17

Finite Fields and
Combinatorial
Designs

It is time now to recall the ring structure of Chapter 14 as we examine rings of polynomials
and their role in the construction of finite fields. We know that for every prime p, (Z,, +, -)
is a finite field, but here we shall find other finite fields. Just as the order of a finite Boolean
algebra is restricted to powers of 2, for finite fields the possible orders are p", where p is
a prime and n € Z". Applications of these finite fields will include a discussion of such
combinatorial designs as Latin squares. Finally, we shall investigate the structure of a finite
geometry and discover how these geometries and combinatorial designs are interrelated.
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Polynomial Rings

Definition 17.1

We recall that a ring (R, +, +) consists of a nonempty set R, where (R, +) is an abelian
group, (R, -) is closed under the associative operation -, and the two operations are related
by the distributive laws: a(b + ¢) = ab + ac and (b + ¢)a = ba + ca, for all a, b, c € R.
(We write ab fora - b.)

In order to introduce the formal concept of a polynomial with coefficients in R we let x
denote an indeterminate — that is, a formal symbol that is not an element of the ring R. We
then use this symbol x to define the following.

Givenaring (R, +, -), an expression of the form f(x) = a,x" + a,_1x" ' + - - -+ a;x' +
apx®, where a; € R for all 0 <i <n, is called a polynomial in the indeterminate x with
coefficients from R.

If a,, is not the zero element of R, then a,, is called the leading coefficient of f(x) and we
say that f(x) has degree n. Hence the degree of a polynomial is the highest power of x that
occurs in a summand of the polynomial. The term aox? is called the constant, or constant
term, of f(x).

If g(x) = bpx™ + byy_1x™ " + - .- 4+ b1x' 4 byx"is also a polynomial in x over R, then
f(x)=gx)ifm=nanda; =b; forall0 <i <n.

Finally, we use the notation R[x] to represent the set of all polynomials in the indeter-
minate x with coefficients from R.
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EXAMPLE 17.1

a) Over the ring R = (Zg, +, +), the expression 5x% + 3x' —2x° is a polynomial of
degree 2, with leading coefficient 5 and constant term —2x9. As before, here we are
using a to denote [a] in Zg. This polynomial may also be written as 5x? + 3x! + 4x°
since [4] = [—2] in Zg.

b) If z is the zero element of ring R, then the zero polynomial zx* = z is also the zero
element of R[x] and is said to have no degree and no leading coefficient. A polynomial
over R that is the zero element or is of degree O is called a constant polynomial. For
example, the polynomial 5x° over Z; has degree 0 and leading coefficient 5 and is a
constant polynomial.

For a ring of coefficients (R, +, -), let
f&x) = apx" + a1 x" 4 4 agx! 4 apx®
8(X) = bpx™ + bp_1x™ ' 4+ -+ byx! 4 box,
where a;, b; € R forall 0 <i <n, 0 < j < m. We introduce (closed binary) operations of

addition and multiplication for these polynomials in order to obtain a new ring.
Assume that n > m. We define

n

fO)+8(x) =) (@ +b)x', (1)

i=0
where b; = z fori > m, and
F@x)g(x) = (@nb)x" ™ + (nbp—1 + an_1by)x" !
+ -+ (ar1bo + aoh1)x" + (apbo)x°. 2

In the definition of f(x) + g(x), the coefficient (a; + b;), foreach0 < i < n, is obtained
from the addition of elements in R. For f(x)g(x), the coefficient of x’ is Z;c=0 a; by,
where all additions and multiplications occur within R, and 0 <t < n + m. Here is one
such example to demonstrate the types of calculations that are involved.

Let f(x) =4x> 4+ 2x2 4 3x" 4+ 1x% and g(x) = 3x% + x! + 2x° be polynomials from
Zs[x]. Here

a3 =4, a =2, a =3, ap =1,
and
b, =3, by =1, by = 2.

