n=0

(2x)n =
∞∑

n=1
2n−1xn,
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4. Generating functions

thus we get
c(n) = 2n−1

Partitions

Definition 4.3.2 (Partition of a natural number). Given n a natural number, a partition
of n is a way to write it as a sum

n = n1 + · · ·+ nk

with ni positive integers and the order does not matter (that is 1+2 and 2+1 give the
same partition of 3). We denote by p(n) the number of partitions of n.

Definition 4.3.3 (Young diagram). Given n = n1 + · · ·nk a partition of n, the Young
diagram associated to it is a grid with k with row i consisting of ni cells.

Example 4.3.4. The partion 1+3+5 of 9 is represented by the diagram

Observe that, if we "transpose" - that is we swap rows and column and reorder appropri-
ately - the above diagram we get

Whic is the diagram corresponding to the partition 9=1+1+2+2+3.

This example illustrate a general fact: by transposing the Young diagram of a
partition of n with k summands we obtain the Young diagram of a partition of n in
which every summand is at most equal to k (and at least one summand is equal to k).
Thus we have the following

Proposition 4.3.5. The number of partitions of n with at most k summands is equal the
number of partitions of n in which every summand is at most k.

The remainder of this Chapter is devoted to compute the generating function of the
sequence p(n). We have the following

Theorem 4.3.6. The generating function of (p(n))n≥1 is

∞∏
k=1

1
1− xk

.
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4.3. Partitions

Proof. Given a partition of n, we denote by mk the number of time the summand k

appears. Then, we can write n =
∑∞

k=1 mk · k. With this expression we can reason as
we did in the case of combinations, and see that the number of partitions of n with
summands up to k is the coefficient of degree n of the product ∞∑

j=0
xj

 ·
 ∞∑

j=0
x2j

 · · ·
 ∞∑

j=0
xkj

 .

Thus the generating series of the p(n) is obtained by taking the formal product of all the
series involved, that is

∞∑
n=1

p(n)xn =
∞∏

k=1

∞∑
j=0

xkj .

In order to find the generating function we have to show absolute convergence. Since
the number of partitions is certainly less than the number of compositions, we have that
c(n) ≤ 2n and thus the left-hand side converges by Proposition 4.1.2. Thus we have to
evaluate convergence on the right hand side. To this aim we take logarithms to transform
a formal product in an infinite series. Without loss of generality we can suppose that
|x| < 1 so that

∑∞
j=0 xkj converges to 1

1−xk . Therefore, we get:

ln

 ∞∏
k=1

∞∑
j=0

xkj

 = ln
( ∞∏

k=1

1
1− xk

)

=
∞∑

k=0
ln
(

1
1− xk

)

= −
∞∑

k=0
ln
(
1− xk

)
.

Now if |x| < c < 1 for some c we have that∣∣∣∣ d

dx
ln(1− xk)

∣∣∣∣ =
∣∣∣∣kxk−1 1

1− xk

∣∣∣∣ ≤ kck−1 1
1− c

.

By Taylor formula we have that

| ln(1− xk)| ≤ kck−1 1
1− c

|x|.

Thus we conclude that
∞∑

k=1
| ln(1− xk)| ≤

∞∑
k=1

kck−1 1
1− c

|x| < +∞.

Thus also the right-hand side converges and we can identify the generating functions,
completing the proof of the statement. ■
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LECTURE 5

Generating functions II

Lecture Plan
5.1 Exponential generating function . . . . . . . . . . . . . . . . . . 25
5.2 The summation operator . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Exponential generating function

Definition 5.1.1 (Exponential generating function). Let (an)n∈N be a sequence of real
numbers. The exponential genereting series of the sequence is the formal power
series

∞∑
n=0

an

n! xn.

If this, for some |x| < ρ, converges absolutely to a function f(x), we say that f(x) is the
exponential generating function of the sequence (an)n∈N.

Example 5.1.2. Fix k a positive integer. The polynomial (1 + x)k is the exponential
generating function of the sequence (P (k, n))n∈N .

If an = 1 for every n, we have that the generating series of the sequence (an) is∑∞
n=0

1
n! x

n. This converge absolutely to the function f(x) = ex for every x.

5.2 The summation operator

The function 1
1−x is called the summation operation in the context of generating

functions. The reason behind the name is in the following result

Proposition 5.2.1. Let (an)n∈N a sequence with generating function f(x). Then the
function f(x)

1−x is the generating function of the sequence (
∑n

k=0 ak)
n∈N

Proof. Since the generating series of the sequence an converges, we can compute the
generating function as a formal product of series. Then we have that, for sufficiently
small x

f(x)
1− x

=
( ∞∑

n=0
anxn

)
·

( ∞∑
n=0

xn

)
.

By Theorem 4.1.1, we have that the coefficient of degree n in the right-hand-side is
precisely

∑n
k=0 an, and we conclude. ■
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LECTURE 6

Recursion

Lecture Plan
6.1 First order recursion . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Higher order recursion - the homogeneous problem . . . . . . . . 28

6.1 First order recursion

Definition 6.1.1 (First order recurrence relation). A first order, linear, homogeneous
recurrence relation with constant coefficients is given by an expression of the form

an+1 = dan,

for every n ∈ N, with A ∈ a constant.

Fixing the initial value a0 = A is called initial condition. More generally, fixing
the value of any an0 , for example setting an0 = A is called boundary condition.

Proposition 6.1.2. The unique solution of the first order problem an+1 = dan with initial
condition a0 = A is an = Adn

Proof. We first show that the sequence an = Adn satisfies the recurrence relation and
the initial condition. For n = 0 we have that a0 = Ad0 = A, as the initial condition ask
for. In addition for n > 0 we have that

an = dan−1 = d2an−2 = · · · = dna0 = Adn,

as requested by the recurrence relation.

Now we want to show unicity. Suppose that there is another solution bn to the
recurrence problem. Suppose furthermore that both A and d are non zero, so that an ̸= 0.
Then we have that

bn

an
= dbn−1

an−1
= bn−1

an−1
= · · · = b0

a0
= 1.

We conclude that an = bn. If d = 0 we have that an = 0. On the other side since
bn satisfies the relation we have that bn = 0bn−1 = 0. Thus, again an = bn. Finally
suppose that A = 0. Again we have an = 0 for every n. On the other side it is easy to
prove by induction that bn = 0 for every n. Again we have bn = an and the proof is
completed. ■
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6. Recursion

6.2 Higher order recursion - the homogeneous problem

Definition 6.2.1 (Order k linear recurrence relation with constant coefficients). A order
k, linear recurrence relation with constant coefficients is given by an expression
of the form

Ckan+k + Ck−1an+k−1 + · · ·+ C0an = f(n),

with Ci real number and f : R → R a function. If f ≡ 0, we say that the recurrence
relation is homogeneous.

Proposition 6.2.2. Given a linear recurrence relation with constant coefficients

Ckan+k + Ck−1an+k−1 + · · ·+ C0an = f(n)

and a (particular) solution (a(p)
n ), then every other solution can be written as

an = a(p)
n + a(h)

n ,

where a
(h)
n is any solution of the homogenous problem

Ckan+k + Ck−1an+k−1 + · · ·+ C0an = 0

Proof. Directly using linearity. ■

Thus in order to find solution to a recurrence relation with constant coefficient we
have to find a particular solution of the problem and the general solution of the associated
homogeneous problem. In this Chapter we focus our attention to the latter. It turns out
that there is a recipe to construct the general solution of an homogeneous problem by
looking at the roots of a polynomial equation associated to the recursion relation.

Definition 6.2.3 (Characteristic equation of a linear recursion relation). The character-
istic equation of the homogeneous recurrence relation with constant coefficient.

Ckan+k + Ck−1an+k−1 + · · ·+ C0an = 0

is the polynomial equation

Ckrk + Ck−1rk−1 + · · ·+ C0 = 0

If a sequence of the form an = Adn is solution of an homogeneous recurrence
relation, then d is a root of the associated characteristic equation. The strategy behind
the construction of the general solution of an homogeneous recurrence relation is to use
the roots of the characteristic equation to produce linearly independent solutions. Any
solution can be then be expressed as a linear combination of these. The main technical
point is how to get a solution with real coefficients from complex roots, and how to
produce the right number of independent solution from multiple roots. The following
statement, whose proof we omit, solve the problem in the case of order 2 recurrence
relations. The statement generalizes with minor modification to higher order relations.

Theorem 6.2.4. Let C2an+2 + C1an+1 + C0 = 0 a second order, homogeneous, linear,
recurrence relation with constant coefficients. Then we have the following cases
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6.2. Higher order recursion - the homogeneous problem

(a) If the characteristic equation of the relation has two distinct real roots, r1 and
r2 then every solution of the recurrence relation can be written as

an = A1rn
1 + A2rn

2

for A1 and A2 two real numbers.

(b) If the characteristic equation of the relation has two distinct complex roots, z1
and z2 = z1 then every solution of the recurrence relation can be written as

an = ρn (A1 cos nθ + A2 sin nθ)

for A1 and A2 two real numbers, ρ = |z1| = |z2| and θ = arg(z1) ∈ [0, π].

(c) If the characteristic equation has one double real root, r, then then every solution
of the recurrence relation can be written as

an = rn(A1 + A2n)

for A1 and A2 two real numbers.
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LECTURE 7

Recursion II - The non homogeneous
problem

Lecture Plan
7.1 The method of varying coefficients . . . . . . . . . . . . . . . . . 31
7.2 The method of generating functions . . . . . . . . . . . . . . . . 31

7.1 The method of varying coefficients

Here there is not much theory to explain. The method of varying coefficients aims to
provide a particular solution of an inhomogeneous recurrence relation like

Ckan+k + Ck−1an+k−1 + · · ·+ C0an = f(n).