For all n > 4 we find that a, = 0. When m > 3 we have b,, = 0. Using the definitions in
Eqgs. (1) and (2), where the addition and multiplication of the coefficients are now performed
modulo 5, we obtain

FO)+gx)=@+0x>+2+3)x+ B+ Dx' + (1 +2)x°
=4x3 4+ 0x? 4+ 4x' +3x0 = 4x3 + 4x' + 340

and

5 4 3
fx)gx) = (Z as- kbk> (Z a4—kbk> x4 (Z a3—kbk) x
k=0 k=0 k=0
2 1 0
+ (Z a kbk) (Z al—kbk) x4+ (Z aO—kbk) x°

k=0 k=0 k=0
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=0-24+0-1+4-342-04+3-0+1-0)x°
+@©-2+4-142-343-0+1-0)x*
+@-24+2-1+3-3+1-0)x°
+ 2243 14+1-Nx2+@-2+1-Dx' +(1-2)x°

=2x% 4 Ox* 4 4x3 + 0x% 4+ 2x" 4 2x0 = 2x° + 43 + 2x1 4 2x0.

The closed binary operations defined in Eqgs. (1) and (2) were designed to give us the
following result.

THEOREM 17.1

If R is aring, then under the operations of addition and multiplication given in Egs. (1) and
(2), (R[x], +, ) is aring, called the polynomial ring, or ring of polynomials, over R.
Proof: The ring properties for R[x] hinge upon those of R. Consequently, we shall prove the
associative law of multiplication here, as an example, and shall then leave the proofs of the
other properties to the reader. Let h(x) = Y 7_/ cxx¥, with f(x), g(x) as defined earlier.
A typical summand in (f(x)g(x))h(x) has the form Ax’, where 0 <t < (m +n) + p and
A is the sum of all products of the form (a;b;)cy, with0 <i <n,0<j <m,0<k < p,
and i + j + k =t. In f(x)(g(x)h(x)) the coefficient of x’ is the sum of all products of
the form a; (bjcy), again with0<i <n,0<j<m,0<k <p,and i+ j+k =1¢. Since
R is associative under multiplication, (a,b,)cx = a;(bjc) for each of these terms, and
so the coefficient of x’ in (f(x)g(x))h(x) is the same as it is in f(x)(g(x)h(x)). Hence
(f(x)g(x)Nh(x) = f(x)(g(x)h(x)).

COROLLARY 17.1

EXAMPLE 17.2

Let R[x] be a polynomial ring.

a) If R is commutative, then R[x] is commutative.
b) If R is a ring with unity, then R[x] is a ring with unity.
¢) R[x]is an integral domain if and only if R is an integral domain.

Proof: The proof of this corollary is left for the reader.

From this point on, we shall write x instead of x'. If R has unity u, we define x° = u,
and for all » € R we write rx° as r.

Let f(x), g(x) € Zg[x] with f(x) = 4x> 4+ 1 and g(x) = 2x + 3. Then f(x) has degree 2
and g(x) has degree 1. From our past experiences with polynomials, we expect the degree
of f(x)g(x) to be 3, the sum of the degrees of f(x) and g(x). Here, however, f(x)g(x) =
(4x2 4+ 1)(2x + 3) = 8x3 4+ 12x% + 2x + 3 = 4x? + 2x + 3 because [8] = [0] in Zs. So
degree f(x)g(x) =2 <3 = degree f(x) + degree g(x).

The cause of the phenomenon in Example 17.2 is the existence of proper divisors of zero
in the ring Zg. This observation leads us to the following theorem.
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THEOREM 17.2 Let (R, +, +) be a commutative ring with unity u. Then R is an integral domain if and only
if for all f(x), g(x) € R[x], if neither f(x) nor g(x) is the zero polynomial, then

degree f(x)g(x) = degree f(x) + degree g(x).
Proof: Let f(x) =Y " ax', gx) = Z:Lo bjx’, witha, # z, b, # z.If R is an integral
domain, then a,b,, # z,sodegree f(x)g(x) =n + m = degree f(x) + degree g(x). Con-
versely, if R is not an integral domain, leta, b € R witha # z,b # z,butab = z. The poly-
nomials f(x) = ax + u, g(x) = bx + u eachhavedegree 1, but f(x)g(x) = (@ + b)x +u
and degree f(x)g(x) <1 <2 = degree f(x) + degree g(x).

Before we can proceed we need to recall an idea that was introduced in Section 14.2 —in
Exercise 21. If R is a ring with unity u and r € R, we define r® = u, r! = r, and r"+! = r"r
for all n € Z". [From these definitions one can show, for example, that for all m, n € Z™,
™ (™) = r™* and (*™)" = r™".] So now we continue as follows.

Let R be a ring with unity u and let f(x) =a,x" +---+ajx +ap € R[x]. If r € R,
then f(r) = a,r" +-- -+ ajr + ap € R. We are especially interested in those values of r
for which f(r) = z, and this interest leads us to the following concept.

Definition 17.2 Let R be a ring with unity u and let f(x) € R[x], with degree f(x) > 1. If r € R and
f(r) = z, then r is called a root of the polynomial f(x).

EXAMPLE 17.3 a) If f(x) = x> — 2 € R[x], then f(x) has V2 and —+/2 as roots because (v/2)2 — 2 =
: 0= (—+/2)2 —2. In addition, we can write f(x)= (x —+/2)(x ++/2), with
x — /2, x + v/2 € R[x]. However, if we regard f(x) as an element of Q[x], then
f(x) has no roots because ~/2 and —+/2 are irrational numbers. Consequently, the
existence of roots for a polynomial is dependent on the underlying ring of coefficients.

b) For f(x) = x2 4 3x + 2 € Zg[x], we find that
fO) =0?2*+30)+2=2 fA=03)?+33)+2=20=2
fH=1)2+3(1)+2=6=0 f@)=@*+34)+2=30=0
fQ=2%*+32)+2=12=0  f5)=0")?+35)+2=42=0

Consequently, f(x) has four roots: 1, 2, 4, and 5. This is more than we expected. In
our prior experiences, a polynomial of degree 2 had at most two roots.

In this chapter we shall be primarily concerned with polynomial rings F[x], where F
is a field (and F[x] is an integral domain). Consequently, we shall not dwell any further
on situations where degree f(x)g(x) < degree f(x) + degree g(x). In addition, unless it
is stated otherwise, we shall denote the zero element of a field by 0 and use 1 to denote its
unity.

As a result of Example 17.3(b), we shall now develop the concepts needed to find out
when a polynomial of degree n has at most n roots.

Definition 17.3 Let F be a field. For f(x), g(x) € F[x], where f(x) is not the zero polynomial, we call
f(x) adivisor (or factor) of g(x) if there exists h(x) € F[x] with f(x)h(x) = g(x). In this
situation we also say that f(x) divides g(x) and that g(x) is a multiple of f(x).
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This leads to the division algorithm for polynomials. Before proving the general result,
however, we shall examine two particular examples.

EXAMPLE 17.4 Early in algebra we were taught how to perform the long division of polynomials with
. real coefficients. Given two polynomials f(x), g(x) with degree f(x) < degree g(x), we

organized our work in the form

q1(x) + @(x) + -+ g, (x) (= g(x))
f(x)gx)
f(0)q1(x)

g(x) — f()q1(x)

r(x)

where we continued to divide until we found either

r(x)=0 or degree r(x) < degree f(x).

It then followed that g(x) = g(x) f(x) + r(x).
For example, if f(x) = x — 3and g(x) = 7x> — 2x% + 5x — 2, then f(x), g(x) € Q[x]
(or R[x], or C[x]), and we find

x4+ 19x +62 (=q(x))
x—3)7x3— 2%+ 5x— 2

7x3 —21x2
19x2+ Sx— 2
19x% — 57x
62x — 2
62x — 186
184 (= r(x))

Checking these results, we have

g fx) +rx) = (7x> 4+ 19x + 62)(x — 3) + 184 = 7x* — 2x> 4+ 5x — 2 = g(x).