The main strategy is to perform an educated guess on the form of the solution, depending
from the law of f . We allow some liberty in this educated guess (the varying coefficients).
We plug in our guess in the problem and we find the right values of the coefficients. A
list of educated guesses is provided in the textbook (Table 10.2 at page 479). The one
tricky point is that one has to be careful that the educated guess is not a solution of
the homogeneus problem. This happens, for example when f(n) = arn, with r a root
of the characteristic polynomial. If this happens, one produce a solution to the non
homogeneous problem by multiplying the educated guess by the minimum power of n

such that the function obtained is not anymore a solution of the homogeneuos problem.
For example, if r is a root with multiplicity of of the characteristc equation, the right
guess for the solution of the inhomogenoeus problem with f(n) = Arn is an = Bn2rn

with B the varying coefficient.

7.2 The method of generating functions

In this section we introduce another method to provide a prticular solution of the
following recurrence relation

Ckan+k + Ck−1an+k−1 + · · ·+ C0an = f(n). (7.1)

with boundary conditions

a0 = A0, a1 = A1, . . . , ak−1 = Ak−1.
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7. Recursion II - The non homogeneous problem

If we multiply by xn+k both sides of (7.1) and take the sum for all n ≥ 0 we get

Ck

∞∑
n=0

an+kxn+k + Ck−1

∞∑
n=0

an+k−1xn+k + · · ·+ C0

∞∑
n=0

anxn+k =
∞∑

n=0
f(n)xn+k.

which we can rewrite has follows

Ck

( ∞∑
n=0

anxn −
k−1∑
n=0

Anxn

)
+ Ck−1x

( ∞∑
n=0

anxn −
k−2∑
n=0

Anxn

)
+ · · ·+ C0xk

∞∑
n=0

anxn =

= xk
∞∑

n=0
f(n)xn. (7.2)

Assuming that all the series involved converges, we can denote by G(x) the generating
function of the sequence an and by F (x) the generating function of the sequence f(n).
Then we can rewrite (7.2) in the following way:

Ck

(
G(x)−

k−1∑
n=0

Anxn

)
+Ck−1x

(
G(x)−

k−2∑
n=0

Anxn

)
+· · ·+C0xkG(x) = xkF (x). (7.3)

By doing some algebra we get that

G(x) =
xkF (x) +

∑k
i=0 Ci

(∑i−1
n=0 Anxn

)
∑k

i=0 Cixk−i
.

Now the main difficulty is to find the an from their generating function G. This can be
done using the method of partial fractions (the same you use to compute the primitive
of rational functions) when F (x) is nice. In general one should compute the McLaurin
expansion fo G, but it is not always easy to find a law givin all of its coefficients. We
refer to the book, which illustrates plenty of worked out examples.

Remark 7.2.1. Observe that the above discussion yields that the generating function of
the solution of the homogeneous problem is

H(x) =

∑k
i=0 Ci

(∑i−1
n=0 Anxn

)
∑k

i=0 Cixk−i
.
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LECTURE 8

Graph Theory

Lecture Plan
8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.2 Subgraphs, Complements and Isomorphism . . . . . . . . . . . . 35

8.1 Definitions

Definition 8.1.1 (Directed graph). A (simple)∗ directed graph, or quiver, G is given
by a pair (V, E), where V is a finite set and E ⊂ V × V .
The set V is the set of vertices of G, while the elements of E are said to be edges.

(a) Quiver (b) Directed graph

Figure 8.1: Quivers

Given a directed graph G = (V, E) we have two maps s : E → V defined by
(v1, v2) 7→ v1 and r : E → V defined by (v1, v2) 7→ v2. We call s the source map (and
v1 the source of the edge (v1, v2)). On the other side r is the range map, and v2 is the
range of the edge (v1, v2).

Definition 8.1.2 (Unidrected graph). A (simple undirected) graph†, G is given by a
pair (V, E), where V is a finite set and E ⊂P(V ) with |E| = 1 or 2.
Again the set V is the set of vertices of G, while the elements of E are said to be edges.

∗simple graph is opposed to multigraph- which will be defined later. If nothing is said all (directed
or undirected graph will be considered simple)

†We follow the convention that the term graph, without additional adjectives, refers to a simple
undirected graph.
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8. Graph Theory

Example 8.1.3. An important example of graph to keep in mind is Kn the complete
graph on n vertices. We have that V (Kn) = n and

E(G) = {{i, j} | i ̸= j}

Given a graph G, whether directed or undirected, we denote by V (G) the set of
vertices of G and E(G) its set of edges. We say that two vertices v1, v2 are adjacent if
there is an edges connecting them. That is

• for directed graphs we have that either (v1, v2) or (v2, v1) is in E(G);

• for undirected graphs we have that {v1, v2} is in E(G).

An edge of the form (v, v) or {v} is called a loop. A (directed) graph with no loops is
called loop free.

Definition 8.1.4 (Walk). Given a (simple undirected) graph G, a walk of length n from
x ∈ V (G) to y ∈ V (G) is (n + 1)−uple of vertices (v0, v1, . . . , vn) such that

1. v0 = x and vn = y;

2. for every i ∈ n we have that {vi−1, vi} is in E(G).

If x = y we call the walk closed.

Exercise 8.1.5. Modify suitably the above definition to define a walk in a directed graph.

Definition 8.1.6 (Trail, circuit, path, cycle). A walk on a graph G is said to be a

• trail if no edge is repeated;

• circuit if it is a closed trail;

• path if not vertex is repeated;

• cycle if it is a closed path.

Exercise 8.1.7. Modify suitably the above definition to define a trails, circuits, paths,
and cycles in a directed graph.

Lemma 8.1.8. Given a graph G, every walk from x to y with minimal length is a path.

Proof. Let (v0, v1, . . . , vn) a walk of minimal length from x = v0 to y = vn. Suppose
that a vertex is repeated, that is vi = vj for some i, j ∈ {0, n}. Up to relabeling we
can suppose that i ≤ j. Then the sequence (v0, . . . , vi, vj+1, . . . , vn) yilds a work from x

to y of lenth n− (j − i). The minimality assumption ensures that i = j and thus the
statement is proven. ■

Corollary 8.1.9. If there is a walk in a graph between two vertices, then there is a path
joining them.

Definition 8.1.10 (Connected graph). A graph G is said to be connected if there is a
path between every two distinct vertices in V (G).
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8.2. Subgraphs, Complements and Isomorphism

Definition 8.1.11 (Multigraph). A (unidirected) multigraph is a triple (V, E, p) with V

and E finite sets, and p : E →P(V ). a function such that |p(E)| = 1, 2.

Exercise 8.1.12. Modify this to give a definition of a directed mulitgraph.

8.2 Subgraphs, Complements and Isomorphism

Definition 8.2.1 (Subgraph). Given a graph G a subgraph G1 is a graph (V1, E1) such
that the following hold:

1. V1 ⊆ V (G). In particular using the previous point we can identify P(V1) with a
subset of P(V ).

2. With this identification in the previous point we have that E1 ⊆ E(G).

Definition 8.2.2 (Directed subgraph). Given a directed graph G a (directed) subgraph
G1 is a directed graph (V1, E1) such that the following hold:

1. V1 ⊆ V (G). In particular using the previous point we can identify V1 × V1 as a
subset of V × V .

2. With this identification in the previous point we have that E1 ⊆ E(G).

Exercise 8.2.3. Modify the above definition to find a definition of a subgraph of a multi
graph.

We have an order relation on subgraphs of a given graphs: G ⊆ G′ if and only if G

is a subgraph of G. Thus we can define:

Definition 8.2.4 (Connected component). A connected component of a graph G is a
maximal connected subgraph.

Definition 8.2.5 (Subgraph induced by U). Given a graph G = (V, E) and a subset
U ⊆ V , we have that the subgraph induced by U is (U, E ∩P(U)).

Exercise 8.2.6. Modify the above definition to find a definition of the directed graph
induced by U when (V, E) is a directed graph.

Notation 8.2.7. If G is a (directed) graph and v ∈ V (G) we denote by G−v the (directed)
graph induced by V (G)\{v}. Given and edge e ∈ E(G), G− e will denote the (directed)
graph (V (G), E(G)\{e}).

Definition 8.2.8 (Complement of a graph). Given a loopfree graph G = (V, E) and a
subgraph G′, the complement of G′ in G is (v, P(V )\E).

Exercise 8.2.9. Modify the above definition to find a definition of complements for
directed graphs.

Definition 8.2.10 (Graph homomorphism). Given two graph G1 and G2 a graphs
homomorphism φ : G1 → G2 is given by a function φ : V (G1) → V (G2) such that
φ(e) ∈ E(G2) for every e ∈ E(G1).

Exercise 8.2.11. Give the definition of morphisms for directed graphs.
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8. Graph Theory

Given a graph homomorphism φ : G1 → G2 we say that it is an isomorphism if
both the map induced on verices and edges are bijective. We say that two graphs are
isomorphic if there is an isomorphism between them.

Exercise 8.2.12. Show that graph isomorphism is an equivalence relation.
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LECTURE 9

Graph Theory II

Lecture Plan
9.1 Euler circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.2 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9.1 Euler circuits

Given a graph G and a vertex v, we say that an edge e is adjacent to v, and we write
e ∼ v if v ∈ E (if e = (v, x) or e = (x, v) for some x ∈ v(G) in the case of directed
graphs).

Definition 9.1.1 (Degree of a vertex). Given a graph G and a vertex v ∈ V (G) the
degree of v, deg(v) is the number of edges ajacent to v (loop count twice)

A graph whose vertices have all the same degree d is called d-regular.

Proposition 9.1.2. Let G be a graph of a multigraph, we have that

2|E(G)| =
∑

v∈V (G)

deg(v)

Proof. The rough idea of the proof is that every vertices contribute 1 to the degree of
each of his vertices (it works also for loops). Formally∑

v∈V (G)

deg(v) =
∑

v∈V (G)

∑
e∈E(G)

e∼v
loops double

1

=
∑

e∈E(G)

∑
e∈E(G)

e∼v
loops double

1

=
∑

e∈E(G)

2 = 2|E|.

■

Corollary 9.1.3. In a graph or a multigraph, the number of vertices with odd degree is
even.
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9. Graph Theory II

Definition 9.1.4 (Euler circuit). Given a graph or a multigraph G, a circuit or trail in G

is called Euler if it passes through all the edges.

Remark 9.1.5. We have not formaly defined walk (and similar) notions on multigraph.
Differently of what happens for a simple graph we have to keep track of edges. Thus a
walk is a sequence (v0, e1, v1, e2, v2, . . . , en, vn) such that p(ei) = {vi−1, vi}.

Theorem 9.1.6. Given a finite graph or multigraph G with no isolated vertices. We have
that there exists an Euler circuit (trail) if, and only if, only one connected components of
G has edges and every vertex in V (G) has even degree (there are at most two vertices
which have odd degree).

Example 9.1.7. The finiteness hypothesis is necessary has the graph (Z, {{i, i+1}, i ∈ Z})
has all vertices of even degree but no Euler circuit.

The rest of this section will be devoted to prove Theorem 9.1.6 in the "circuit" case.
We need a preliminary Lemma:

Lemma 9.1.8. If G is a connected, finite, nontrivial, multigraph with all vertices of even
degree, then there is nontrivial circuit in G.

Proof. By nontriviality there is at least one edge e ∈ E(G). We will show that a trail
of maximal lenght is an Euler circuit. To this aim let (v0, e1, v1, . . . , en, vn) a trail of
maximal length. If vn ̸= v0, then we can extend it to a longer trail, since vn has even
degree. ■

Before proceeding with the proof of 9.1.6 we have to introduce the notion of
composition of walks in a multigraph. Given two walks W1 = (v0, e1, v1, . . . , en, vn)
and W1 = (v′

0, e′
1, v′

1, . . . , e′
l, v′

l) such that vn = v′
0, we define the walk

W1 ◦W2 = (v0, e1, v1, . . . , en, vn, e′
1, v′

1, . . . , e′
l, v′

l).

Proof of Theorem 9.1.6. We first prove the sufficientcy of the condition by induction on
|E|. If |E| = 0, then, V (G) is either empty or consisting of isolated points with no loops.
If the first, it is impossible to negate the existence of an Euler circuit (or the empty
circuit is an Euler circuit). If the latter, then (v) is an Euler circuit for every vertices
in V (G). Suppose now that the statement is true for |E| ≤ k for some non-negative
integer k, we want to prove it for |E| = k + 1. By Lemma 9.1.8 there is a nontrivial
circuit in G, (v0, e1, v1, . . . , en, vn). By inductive hypothesis, every connected component
of G− e1 − · · · − en admits an Euler circuit Ei, "starting" at some vi with i ∈ t. Denote
by i1, . . . , it the starting points of these circuit, then we have that

(v0, . . . , vi1) ◦ Ei1 ◦ (vi1+1, . . . vi2) ◦ Ei2 ◦ · · · ◦ Eit
◦ (vit

, . . . , vn)

is an Euler circuit.

To prove necessity of the conditions, we may assume that G is loop free and that
we have an Euler circuit for G (v0, e1, v1, . . . , en, vn). As this visits all the edges of G,
and there are not isolated vertices, then we have that it visits all the vertices of G. In
particular G is connected. Let now v ∈ V (G), then we have that

deg(v) = |{i ∈ n | ei ∼ v}|
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= |{i ∈ n | v ∈ p(ei) = {vi−1,i }}|
= 2 |{i ∈ n | v = vi}| ,

where in the first equality we used the loopfreeness. It follows directly that the degree of
every vertices is even. ■

9.2 Planar graphs

In this section we will discuss whether a Graf can be drawn over a sheet of order without
intersecting edges. This property is called planarity and it is geometric rather than
combinatorial in nature. For this reason the material exposed here has some deep
connection with the topology class, connections that are swiped under the carpet by our
textbook. I will try to give hints in this direction. If you have taken Topology... please
spend some time reflecting on this. If you have not taken topology, when you will please
vote back to these pages and your eyes will be opened.

Given a graph G = (V, E) we can choose an orientation of its edges and get a
directed graph G̃ = (V, Ẽ).

Definition 9.2.1 (Geometric realization of a graph). The geometric realization of a
graph G = (V, E) is the metric space (XG, d) where

XG := V ⊔
(
⊔Ẽ × [0, 1]/ ∼

)
,

with Ẽ an orientation of the edges in E and ∼ the equivalence relation generated by
(e, 0) ≃ s(e) and (e, 1) = r(e). As distance we take the distance induced by the Euclidean
metric on [0, 1].

Remark 9.2.2 (Connection with Topology). The space XG is really a 1-dimensional
cell complex, where the vertices are the 0-dimensional cells and the edges are the one
dimensional cells. We see that two edges intersect always in vertices (if they do intersect)
- this gives exactly the definition of 1-dimensional cell complex.

We say that a graph G is planar if there is a continuous injective map |G| → R2.

Definition 9.2.3 (Omeomorhpic graphs). Two graph are called omeomorphic if their
geometric realizations are omeomorphic metric spaces. Equivalently there exist a
continuous bijective map between their geometric realizations such that the inverse
is also continuous.

Theorem 9.2.4. Two graphs are homeomorphic if, and only if, they admit isomorphic
refinements by an elementary subdivision, that is replacing an edge {u, v} with two edges
{u, w} and {w, v} and V with V ∪ {w}.

Remark 9.2.5 (Connection with Topology). The statement is clear if one think about
cell complexes. The subdivision of the statement is just a subdivision of the cell complex.
Topology says that two cell complexes have omeomorphic underlining spaces if and only
if they are isomorphic (as cell complexes) after subdividing them.

Definition 9.2.6 (Bipartite graph). A graph G = (V, E) is bipartite if there is a partition
V = V1 ⊔ V2 such that no edge is entirely contained in one of the two subset Vi.
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Given n1 and n2 two positive integers we have that the complete bipartite graph
Kn1,n2 has vertices {(1, j), (2, k) | j ∈ n1; k ∈ n2} and edges {(1, j), (2, k)} for all j and
k.

Theorem 9.2.7 (Kuratowski’s Theorem). A graph G is not planar if, and only if, it
contains a subgraph omeomoprhic to either K5 or K3,3.

We are not going to prove this theorem, but we will show that K5 and K3,3 are not
planar. We begin with the following theorem.

Theorem 9.2.8. Let G be a connected planar graph with v vertices and e edges. Consider
an immersion i : |G| → R2, and let f be the number of connected components of R2\|G|.
Then we have that

2 = v − e + f (9.1)

Remark 9.2.9 (Conncection with topology). We are going in a moment to present a sketch
of a completely combinatorial proof of this result. However, the deep reason why the
results hold is topological. In fact, via the immersion i (extended to the Alexandroff one
point compactification of R2) we can see |G| as the 1-dimensional skeleton of a cell complex
subdivision of the Riemann sphere S2. What are the faces? Every cycle in the graph
determine boards a face. Observe that a cycle also determines a connected component of
the complement of |G|. There is a remaining unbounded connected component which
give the last face of the subdivison. Thus the subdivision has exactly f faces. But know
we use that we know that the topological Euler characteristic of the sphere is 2 and that,
thanks to Algebraic topology, we can compute this with the formula on the right-hand
side of (9.1).

Before proceeding with the proof we need the following vocabulary :

Definition 9.2.10 (Terminal vertex). A vertex in a graph is said to be terminal if it has
degree 1.

Sketch of the proof of Theorem 9.2.8. We reason by induction on n = v + e. If n = 1
then we have that G is either a point with no hedges, or a point with a loop (remember
G is connected). In the first case f = 1, in the second f = 2. Thus in both we have
v + e − f = 2. Suppose now that the result is true for n ≤ k, we want to prove it for
n = k + 1. We split our argument is some diffeent cases.

Case 1: there is a loop l. If there is an edge l forming a loop we consider the graph
H := G − l. This is a subgraph of G so is planar, it is connected and the number of
connected components of its complement in R2 is f − 1. By induction hypothesis we
have that

2 = v − (e− 1) + (f − 1) = v − e + f,

as we wanted.

Case 2: there is a terminal vertex x. We consider the graph H := G− x. This is a
subgraph of G so is planar, it is connected and the number of connected components of
its complement in R2 is f . By induction hypothesis we have that

2 = (v − 1)− (e− 1) + f = v − e + f,

as we wanted.
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Case 3: no loops nor terminal vertices. Let l be any edge of G and consider the
graph H := G− l. If H is connected, then it satisfies the condition of the theorems. The
number of connected components of the complement of H in R2 is f − 1. Then we have
that

2 = v − (e− 1) + (f − 1) = v − e + f.

Otherwise suppose that H is not connected. Then it has 2 connected component (that
in G are joined by l) H1 and H2 let vi, ei and fi the number of vertices, edges and
connected component of the complementary in R2 of the graph Hi. Then we have that
v1 + v2 = v, e1 + e2 = e− 1 and f1 + f2 = f + 1 (the unbounded component is counted
twice). By inductive hypothesis we have that 2 = vi − e1 + fi. Thus we have

4 = v1 + v2 − e1 − e2 + f1 + f2 = v − (e− 1) + f + 1 = v − e + f + 2.

Therefore v − e + f = 2 as we wanted. ■

Corollary 9.2.11. In the notation above Let G a loopfree connected planar simple graph.
Then e ≤ 3v − 6. If in addition G is bipartite we have that e ≤ 2v − 4.

Proof. If G is a connected planar graph with no loops, then every connected component
of its complement in R2 is bounded by at least 3 edges. Since every edges touches two
components, we have that 2e ≥ 3f . Then we have that

2 = v − e + f ≤ v − e + 2
3e,

and so e ≤ 3v − 6.

If, in addition G is planar, we have that any region is bordered by at least 4 edges,
thus e ≤ 2f

2 = v − e + f ≤ v − e + 1
2e.

We conclude that e ≤ 2v − 4. ■

Example 9.2.12. Both K5 and K3,3 are not planar.
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10.1 Hamilton cycles

Definition 10.1.1 (Hamilton cycle). A path or cycle in a (multi)graph is said to be
Hamilton if it visits every vertex.