EXAMPLE 17.5 The technique illustrated in Example 17.4 also applies when the coefficients of our poly-

nomials are taken from a finite field.
If f(x)=3x*+4x+2 and g(x) = 6x* +4x> + 5x% + 3x + 1 are polynomials in
Z[x], then the process of long division provides the following calculations:
2x24+ x +6 (=q(x))

3x24+4x+2 )6x* +4x3 +5x2 +3x + 1
6x* + x3 +4x2

3034+ x243x+1
3x3 + 4x2 + 2x

A+ x+1
4x2+3x +5

Sx+3 (=rx)
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Performing all arithmetic in Z;, we find (as in Example 17.4) that

q@x) f(x) +rx) = 2x* +x+6)(3x* +4x +2) + 5x +3)
=6x* +4x3+5x2 4+ 3x +1=g(x)

We turn now to the general situation.

THEOREM 17.3

Division Algorithm. Let f(x), g(x) € F[x] with f(x) not the zero polynomial. There exist
unique polynomials g(x), r(x) € F[x] such that g(x) = g(x) f(x) + r(x), where r(x) =0
or degree r(x) < degree f(x).
Proof: Let S = {g(x) — t(x) f(x)|t(x) € F[x]}.

If0€ S, then 0 = g(x) — ¢t(x) f(x) for some ¢(x) € F[x]. Then with g(x) = ¢(x) and
r(x) =0, we have g(x) = qg(x) f (x) + r(x).

If 0 ¢ S, consider the degrees of the elements of S, and let r(x) = g(x) — g(x) f(x)
be an element in S of minimum degree. Since r(x) # 0, the result follows if degree r(x)
< degree f(x). If not, let

r(x) = apx" + a1 x" '+ -+ ax? + aix + ag, a, # 0,
F) = bypx™ 4 b1 x™ 4+ byx? + bix + by, by # 0,
with n > m. Define
h(x) = r(x) — [axb,'x" ™ f (x) = (an — @b, bp)X" + (@n—1 — Anb}, ' bp—1)x""!
+ oot (@uem — Aub D)X + Gy X" - 4 agx + ap.

Then h(x) has degree less than n, the degree of r(x). More important, A(x) =
[g(x) — g(x) f ()] — [anby'x" "1 f (x) = g(x) — [q(x) + ayb,'x" "] f(x), s0 h(x) € §
and this contradicts the choice of r(x) as having minimum degree. Consequently, degree
r(x) < degree f(x) and we have the existence part of the theorem.

For uniqueness, let g(x) = q1(x) f(x) + ri(x) = g2(x) f (x) + r2(x) where ri(x) =0
or degree rj(x) < degree f(x), and r(x) =0 or degree ry(x) < degree f(x). Then
[g2(x) — @1 ()] f (x) = ri(x) — r2(x), and if g2(x) — q1(x) # 0, then degree ([q2(x) —
q1(x)]1f(x)) > degree f(x), whereas ri(x) —ry(x) =0 or degree [ri(x)—ry(x)]<
max{degree r;(x), degreery(x)} <degree f(x). Consequently, ¢g;(x) = g2(x), and
ri(x) = ra(x).

The division algorithm provides the following results on roots and factors.

THEOREM 17.4

The Remainder Theorem. For f(x) € F[x] anda € F, the remainder in the division of f(x)
by x —ais f(a).

Proof: From the division algorithm, f(x) = g(x)(x — a) + r(x), with r(x) = 0 or degree
r(x) < degree (x — a) = 1. Hence r(x) = r is an element of F. Substituting a for x, we
find f(a) =q(@)a—-a)+r=0+r=r.

THEOREM 17.5

The Factor Theorem. If f(x) € F[x]and a € F, then x — a is a factor of f(x) if and only
if a is a root of f(x).

Proof: If x — a is afactorof f(x),then f(x) = g(x)(x — a). With f(a) = g(a)(a —a) =0,
it follows that a is a root of f(x). Conversely, suppose that a is a root of f(x). By the
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division algorithm, f(x) = g(x)(x — a) + r, where r € F. Since f(a) = 0 we have r = 0,
so f(x) = q(x)(x —a),and x — a is a factor of f(x).

a) Let f(x) = x” — 6x° +4x* — x2 4+ 3x — 7 € Q[x]. From the remainder theorem it
follows that when f(x) is divided by x — 2, the remainder is

f2)=2"-62°)+42%H -22+3(@2)-7=-5.