Differently to what happens for Euler circuit, an intrinsic characterization of graph
admitting an Hamilton cycle is not know. But we can give some sufficient condition

Theorem 10.1.2. Let G be a loop free graph such that, for every two distinct vertices v

and w we have that
deg(v) + deg(w) ≥ |V (G)| − 1.

Then G has an Hamilton cycle.

Proof. Ommitted. ■

Example 10.1.3. The graph Kn has an Hamilton cycle if and only if n ≥ 3.

Theorem 10.1.4. Let G be a loop free graph with at least three vertices. If for every two
non adjacent vertices v and w we have that

deg(v) + deg(w) ≥ |V (G)|,

then G has an Hamilton cycle.

Proof. We prove the contrapositive. Thus we assume that G has no Hamilton cycle and
we show that there are two adjacent vertices such that

deg(v) + deg(w) < |V (G)|.
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Denote by n ≥ 3 the number of vertices of G. We can view G has a subgraph of Kn, the
complete graph with n vertices. Since Kn has an hamilton cycle, if we add edges to G

we will eventually get to a graph which admits an Hamilton cycles. Let G′ a subgraph
of Kn containing G, maximal with respect to the property of not having an Hamilton
cycle. Let e = {v, w} an edge in the complement of G′ then G′ + e admits an Hamilton
cycle (v1, v2, . . . , vn, v1). This cycle must go through the edge e, thus, up to rotating,
we can assume the that v1 = v and v2 = w. For every i = 3, . . . , n we have that either
{w, vi} or {v, vi−1} cannot be edges in G′, otherwise the sequence

(w, vi, vi+1, . . . , vn, v, vi−1, vi−2, . . . , w)

yields an Hamilton cycle in G′. In particular

degG′(v) + degG′(w) ≤
n∑

i=3
1 + 1 < n

We conclude by observing that for every vertex vi we have that degG(vi) ≤ degG′(vi).

■

Corollary 10.1.5. If G is a loopfree graph such that

|E(G)| ≥
(
|V (G)| − 1

2

)
+ 2,

then G has an Hamilton cycle.

Proof. Again denote by n := |V (G)|. Let v and w two non-adiacent vertices, then
G−v−w has n−2 vertices and |E(G)|−deg(v)−deg(w) edges. Since no loopfree graph
on n vertices can have more edges than the corresponding complete graph, we have that

|E(G)| − deg(v)− deg(w) ≤
(

n− 2
2

)
.

Suppose

|E(G)| ≥
(

n− 1
2

)
+ 2.

Then we have

deg(v) + deg(w) ≥ |E(G)| −
(

n− 2
2

)
≥
(

n− 1
2

)
+ 2−

(
n− 2

2

)
= (n− 1)(n− 2)

2 − (n− 2)(n− 3)
2 + 2

= (n− 2)(n− 1− (n− 3))
2 + 2

= (n− 2)2
2 + 2

= n− 2 + 2 = n.

We conclude by applying Theorem 10.1.4. ■
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The following is still open and widely contested

Conjecture (Lovàaz). Every vertex transitive∗ finite graph has an Hamilton cycle.

10.2 Coloring

Chromatic Number

Definition 10.2.1 (Chromatic number). A proper (or admissible) coloring of a (multi)
graph G with n coloring is a function f : V (G)→ n such that f(w) ̸= f(v) whenever v

and w are adjacent. The chromatic number of a (multi)graph G is

χG := min{n ∈ N | there exist a proper coloring of G with n colors}.

Proposition 10.2.2. Given a graph G, it admits a proper coloring with n colors if, and
only if, there is a graph morphism f : G→ Kn.

Proof. Suppose that there is a graph morphism f : G→ Kn, the corresponding maps
between vertices f : V (G)→ n sends adjacent vertices into adjacent vertices. Since Kn

ha no loop, two adjacent vertices cannot have the same image, so f is a proper coloring.

Conversely, suppose that there is a proper coloring f : V (G)→ n. Given to adjacent
vertices v and w we have that f(v) and f(w) are distinct. In particular there is the edge
{f(v, f(w)} in Kn and we can extend f to a graph morphism. ■

Proposition 10.2.3. The chromatic number of a graph is at most 2 if, and only if G is
bipartite.

Proof. If G is bipartite then we can color vertices belonging to different partitions in
different colors. Thus the coloring number is at most 2.

Conversely, suppose that the coloring number is at most 2, then there is a graph
morphism f : G→ K2. Consider the corresponding function on vertices f : V (G)→ 2.
By setting V1 := f−1(1) and V1 := f−1(2) we get a partition of V (G). Two vertices are
adjacent if and only if f(v) ̸= f(w). In particular they are adjacent if and only if they
belong to different parts of the partition. Thus G is bipartite. ■

Chromatic Polynomial

Definition 10.2.4 (n-chromatic number). Given a graph G, its n-chromatic number is

χG(n) = |{proper colorings of G with n colors}| .

Theorem 10.2.5. Given a graph G, there is a unique polynomial P (G, x) such that, for
every n ∈ N, n ≥ 1 we have that

P (G, n) = χG(n)

∗A graph G is said to be vertex transitive if for every two vertices there is an authomorphism of G
exchanging them.

45
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Before proceeding with the proof, we need to introduce the following construction.
Given a graph G and e ∈ E(G) we construct the graph Ge obtained by collapsing
the edge e. We set

V (Ge) := V (G)/v=w,

and
E(Ge) := (E(G)\{e}) /v=w.

Lemma 10.2.6. Suppose that a graph G has connected component G1, . . . , Gk. Then

χG(n) = χG1(n) · · ·χGk
(n)

Proof. Since vertices in different components are not adjacent, the colorings of the
components are completely independents from one another and we can use the rule of
product. ■

Proof of Theorem 10.2.5.
Proof of existence: By Lemma 10.2.6 we can assume that G is connected. If G has

a loop, then no coloring is possible and we can take P (G, x) ≡ 0. Consequently, we can
assume that G has no loop. We now reason by induction on k = |V (G)| + |E(G)|. If
k = 1 then G consists of a vertex with no edges and we can take P (G, x) = x; we will
have that P (G, n) = n = χG(n) for every n ∈ N. We suppose now the result to be true
for every k ≤ p and we prove it for k = p + 1. There are two cases:
Case a): G has a terminal vertex v. In this case we have that χG(n) = χG−v(n)(n− 1).
By induction assumption we have that there is a polynomial P (G − v, x) such that
χG−v(n) = P (G− v, n), thus we can take

P (G, x) := P (G− v, x)(x− 1). (10.1)

Case b): G has no terminal vertex. Let e = {v, w} be an edge in G (which is not
terminal). For any proper coloring f : V (G− e)→ n there are two possibilities

1. either f(v) = f(w), and thus f gives a proper coloring of Ge, or

2. f(v) ̸= f(w), and thus f yields a proper coloring of G.

By the rule of sums we have that

χG−e(n) = χG(n) + χGe(n).

By inductive hypothesis, there are two polynomials P (G− e, x) and P (Ge, x) realizing
χG−e(n) and χGe(n). Thus we can take

P (G, x) = P (G− e, x) + P (Ge, x). (10.2)

Proof of unicity. Suppose that there are two polynomials p(x) and q(x) like in the
statement. Then the polynomial (p− q)(x) will have an infinite number of roots. Hence
it will be the zero polynomial and we can deduce that p = q.

■
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Definition 10.2.7 (Chromatic Polynomial). The polynomial P (G, x) appearing in the
statement of Theorem 10.2.5 is called the chromatic polynomial of G.

Remark 10.2.8. Attention P (G, x) is not the generating function for χG(n)!!!

Remark 10.2.9. Equations (10.1) and (10.2) are crucial for computing the chromatic
polynomial inductively.

Theorem 10.2.10. Let G be a graph which is the union of two subgraph G1 and G2 such
that their intersection is Kn, then we have

P (G, x) = P (G1, x)P (G2, x)
P (Kn, x) .
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11.1 Basic definitions

Definition 11.1.1 (Tree). A tree is a connected graph with no cycles. A graph with no
cycles is called a forest.

Example 11.1.2. Let A1,..., An be finite set with Ai = {ai1, . . . , aiki
}. We construct a tree

T in the following way: V (T ) =
⋃

i≤n×i
k=1Ak - in which, by convention, we consider the

empty product as a one point set {∗}S; in addition we say that (b1, . . . , bk) ∼ (b1, . . . , bk, c)
for every c ∈ Ak+1.

Exercise 11.1.3. Draw T when n = 3 and Ai = {0, 1} for every i = 1, 2, 3.

Definition 11.1.4 (Spanning tree). A spanning tree for a graph G is a subgraph T

which is a tree and such that V (T ) = V (G).

Proposition 11.1.5. Each connected graph has a spanning tree.

Proof for finite graphs. . Let

T := {T ⊆ G tree}.

This is an ordered set with respect of the inclusion of graphs. Since G is finite, it has
finitely many subgraph so T is finite. Hence it has a maximal element T . We need to
show that T is a spanning tree. Suppose by contradiction that there is v ∈ V (G) such
that v /∈ V (T ). Choose w ∈ V (T ). Since G is connected there is a path (v0, . . . , vn)
with v0 = v and vn = w. Let n ≥ k > 0 minimal with the property that vk ∈ V (T ).
By adding the edge {vk−1, vk} to T we get a bigger tree inside G, contradicting the
maximality of T . We conclude that that v ∈ T . ■

Theorem 11.1.6. The following are equivalent for a graph G:

1. G is a tree;
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2. for every two dinstinct vertices v and w there is a unique path from v to w.

If furthermore G is finite we have that these two conditions are equivalent to

3. G is a connected and |V (G)| = |E(G)|+ 1.

Proof. Let x ≠ y twp vertices in G and assume that there are two different path from x

to y, (v1, . . . , vn) and (w1, . . . , wk). Let

i := min{j |vj ̸= wj},

and let
I := min{j > i vj = wm for some m > i}

Then the walk (vi−1, vj , . . . , vI = wk, wm−1, . . . , wi−1 = vi−1) is a cycle in G, thus G is
not a tree.
Conversely suppose that G is not a tree and let (x, v2, . . . , vn, x) a cycle. Then (x, v2)
and (x, vn, vn−1, . . . , v2) are two different path between x and v2.
Assume now that G is finite, we are going to show that 1. is equivalent to 3.
To this aim suppose that G is a tree, then it is either trivial or it has a terminal vertex.
In fact, if (v1, . . . , vn) is a path of maximal length in G we have that vn can be adjacent
only to vn−1: it certainly it cannot be adjacent to one of the other vis or the graph
would have a cycle; it cannot be adjacent to a vertex not appearing in the path because
this will contradict the maximality of the chosen path. We reason now by induction on
the number of edges of G. If |E(G)| = 0, since G is connected, we have that G is trivial.
Suppose that the statement is true for trees with at most k edges, and let us prove it
for |E(G)| = k + 1|. Let e an extremal edge in G (that is the only edge connecting a
terminal vertex to the rest of the graph). The graph G− e is still a tree, and we have
that |E(G− e)| = k and V (G− e) = V (G)− 1. By induction we have that

|E(G)| = |E(G− e)|+ 1 = |V (G− e)| − 1 + 1 = V (G)− 1

as we wanted.
Conversely, suppose now that |V (G)| = |E(G)|+ 1. By Proposition 11.1.5, we know that
G has a spanning tree T . We have that E(T ) ⊆ E(G) and

|E(T )| = |V (T )| − 1 = |V (G)| − 1 = |E(G)|.

Since E(T ) and E(G) are finite sets, we conclude that E(T ) = E(G) and, in particular,
G is a tree. ■

11.2 Spanning tree of a rooted tree

Definition 11.2.1 (Rooted tree). A rooted tree is a pair (T, r) with T a tree and r a
(distinguished) vertex of T , called root.

Example 11.2.2. In the tree of Example 11.1.2 it is natural to choose ∗ as root.

Definition 11.2.3 (Directed tree). A directed tree is a directed graph whose underlining
undirected graph is a tree.
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Proposition 11.2.4. Let (T, r) a rooted tree. There is only one orientation of its edge
such that the incoming degree of v is 0 and the incoming degree of all the other vertices
is 1.

Proof for T finite. For any edge {v, w} there are unique paths (r, v2, . . . , vn = v) and
(r, w2, . . . , wk = w) connecting r with v and w respectively. Then either vn−1 = w -
in which case we orient {v, w} as (w, v) - or wk−1 = v - in which case we orient the
edge as (v, w). This clearly gives an orientation of T in which the icoming degree of
r is 0, or we would have a cycle in T . The unicity of the path connecting r with any
vertices ensures that the incoming degree of any other vertex is 1. Suppose now that
there is now that there is another orientation of the edges with the desired property, and
let (r = v1, v2, · · · , vn) a path such that {vn−1, vn} is orientated differently in the two
orientations. We can take it of be of minimal length with this property. Since in both
orientations the incoming degree of r is 0 we have that n ≥ 3. But then we will have
that the incoming degree of vn−1 is at least 2 in the new orientation as both the edge
{vn−2, vn−1} and {vn−1, vn} would be oriented in such a way that vn−1 is the range.
Thus we get a contradiction. ■

Definition 11.2.5 (Leaf, child, parent). In a tree a terminal vertex is called leaf. All
other vertices are called internal vertices.
If (T, r) is a rooted tree and v ∈ V (T ) is any vertex, the level of v , lv(v) is the length
of the unique path connecting r with v.
Given two adjacent vertices v and w, we say that v

• is a child of w if lv(v) > lv(w);

• is a parent of w if lv(v) < lv(w).

We can get the obvious notions of descendants and ancestors of a given vertex.

Lexicographical order

In order to run Depth-first type search algorithm on tree we have to assign an order to
its vertices. A very natural order can be constructed as follows.

Consider first the rooted tree (A, ∗) of Example 11.1.2 where Ak = {1, . . . , mk}.
Then we say that

(a1, . . . , ak) < (b1, . . . , bl)

if one of the following conditions are satisfied

• either k < l and ai = bi for every i < k;

• or I := min{i |ai ̸= bi} < k and aI < bI

A lexicographical order on a rooted tree (T, r) is an order induced by a graph
homomorphism f : T → A which sends r to ∗.

Proposition 11.2.6. Given any tree it admits a lexicographical order.

Now given T a graph G and {v1, . . . , vn} and enumeration of its vertices, we can see
in Algorithm 1 how one can run a depth first search in order to create a spanning tree.
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Algorithm 1 Depth First algorithm to find a spanning tree
Require: G = (V, E), V = {v1, . . . , vn}

T ← ({v1}, ∅)
v ← v1
if ∃ i such that {v, vi} ∈ E(G)\E(T ) then

T ← T + {v, vi} ▷ Take i minimal with this property
v ← vi

else
Replace v by its parent.

end if
if v = v1 then
end if
EXIT
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Weighted graphs and shortest path

Definition 12.0.1 (Weighted graph). A weighted graph is a graph G = (V, E) together
with a function w : E → R+.
Given a path p = (v1, vn) in a weighted graph (G, w), the length of the path is

l(p) :=
n−1∑
i=1

w({vi, vi+1}).

Given a weighted graph (G, w) we can define a pseudo-distance

d : V (G)× V (G)→ R≥0 ∪ {∞}

in the following way

d(v, w) := inf{l(p) | p is a path from v to w},

where l((v)) is considered to be 0 and inf ∅ is ∞

Proposition 12.0.2. The function d defines a pseudo-distance on V (G). That is the
following are satisfied:

1. d(v, w) = 0 if and only if v = w;

2. d(v, w) = d(w, v) for every v, w ∈ V (G); and

3. d(v, w) ≤ d(v, u) + d(u, w) for every u, v, w ∈ V (G)

Exercise 12.0.3. Prove the Proposition.
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Remark 12.0.4 (Convention). The weight function w can be extended to function, that
we will still denote by w, V (G)× V (G)→ R≥0 ∪ {∞} by setting

w(v, w) =
{

w({v, w}) if {v, w} ∈ E(G)
∞ otherwise.

We are now going to illustrate Dijkstra shortest path algorithm (see Algorithm
2) which has as input a weighted graph (G, w) and a starting vertex v1. It gives as output
a function

f : V (G)→ (R≥ ∩∞)× (V (G) ⊔ {∗})

where f(v) = (d(v1, v), u(v)) with (v1, . . . , u2(v), u(v), v) a shortest path from v1 to v. If
f(v) = ∗ we have that either d(v1, v) = 0 and thus v = v1 or d(v, v1) =∞ and there is
no path from v1 to v, that is v does not belong to the same connected component as v1.

In explaining the algorithm we will denote f(v) = (D(v), L(v))

Algorithm 2 Dijkstra shortest path algorithm
Require: G = (V, E), v1 ∈ V (G) and w weight function

S ← {v1}
D(v1)← 0
D(v) =∞ for all other v ̸= v1
L(v)← ∗ for all v
while |S| < |V (G)| do ▷ Exit condition

for v ∈ V (G)\S do
if ∃ u ∈ S such that D(u) + w(u, v) ≤ D(v) then

D(v)← minu∈S{(D(w) + w(w, v), w)}
L(v)← u, with u such that D(u) + w(u, v) is minimal.

end if
end for
if For all v ∈ V (G)\S we have that D(v) =∞ then

EXIT ▷ This means that no replacement has taken place, thus we cannot reach
any further vertex from v1

else
w ← v such that v ∈ V (G)\S and L(v) is minimal
S ← S ∪ {w}

end if
end while

Remark 12.0.5. Observe that this algorithm give us a unique path connecting v1 to any
other vertex, thus if G is connected we get a spanning tree.

Idea of the proof of the correctness of the algorithm. The Algorithm terminate because
either S grows at every iteration or the algorithm has a forced exit. The face that it
provide with a shortest path can be proven by induction on the number of edges of the
path returned. ■
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Minimal Spanning Trees

Definition 12.0.6 (Minimal spannig tree). Given (G, w) a weighted connected graph a
minimal spanning tree is a spanning tree T for G such that

w(T ) =
∑

e∈E(T )

w(e)

is minimal.

We are going to give two algorithm to find a minimal spanning tree of a graph.

Kruskal’s Algroithm

Kruskal’s algorithm (see Algorithm 3) takes as input a weighted graph (G, w) and gives
as output a subset S ⊆ E(G) such that (V (G), S) is a minimal spanning tree for G.

Algorithm 3 Kruskal’s Algroithm
Require: G = (V, E), and w weight function

S ← ∅
while |S| < |V (G)| − 1 do ▷ Exit condition

Let e ∈ E(G)\S, such that w(e) is minimal and that (V (G), S) is a forest.
S ← S ∪ {e}

end while

Idea of the proof of correctness. As long as |S| < |V (G)| − 1 there is a vertex that is not
"touched’ by any edge in S, thus we can find an edge e such that S ∪ {e} is a forest. As
S grows at every iteration the algorithm terminates.

It remain to show that the output is really a minimal spanning tree for G. To this aim,
let n = |V (G)| and S = {e1, . . . , en−1} where the edges have been enumerated following
the order in which they had been "chosen’ by the algorithm. Since |S| = |V (G)| − 1, by
Theorem 11.1.6 Let T ′ a minimal spanning tree such that

d(T, T ′) := max{i | {e1, . . . , ei} ⊆ E(T ′)}

is maximal. We have to show that d(T, T ′) = n− 1, as this would imply that T = T ′

and thus T is a minimal spanning tree.
Assume by contradiction that d(T, T ′) = d < n− 1, then the graph T ′ + ed+1 contains
a cycle since, again by Theorem 11.1.6, it cannot be a tree. Thus there is an edge e,
lying on this cycle such that e is not an edge of T . Let T ′′ = T + ed+1 − e. We have
that T ′′ is a spanning tree since it is connected and has n vertices and n− 1 edges. Now
the edges {e1, . . . , ed, e} in T ′ yiled a forest, and by the choice of the algorithm we have
necessarily that w(e) ≥ w(ed+1). Thus we get that

w(T ′′) =
∑

f∈E(T ′′)

w(f) =
∑

f∈E(T ′)

w(f)

︸ ︷︷ ︸
=w(T ′)

−w(ed+1) + w(e)︸ ︷︷ ︸
≤0

≤ w(T ′)

Since W (T ′) is minimal, we get that w(T ′′) = w(T ′) and necessarily w(ed+1) = w(e).
But then d(T, T ′′) = d + 1 > d(T, T ′) contradicting our choice of T ′. ■
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Prym’s Algorithm

Prym’s algorithm (see Algorithm 3) takes as input a weighted graph (G, w) and gives as
output a subset S ⊆ E(G) such that (V (G), S) is a minimal spanning tree for G.