If we were to divide f(x) by x + 1, then the remainder would be f(—1) = —2.

b) If g(x) = x° + 3x* + x3 4+ x? + 2x 4+ 2 € Zs[x]is divided by x — 1, then the remain-
der here is g(1) =14+3+ 1+ 142+ 2 =0 (in Zs). Consequently, x — 1 divides
g(x), and by the factor theorem,

gx)=qgx)(x-1) (where degree g(x) = 4).

Using the results of Theorems 17.4 and 17.5, we now establish the last major idea for
this section.

THEOREM 17.6

EXAMPLE 17.7

If f(x) € F[x] has degree n > 1, then f(x) has at most n roots in F'.

Proof: The proof is by mathematical induction on the degree of f(x). If f(x) has degree
1, then f(x) =ax + b, fora, b€ F, a # 0. With f(—a‘lb) =0, f(x) has at least one
root in F. If ¢; and ¢, are both roots, then f(c;) =ac; +b=0=ac, +b = f(c2). By
cancellation in a ring, ac; + b = ac, + b = ac; = ac,. Since F is a field and a # 0, we
have ac; = ac, = ¢; = ¢z, s0 f(x) has only one root in F.

Now assume the result of the theorem is true for all polynomials of degree k (> 1) in
F[x]. Consider a polynomial f(x) of degree k + 1. If f(x) has no roots in F, the theorem
follows. Gtherwise, let r € F with f(r) = 0. By the factor theorem, f(x) = (x — r)g(x)
where g(x) has degree k. Consequently, by the induction hypothesis, g(x) has at most k
roots in F, and f(x), in turn, has at most k + 1 roots in F.

a) Let f(x) = x2— 6x + 9 € R[x]. Then f(x) has at most two roots in R —namely,
the roots 3, 3. So here we say that 3 is a root of multiplicity 2. In addition f(x) =
(x — 3)(x — 3), a factorization into two first-degree, or linear, factors.

b) For g(x) = x?> + 4 € R[x], g(x) has no real roots, but Theorem 17.6 is not contra-
dicted. (Why?) In C[x], g(x) has the roots 2i, —2i and can be factored as g(x) =
(x —20)(x + 2i).

¢) If h(x) = x* 4+ 2x + 6 € Z;[x], then 1(2) = 0, h(3) = 0 and these are the only roots.
Also, h(x)=(x —2)(x =3) =x>—5x+6=x2+4+2x+6, because [—5]=[2]
in Z7.

d) As we saw in Example 17.3(b), the polynomial x2 4 3x + 2 has four roots. This is
not a contradiction to Theorem 17.6 because Zg is not a field. Also, x> +3x +2 =
x+ Dx+2)=(x+4)(x +5), two distinct factorizations.

We close with one final remark, without proof, on the idea of factorization in F[x].
If f(x) € F[x] has degree n, and r, r, ..., r, are the roots of f(x) in F (where it is
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possible for a root to be repeated —that is, r; = r; for some 1 <i < j <n), then f(x) =
a,(x —r)(x —ry) - -+ (x — r,), where a, is the leading coefficient of f(x). This represen-
tation of f(x) is unique up to the order of the first-degree factors.

EXERCISES 17.1

1. Let f(x), g(x) € Z7[x] where f(x) = 2x* +2x% + 3x% +
x+4 and g(x) =3x3+5x2 + 6x + 1. Determine f(x) +
g(x), f(x) — g(x), and f(x)g(x).