Algorithm 4 Prym’s Algroithm
Require: G = (V, E), v ∈ V (G) and w weight function

S ← ∅
P = {v}
while |P | < |V (G)| do ▷ Exit condition

Let u ∈ P , w ∈ V (G)\P such that w(u, w) is minimal
P ← P ∪ {w}
S ← S ∪ {{u, w}}

end while
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Max flow and min cut theorem

Lecture Plan
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13.1 Definitions and preliminary results

Definition 13.1.1 (Transport network). A transport network, or simply network, is
given by a pair (G, c), where G is a directed graph and c : V (G)× V (G)→ N a function
such that

1. there is a vertex a, called the source, with incoming degree 0;

2. there is a vertex z, called the sink, with outgoing degree 0;

3. the wight c, called capacity takes non-negative integer values and satisfies
c(v, w) = 0 if (v, w) /∈ E(G).

Definition 13.1.2 (Flow). Let N = (G, c) a transport network with source a and sink z.
A flow is a function f : V (G)× V (G)→ N such that

1. f(v, w) = 0 if (v, w) /∈ E(G).

2. f(v, w) ≤ c(v, w) for every (v, w) ∈ V (G)2;

3. (Balancing condition) for every vertex v ̸= a, z we have that∑
w∈V (G)

f(v, w) =
∑

w∈V (G)

f(w, v)

.

The last condition means that new material is created only at the source and material
goes out just at the sink.

Definition 13.1.3 (Value of a flow). Given a network N = (G, c) with source a and sink
z, and a flow f , the value of the flow f is

Val(f) =
∑
v∈V

f(a, w).
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13. Max flow and min cut theorem

Our goal in this chapter is to give an algorithm to find a flow with a maximum
value. To this aim we will need to introuduce the following notions:

Definition 13.1.4 (Cut). A cut of a transport network N = (G, c) is a two sets partition
(P, P c) of the vertices of G such that the source a is in P and the sink z is in P c. Given
a network N and a cut (P, P c) the capacity of the cut is∑

v∈P,
w∈P c

c(v, w).

We can use cuts to compute the value of a flow:

Lemma 13.1.5. Let N = (G, c) a network and (P, P c) a cut. Given a flow f on N , we
have that

Val(f) =
∑

v∈P c,
w∈P

(f(w, v)− f(v, w))

Proof. Since the incoming degree of the source a is zero we can write

Val(f) :=
∑

v∈V (G)

f(a, v) =
∑

v∈V (G)

(f(a, v)− f(v, a))

Now we huse the balancing condition and some algebra:

Val(f) =
∑

v∈V (G)

(f(a, v)− f(v, a))

=
∑

v∈V (G)

(f(a, v)− f(v, a)) +
∑

w∈P,
w ̸=a

∑
v∈V (G)

(f(w, v)− f(v, w))

︸ ︷︷ ︸
=0

=
∑

v∈V (G)

(f(a, v)− f(v, a)) +
∑

v∈V (G)

∑
w∈P,
w ̸=a

(f(w, v)− f(v, w))

=
∑

v∈V (G)

f(a, v)− f(v, a) +
∑

w∈P,
w ̸=a

(f(w, v)− f(v, w))


=

∑
v∈V (G)

(∑
w∈P

(f(w, v)− f(v, w))
)

=
∑
v∈P

(∑
w∈P

(f(w, v)− f(v, w))
)

+
∑

v∈P c

(∑
w∈P

(f(w, v)− f(v, w))
)

=
∑
v∈P,
w∈P

f(w, v)−
∑
v∈P,
w∈P

f(v, w)

︸ ︷︷ ︸
=0,

they cancel

+
∑

v∈P c,
w∈P

f(w, v)−
∑

v∈P c,
w∈P w∈P

f(v, w)

=
∑

v∈P c,
w∈P

(f(w, v)− f(v, w))

■
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13.2. The max flow min cut theorem

As an easy corollary we see that we can compute the value of the flow using the
sink, instead of the source:

Corollary 13.1.6. Given a network N = (G, c) with sink z, and a flow f we have that

Val(f) =
∑

v∈V (G)

f(v, z).

Proof. Apply Lemma 13.1.5 to the cut P = V (G)\{z}, P c = {z}, and use that the
outgoing degree of z is 0 and f(z, z) = 0 since the network has no loop. We get:

Val(f) =
∑
v ̸=z

f(v, z)− f(z, v)︸ ︷︷ ︸
=0


=
∑
v ̸=z

f(v, z) + f(z, z)︸ ︷︷ ︸
=0

=
∑

vV (G)

f(v, z).

■

13.2 The max flow min cut theorem

Another important application of Lemma 13.1.5 is that we can use it to compare the
value of a flow with the capacity of a cut

Proposition 13.2.1. Given a network N = (G, c) with a cut (P, P c) and a flow f , we
have that

Val(f) ≤ c(P, P c).

Proof. We have that

Val(f) =
∑

v∈P c,
w∈P

(f(w, v)− f(v, w))

≤
∑

v∈P c,
w∈P

f(w, v)

≤
∑

v∈P c,
w∈P

c(w, v) = c(P, P c).

■

Observe that, if we find a flow f and a cut (P, P c) such that

Val(f) = c(P, P c),

then we will have that Val(f) is maximal among all the values of possible flows, and at
the same time c(P, P c) will be minimal among all the possible values taken by a capacity
of a cut. The max flow and min cut theorem, states that this is alwasy the case: that
is, a flow f has maximal value if and only if there is a cut such with capacity equal to
Val(f). More precisely
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13. Max flow and min cut theorem

Theorem 13.2.2 (Max Flow Min Cut Theorem). For a transport network N , the max
value of a flow equals the min value of a capacity of a cut.

The proof of this result will take the remainder of this lecture, and it will be divided
in serveral substeps:

Lemma 13.2.3. Let N = (G, c) be a network with a flow f and a cut (P, P c). Then
Val(f) = c(P, P c) if, and only if, the following conditions are satisfied:

1. for every (v, w) ∈ E(G) such that v ∈ P c and w ∈ P we have that f(w, v) = c(w, v);

2. for every (v, w) ∈ E(G) such that v ∈ P c and w ∈ P we have that f(v, c) = 0.

Proof. In the proof of Proposition 13.2.1 we had the following chain of inequalities:

Val(f) =
∑

v∈P c,
w∈P

(f(w, v)− f(v, w))

≤
∑

v∈P c,
w∈P

f(w, v) (13.1)

≤
∑

v∈P c,
w∈P

c(w, v) = c(P, P c). (13.2)

We have that Val(f) = c(P, P c) if, and only if, both (13.1) and (13.2) are equallities.
But (13.1) is an equality if and only if condition 1. holds, and (13.2) is an equality if,
and only if, condition 2. holds. Thus we can conclude. ■

Definition 13.2.4 (Chain, backward and froward edges). A chain on a directed graph G

is path on the underlining undirected graph, that is it is a sequence of vertices (v1, · · · , vn)
such that vi ∼ vi+1 for every i = 1, . . . , n− 1. We say that an edge of a chain (vi, vi+1)
is a forward edge if (vi, vi+1) ∈ E(G). Otherwise, if (vi+1, vi) ∈ E(G) we say that
(vi, vi+1) is a backward edge.

Definition 13.2.5 (Augmenting path). Given a network N = (G, c) with source a and
sink z, and a flow f , a chain p = (v1, . . . , vn) with v1 = a and vn = z is an augmenting
path for f or an f-augmenting path if

1. f(vi, vi+1) < c(vi, vi+1) for every forward edge(vi, vi+1), and

2. f(vi, vi+1) > 0 for every backward edge (vi, vi+1).

Augmenting paths are crucial for our purpose. First if they do not exist, then we
can produce a cut with the capacity of the flow value, thus we have a maximum flow.

Lemma 13.2.6. Given a network N = (G, c) and a flow f such that no f-augmenting
path exist, then there is a cut (P, P c) such that Val(f) = c(P, P c). In particular Val(f)
is maximal.
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13.2. The max flow min cut theorem

Proof. Define the set P as follows

P :=


v ∈ V (G) | there is a chain (v1, . . . , vn)such that:
1) v1 = a, vn = g;
2) f(vi, vi+1) < c(vi, vi+1) for every forward edge (vi, vi+1);
3) f(vi, vi+1) > 0 for every backward edge (vi, vi+1);


Now a ∈ P since we can consider the chain (a). On the other side z /∈ P since otherwise
we would have an f -augmenting path in N . Thus we have a defined a cut. We shall
now show that c(P, P c) = Val(f) by applying Lemma 13.2.3. Take v ∈ P and w ∈ P c.
Suppose first that (v, w) ∈ E(G). Then we will have that f(v, w) = c(v, w). Otherwise,
consider a chain (a, . . . , v) in N such that

1. f(vi, vi+1) < c(vi, vi+1), for every forward edge (vi, vi+1), and

2. f(vi, vi+1) > 0, for every backward edge (vi, vi+1).

This exist because v ∈ P . If f(v, w) < c(v, w) we can prolong the chain to the chain
(a, . . . , v, w) which still satisfies 1. and 2. above, thus we would have that w ∈ P ,
reaching a contradiction.
In the same way, suppose now that (w, v) ∈ E(G). If f(w, v) > 0, we can prolong a chain
(a, . . . , v) to a chain (a, . . . , v, w) which still satisfies 1. and 2. above contradicting again
that w ∈ P c. In particular we have that the flow f and the cut P we just constructed,
satisfy the condition of Lemma 13.2.3. Thus Val(f) = c(P, P c) as we wanted. ■

This result tells us that , in order to find a maximum flow we have to modify a flow
in such a way that no f -augmenting path exist. To this aim we introduce the following
numerical invariants associated to a network a flow and an f -augmenting path.

Definition 13.2.7 (∆e). Let N = (G, c) a network, f a flow and p = (v1, . . . , vn) and
f -augmenting path. For every edge e = (vi, vi+1) in p we set

∆e :=
{

c(vi, vi+1)− f(vi, vi+1) if e is forward
f(vi, vi+1) if e is backward.

Observe that, since p is an f -augmenting path, we have that ∆e > 0. In particular
if we set

∆p := min{∆e | e is an edge in p},

we will have that ∆p > 0 for every p f -augmenting path. We will use this number ∆p to
increase the value of a given flow:

Lemma 13.2.8. Consider a network N = (G, c) with a flow f and an f -augmenting path
p. Then the function g : V (G)× V (G)→ N defined by

g(v, w) :=


f(v, w) + ∆p if (v, w) is a forward edge in p

f(v, w)−∆p if (w, v) is a backward edge in p

f(v, w) if (v, w) is not an edge in p

gives a flow on N with Val(g) = Val(f) + ∆p
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13. Max flow and min cut theorem

Proof. We first check that g is a flow. Let (v, w) an edge in E(G). If this does not
appears in the chain we have that g(v, w) = f(v, w) ≤ c(v, w). If this appears in p as a
forward edge, we have that

g(v, w) = f(v, w) + ∆p ≤ f(v, w) + c(v, w)− f(v, w) = c(v, w).

Finally, if (v, w) is a backward edge in p then we have that g(v, w) ≤ f(v, w) ≤ c(v, w).
In any case we get that g(v, w) ≤ c(v, w). Next we have to check the balancing condition.
Since the flow has been modified only in edges in pwe have to see that this still holds for
vertices which appears in p. Let, then, vi be a vertex appearing in P vi ̸= a, z. There
are 4 different cases, listed below and illustrated in Figure 13 at page 717 of the book.

1. Both (vi−1, vi) and (vi, vi+1) are forward edges in p. In this case we have that∑
w∈V (G)

g(w, vi)− g(vi, w) =
∑

w∈V (G)
w ̸=vi−1,vi+1

(f(w, vi)− f(vi, w))

− (f(vi, vi+1) + ∆p) + f(vi+1, vi)︸ ︷︷ ︸
=0

− f(vi, vi−1)︸ ︷︷ ︸
=0

+(f(vi−1, vi) + ∆p)

=
∑

w∈V (G)

f(w, vi)− f(vi, w) = 0.

2. Both (vi−1, vi) and (vi, vi+1) are backward edges in p. In this case we have that∑
w∈V (G)

g(w, vi)− g(vi, w) =
∑

w∈V (G)
w ̸=vi−1,vi+1

(f(w, vi)− f(vi, w))

+ (f(vi+1, vi)−∆p)− f(vi, vi+1)︸ ︷︷ ︸
=0

+ f(vi−1, vi)︸ ︷︷ ︸
=0

−(f(vi, vi−1)−∆p)

=
∑

w∈V (G)

f(w, vi)− f(vi, w) = 0

3. The edge (vi−1, vi) is forward and the edge (vi, vi+1) is backward. Then we have∑
w∈V (G)

g(w, vi)− g(vi, w) =
∑

w∈V (G)
w ̸=vi−1,vi+1

(f(w, vi)− f(vi, w))

+ (f(vi+1, vi)−∆p)− f(vi, vi+1)︸ ︷︷ ︸
=0

− f(vi, vi−1)︸ ︷︷ ︸
=0

+(f(vi, vi−1) + ∆p)

=
∑

w∈V (G)

f(w, vi)− f(vi, w) = 0
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13.2. The max flow min cut theorem

4. The edge (vi−1, vi) is backward and the edge (vi, vi+1) is forward. Then we have∑
w∈V (G)

g(w, vi)− g(vi, w) =
∑

w∈V (G)
w ̸=vi−1,vi+1

(f(w, vi)− f(vi, w))

− (f(vi, vi+1) + ∆p) + f(vi+1, vi)︸ ︷︷ ︸
=0

+ f(vi−1, vi)︸ ︷︷ ︸
=0

−(f(vi, vi−1)−∆p)

=
∑

w∈V (G)

f(w, vi)− f(vi, w) = 0

Thus g also satisfies the balancing condition and thus it is a flow. We now have to
compute the value of the flow. Observe that, since the ingoing degree of the source a is
0, we have that the edge (a, v2) in the f -augmenting path p is forward. Therefore we get

Val(g) :=
∑

v∈V (G)

g(a, v)

=
∑

v∈V (G)
v ̸=v2

g(a, v) + g(a, v2)

=
∑

v∈V (G)
v ̸=v2

f(a, v) + f(a, v2) + ∆p = Val(f) + ∆p.

■

We are now ready to conclude the proof of the Max flow min cut theorem

Proof of Theorem 13.2.2. Fix (P, P c) any cut. Since Val(f) is an integer less that
c(P, P c), by Lemma 13.2.1 we have that the set

{Val(f) | f is a flow on N}

has a maximum value that we will denote by M . Let f a flow such that M = Val(f).
By Lemma 13.2.8 we have that there is no augmenting path for f , otherwise we could
find a flow g with an higher value. We conclude, by applying Lemma 13.2.6, that there
is a cut (P , P

c such that
Val(f) = c(P , P

c
.)

■

The strategy to use f -augmenting paths in order to modify the flow f to one with a
bigger value can be implemented algorithmically. The Edmond-Karp Algroithm allows
to find an f -augmentig path with the smallest possible number of edges. The Ford-
Fulkerson Algorithm takes a flow as input, uses the Edmond-Karp Algroithm to find
an f -augmenting path, compute the ∆p of this path, and changes the flow accordingly.
When no f -augmenting path can be found it return the value of the flow and runs again
the Edmond-Karp Algorithm to find the cut associated with the maximum flow.
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Finite geometry and Latin squares

Lecture Plan
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Producing orthogonal latin squares with modular algebra . . . . 70
Connection with finite geometry . . . . . . . . . . . . . . . . . . 71

14.1 Finite Affine Planes

Definition 14.1.1 (Finite affine plane). A finite affine plane is given by a pair (P,L),
with P a finite set and L ⊆P(P ) such that they verify the following axioms:

1. For every P and Q distinct elements in P there is a unique l ∈ L such that
l ⊇ {p, q}.

2. (Euklides V) For every l ∈ L and every P ∈ P with P /∈ l there is a unique l′ in L
such that P ∈ l′ and l ∩ l′ = ∅.

3. (Non degeneracy assumption) There are 4 distinct elements P1, . . . , P4 in P such
that there is no l ∈ L containing any 3 of them.

We call the elements of P points, while the elements of L are called lines.

Let F a finite field. Take a and b in F and consider the following subsets of F2:

• la,b := {(x, y) ∈ F2 | y = ax + b}, for a and b in F, not both 0.

• la := {(a, y) ∈ F2}, for a ∈ F

Theorem 14.1.2. If F is not trivial, then the pair
(
F2,L := {la,b, la |a, b ∈ F}

)
, is an

affine plane. We will denote it by A2(F).

Proof. First Axiom Let Pi = (xi, yi), i = 1, 2, be two distinct points in F2. We consider
separately the cases when x1 = x2 and x1 ̸= x2.
If x1 = x2 clearly the line lx1 contains both (x1, y1) and (x2, y2). We have to show that
there is no other line that contains both of them. Clearly if a ̸= x1 then the line la does
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14. Finite geometry and Latin squares

not contain neither P1 nor P2. Suppose now by contradiction that there exist a line of
the form la,b containing both P1 and P2. Then we have

y1 = ax1 + b = ax2 + b = y2,

contradicting that P1 and P2 are taken to be distinct.
Suppose now that x1 ̸= x2. Since F is a field and x1−x2 ≠ 0F , there exist (x1−x2)−1 ∈ F.
Let

a := (y1 − y2)(x1 − x2)−1, and b := −x1(x1 − x2)−1 + y1.

Then one can easily verify that la,b contains boths P1 and P2. It is immediate to check
that no line of the form la′ with a′ ∈ F contains both P1 and P2, thus we only have to
check that no other line of the form la′,b′ contains both points. Suppose by contradiction
that there is a line la′,b′ containing both P1 and P2. The we would have

ax1 + b = a′x1 + b′ (14.1)
ax2 + b = a′x2 + b′. (14.2)

By taking differences on both RHS and LHS of (14.1) and (14.2) we get that

a(x1 − x2) = a′(x1 − x2).

Since F is a field and by assumption x1 ̸= x2 we get that a = a′. By plugging this inside
(14.1) we have that

ax1 + b = ax2 + b′

and thus b = b′.

Euklides V: Let l a line and P = (x1, y1) a point outside l. We will construct the
line l′ passing through P and not intersecting l. We split our construction in two cases,
considering separately when l is of the form la, and l is of the form la,b.
Suppose that l = la, then, since P /∈ l we have that x1 ≠ a. The line lx1 passes through
P and does not intersect l. Suppose that there is another line l′ through P , that does
not intersect l. Since lx1 is the only line of this form that contains P , the l′ has to be of
the form la′,b′ . But this line contains the point (a, a′a + b) which lies in l, giving us a
contradiction.
Suppose now that l is of the form la,b. Since P is not in l, we have that

y1 ̸= ax1 + b. (14.3)

.The line la,y1−ax1 passes through P . Suppose that this line intersect la,b in a point
(x0, y0), then we would have

b = y0 − ax0 = y1 − ax1,

contradicting (14.3). Thus we have constructed a line through P not intersecting l. We
have to show that this is unique. Let l′′ another line not intersecting l and containing
P . As lines of the form la′ intersect l in the point (a′, aa′ + b) we have necessarily
that l′′ = la′,b′ for some a′ and b′ in F. If a ≠ a′, then the two lines intersect in the
point

(
(b′ − b)(a− a′)−1, a(b′ − b)(a− a′)−1 + b

)
, thus a = a′. But then we have that

b′ = y1 − ax1, or otherwise l′′ could not contain P , thus we have that l′′ = l′, and the
proof is complete.
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Non degeneracy As a nontrivial field always contains two distinct elements 0F and
1F , we have that F2 contains at least four distinct elements: (0F , 0F ), (1F , 0F ), (0F , 1F ),
and (1F , 1F ). We have that:

• (0F , 0F ) is contained in lines of the form l0F
or la,0F

, with a ̸= 0.