2. Determine all of the polynomials of degree 2 in Z,[x].

3. How many polynomials are there of degree 2 in Z;[x]?
How many have degree 3? degree 4? degree n, for n € N?

4. a) Find two nonzero polynomials f(x), g(x) in Zjz[x]
where f(x)g(x) =0.
b) Find polynomials A (x), k(x) € Z;,[x] such that degree
h(x) =5, degree k(x) = 2, and degree h(x)k(x) = 3.
5. Complete the proofs of Theorem 17.1 and Corollary 17.1.
6. For each of the following pairs f(x), g(x), find g(x),
r(x) so that g(x) = q(x) f(x) + r(x), where r(x) = 0 or de-
gree r(x) < degree f(x).
a) f(x),g(x) €Qlxl, f(x)=x*—-5+7x, gx)=
x> —2x*+5x -3
b) f(x), g(x) € Zolx], f(x) = x>+ 1,8(x) = x* +x° +
x4+ x+1
©) f(x), g(x) € Zs[x], f(x) = x* +3x + 1, g(x) = x* +
2x34+x+4
a) If f(x) =x*— 16, find its roots and factorization in
Qlx].
b) Answer part (a) for f(x) € R[x].
¢) Answer part (a) for f(x) € C[x].
d) Answer parts (a), (b), and (c) for f(x) = x* — 25.
8. a) Find all roots of f(x) = x? + 4x if f(x) € Zp,[x].
b) Find four distinct linear polynomials g(x), a(x), s(x),
t(x) € Zjx[x] so that f(x) = g(x)h(x) = s(x)t(x).

¢) Do the results in part (b) contradict the statements made
in the paragraph following Example 17.7?

N

9. In each of the following, find the remainder when f(x) is
divided by g(x).

17.2
Irreducible Polynomials: Finite Fields

a) f(x), g(x) € Qx], f(x) = x® +7x% —4x* +3x3 +

5x2—4,g(x)=x-3

b) f(x), g(x) € Zy[x], f(x) = x"% 4+ x4+ x3 4+ x¥ 4

Lgx)=x—1

©) f(x), g(x) € Zylx], f(x) =3x> —8x* +x* —x? +

4x —T7,gx)=x+9
10. For each of the following polynomials f(x) € Z;[x], de-
termine all of the roots in Z; and then write f(x) as a product
of first-degree polynomials.

a) f(x)=x3+5x2+2x+6

b) f(x)=x"—x
11. How many units are there in the ring Zs[x]? How many in
Z;[x]? How many in Z,[x], p a prime?
12. Given a field F, let f(x) € F[x] where f(x) = a,x" +
Ap X"V + - 4+ arx? 4+ a1x + ay. Prove that x — 1 is a fac-
tor of f(x) if and only if

ap+ap 1+ -+ar+ar+a=0.

13. Let R, S be rings, and let g: R — S be a ring homomor-
phism. Prove that the function G: R[x] — S[x] defined by

G (Z ) =3 g
1=0 i=0
is a ring homomorphism.

14. If R is an integral domain, prove that if f(x) is a unit in
R[x], then f(x) is a constant and is a unit in R.

15. Verify that f(x) = 2x + 1is aunitin Z4[x]. Does this con-
tradict the result of Exercise 14?

16. Forn € Z*, n > 2, let f(x) € Z,[x]. Prove thatifa, b € Z
and a = b (mod n), then f(a) = f(b) (mod n).

17. If F is a field, let S C F[x] where f(x)=a,x"+
Gp1x" V4t ax® +ajx +ap € S if and only if a, +
dy_1 + -+ a, +a; + ay = 0.Prove that S is an ideal of F[x].
18. Let (R, +, +) be a ring. If I is an ideal of R, prove that
I[x], the set of all polynomials in the indeterminate x with
coefficients in /, is an ideal in R[x].

We now wish to construct finite fields other than those of the type (Z,, +, -), where p isa
prime. The construction will use the following special polynomials.
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Let f(x) € F[x], with F a field and degree f(x) > 2. We call f(x) reducible (over F) if
there exist g(x), h(x) € F[x], where f(x) = g(x)h(x) and each of g(x), h(x) has degree
> 1. If f(x) is not reducible it is called irreducible, or prime.

Theorem 17.7 contains some useful observations about irreducible polynomials.

THEOREM 17.7

EXAMPLE 17.8

Definition 17.5

Definition 17.6

For polynomials in F[x],

a) every nonzero polynomial of degree < 1 is irreducible.

b) if f(x) € F[x] with degree f(x) = 2 or 3, then f(x) is reducible if and only if f(x)
has a root in the field F.