• (0F , 1F ) is contained in lines of the form l0F
or la,1F

.

• (1F , 0F ) is contained in lines of the form l1F
or la,−a with a ̸= 0.

• (1F , 1F ) is contained in lines of the form l1F
or la,1F −a. Thus we see that no line

can contain 3 of these 4 points.

■

Example 14.1.3. In figure 14.1 you can see depicted A(F3).

1 2 3

4 5 6

7 8 9

Figure 14.1: Affine plane on F3

Definition 14.1.4 (Parallel lines). Given a finite affine plane (P,L) we say that two lines,
l and l′, are parallel if either l = l′ or l ∩ l′ = ∅. If l is parallel to l′ we write

l//l′.
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Proposition 14.1.5. Being parallel is an equivalence relation.

Proof. The reflexivity and symmetry of the relation are clear, thus we have just to prove
transitivity. To this aim suppose that we have three line l1, l2 and l3 such that l1 is
parallel to l2 and l2 is parallel to l3. Suppose first that l1 = l2. Then clearly we have
that l1 is parallel to l3. We can, then, assume that l1 ∩ l2 = ∅. If l3 = l2 we can deduce
immediately that l1 ∩ l3 = ∅, and so that l1 is parallel to l3. Thus we can assume that
l2 ∩ l3 = ∅. Suppose by contradiction that there is a point P ∈ l1 ∩ l3. As P /∈ l2, we
have that both l1 and l3 are line thourgh P that do not intersect l2. By Euklides V
axiom we have that l1 = l3 and the proof is complete. ■

We call the equivalence classes of this equivalence relation parallelity classes. In figure
14.1 lines in the same parallelity classes have been drawn in the same color (but with
different styles). We notice that there are 4 parallelity classes, each of one containing 3
lines. Every line passes through 3 points and there is a total of 12 lines. This is a special
case of the very general statement below.

Theorem 14.1.6. Given a finite affine plane X = (P,L), then there is an integer n ≥ 2
such that

• Every line in X contains exactly n points.

• Every point of X is contained in exactly n lines.

• There are exactly n + 1 parallelity classes in X, each containing exactly n lines.

• There are n2 + n lines in X.

• There are n2 points in X.

Definition 14.1.7 (Rank of a finite affine plane). Given a finite affine plane X, the number
n such that every line contains exactly n points is called the rank of X.

Before proceeding with the proofs, we need to show some preliminary results.

Lemma 14.1.8. Every finite affine plane X = (P,L) has at least 3 parallelity classes.

Proof. Let Pi, with i = 0, . . . 3, be the four points prescribed by the nondegeneracy
axiom. Let li denote the unique line through the points P0 and Pi with i = 1, 2 and 3.
We claim that the lines li are not parallel with each other. In fact, since they all contain
the point P0, if two of them were to be parallel, they would be equal. But this would
imply that there would be a line in X through three of the point P0, . . . , P4 contradicting
the nondegeneracy axiom. ■

Lemma 14.1.9. Let X be a finite affine plane. Suppose that a parallelity classes in
X contains exactly m distinct lines. If l does not belong to the parallelity class then l

contains exactly m points.

Proof. Let l1, . . . , lm distinct line in the parallelity class. As l is not parallel to any of
those we have that l ∩ li consist of exactly one point Pi, and the points Pi are distinct
or the lines li cannot be distinct. By Euklides V axiom we have that P = ∪m

i+1li. In
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fact let Q a point in X, if it is not in any of the li, then there should exist a new line l′

containing Q and parallel to the li, and this would contradict the fact that the parallelity
classes consists of m distinct lines. In particular we have that

l = l ∩X = ∪m
i=1l ∩ li = {P1, . . . , Pm}.

■

Proof of Theorem 14.1.6. By Lemma 14.1.8 there are at least 3 parallelity classes in X.
Let l1, l2, and l3 be arbitrary lines in different parallelity classes. Denote by ni the size
of the line li, and mi the size of the parallelity classe of the line li.

By Lemma 14.1.9 we have that, for i ̸= j, mi = nj . In particular n1 = m2 = n3
and n1 = m3 = n2. As the lines were taken to be arbitrary, we can conclude that
n1 = n2 = n3. We will denote this value simply by n.

Again as a consequence of Lemma 14.1.9, we get that m1 = m2 = m3 = n. In
particular every parallelity classes consists of n lines and in totla there are n2 points in
X. Since |X| ≥ 4 by the non-degeneracy axiom, we have that n ≥ 2.

Now we construct n + 1 lines passing through a point P ∈ X. Let P a point in X

and l a line through P . As n ≥ 2 there is another line l′, distinct from l, and parallel
to it. For each Q ∈ l′ we consider lQ, the only line containing both Q and P . These
are pairwise distinct. In fact, suppose otherwise that lQ = lQ′ for distinct points Q and
Q′. As l′ is the only line through Q and Q′ we would have that l′ passes through P ,
contradicting our choice of l′. These are also distinct from the line l. If l = lQ for some
point Q in l′ we would have l ∩ l′ ≠ ∅, contradicting again our choice of l′. As l′ contains
n points we have constructed n + 1 lines passing through P . We want to show that no
other line contains P . But if l′′ is a line through P , there are two cases: either it is
parallel to l′ or not. If the first, then, by Euklides IV axiom, we have that l = l′′. If the
latter, then l′′ ∩ l′ will consists of just one point Q, and by the first axiom we will have
that l′′ = lQ.

■

14.2 Latin squares

Definition 14.2.1 (Latin Square). Let n a positive integer. A latin square of size n is
a table with n rows and n columns in which n different symbol appears. Every symbol
must appears exactly once in every row and every column.

For our purposes, the set of available symbols will always be either {1, . . . , n} or
{0, 1, . . . , n − 1}. We say that a latin square is in standard form if its first row is
(1, 2, . . . , n) (or (0, . . . , n− 1) for the other choice of symbols)† Every latin square can be
reduced in standard form by permuting / relabeling the symbols.

Example 14.2.2. Suppose that the set of symbol is S := {0, 2, . . . , n − 1}. Then the
assignation

aij = i + j − 2 mod n for i, j = 1, . . . n

†Given any set of symbols S, and a complete ordering <, we say that a latin squre is in standard
form if and only if the first row is (s1, . . . , sn) with s1 < s2 < · · · < sn.
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gives a latin square in standard form. If furthermore m is an integer such that
gcd(n, m) = 1, then the assignation

bij = m(i− 1) + j − 1 mod n for i, j = 1, . . . n

gives a latin square in standard form.

Definition 14.2.3 (Orthogonal Latin Squares). Two latin squares A = (aij) and B = (bij)
of size n are orthogonal if the set

{(aij , bi,j | i, j = 1, . . . , n}

has size n2.

This means that every pair of symbols (i, j) appears exactly once.

Theorem 14.2.4. There are at most n− 1 pairwise orthogonal latin squares of size n in
standard form.

Proof. Omitted. ■

Remark 14.2.5. This is just an upper bound: for n = 6 there are no pairwise orthogonal
latin squares in standard form.

Producing orthogonal latin squares with modular algebra

Theorem 14.2.6. If n = pt with p a prime and t > 1 an integer, then there are exactly
n− 1 mutually orthogonal latin squares in standard form.

Proof. Let F be the finite field of size n, and let {f1, . . . , fn} an enumeration of its
elements such that fn = 1F and fn = 0F. For m = 2, . . . , n consider the matrix

Lm := (fm · fi + fj)i,j+1,...n.

Since F is a field we have that Lm is a latin square for every m. In fact the following
cancellation laws apply:

• fm · fi + fj = fm · fi + fk ⇒ fj = fk. Thus no element is repeated twice in a row;

• fm · fi + fj = fm · fk + fj ⇒ fi = fk. Thus no element is repeated twice in a
column.

The first row of each of these latin square is (fj)j=1,...,n, so these are in standard form.
Clearly the Lm are distinct: the element in position (n, 0) is exactly fm, and it varies
for every m. In order to conclude our proof, we have only to check that these are
mutually orthogonal. To see this we have to show that the following two equations holds
simultaneously when fm ̸= fk if and only if fi = fr and fj = fs:

{
fk · fi + fj = fk · fr + fs

fm · fi + fj = fm · fr + fs

(14.4a)
(14.4b)
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By subtracting (14.4a) to (14.4b) we get

(fm − fk)fi = (fm − fk)fr

Which yields fi = fr. By plugging this in into (14.4a) we get that fj = fs. ■

Remark 14.2.7. Observe that the proof teaches us how we can construct orthogonal
latin squares. Try to construct 4 orthogonal latin squares of size 5.

Connection with finite geometry

Theorem 14.2.8. Let (P,L) be a finite affine plane of rank n. If c0, . . . , c1 is an
enumeration of its parallelity classes, we can identify every ci with the set n, and
P with n× n by setting P = (i, j) if and only if P is contained in the i-th line of c0 and
in the j-th line of c1. For each k = 1, . . . , n define the matrix L(k) by setting (L(k))ij = l

if, and only if, the point (i, j) is contained in the l-th line of ck. Then the L(k) are n− 1
orthogonal latin squares.

Proof. Ommitted. ■

Corollary 14.2.9. There is no affine plane of rank 6.
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