Proof: The proof is left for the reader.

a) The polynomial x? + 1 is irreducible in Q[x] and R[x], but in C[x] we find x2 + 1 =
(x+i)(x —i).

b) Let f(x) = x* +2x?+ 1 € R[x]. Although f(x) has no real roots, it is reducible
because (x? + 1)2 = x* + 2x? + 1. Hence part (b) of Theorem 17.7 is not applicable
for polynomials of degree > 3.

¢) In Z,[x], f(x) = x>+ x? + x + 1 is reducible because f(1) = 0. But g(x) = x> +
x + 1 is irreducible because g(0) = g(1) = 1.

d) Let h(x) = x* 4+ x* + x? + x + 1 € Z,[x]. Is h(x) reducible in Z,[x]? Since 7(0) =
h(1) = 1, h(x) has no first-degree factors, but perhaps we can find a, b, ¢, d € Z; such
that (x> + ax + b)(x* + cx +d) = x* + x3 +x2 + x + 1.

By expanding (x% + ax + b)(x> + cx + d) and comparing coefficients of like
powers of x, we find a+c=1,ac+b+d =1, ad +bc =1, and bd = 1. With
bd =1, it follows that b=1and d =1,s0ac+b+d=1=ac=1=a=c=
l=a+c=0. This contradicts a +c = 1. Consequently, i(x) is irreducible
in Z2 [x]

All of the polynomials in Example 17.8 share a common property, which we shall now
define.

A polynomial f(x) € F[x] is called monic if its leading coefficient is 1, the unity of F.

Some of our next results (up to and including the discussion in Example 17.11) awaken
memories of Chapters 4 and 14.

If f(x), g(x) € F[x], then h(x) € F[x] is a greatest common divisor of f(x) and g(x)
a) if h(x) divides each of f(x) and g(x), and
b) if k(x) € F[x] and k(x) divides both f(x), g(x), then k(x) divides & (x).
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We now state the following results on the existence and uniqueness of what we shall
call the greatest common divisor, which we shall abbreviate as gcd. Furthermore, there is a
method for finding this gcd that is called the Euclidean algorithm for polynomials. A proof
for the first result is outlined in the Section Exercises.

THEOREM 17.8

Let f(x), g(x) € F[x], with at least one of f(x), g(x) not the zero polynomial. Then each
polynomial of minimum degree that can be written as a linear combination of f(x) and
g(x) —that s, in the form s(x) f (x) 4 #(x)g(x), for s(x), t (x) € F[x]— will be a greatest
common divisor of f(x), g(x). If we require a gcd to be monic, then it will be unique.

THEOREM 17.9

Definition 17.7

Euclidean Algorithm for Polynomials. Let f(x), g(x) € F[x] with degree f(x) < degree
g(x) and f(x) # 0. Applying the division algorithm, we write

g(x) =qx) f(x)+r(x), degree r(x) < degree f(x)

F&x)=q(x)rx) +ri(x), degree r1(x) < degree r(x)

r(x) = q(x)r; (x) + ra(x), degree ry(x) < degree r(x)
re—2(x) = qr (X)r—1(x) + ri(x), degree ri(x) < degree ry_;(x)

re—1(X) = g1 (e (x) + rig (x), rep1(x) = 0.

Then ry (x), the last nonzero remainder, is a greatest common divisor of f(x), g(x), andis
a constant multiple of the monic greatest common divisor of f(x), g(x). [Multiplying ry(x)
by the inverse of its leading coefficient allows us to obtain the unique monic polynomial
we call the greatest common divisor.]

If f(x), g(x) € F[x] and their gcd is 1, then f(x) and g(x) are called relatively prime.

The last results we need to construct our new finite fields provide the analog of a con-
struction we developed in Section 14.3.

THEOREM 17.10

EXAMPLE 17.9

Let s(x) € F(x), s(x) # 0. Define relation R on F[x] by f(x) R g(x) if f(x) — g(x) =
t(x)s(x), for some #(x) € F[x]—that is, s(x) divides f(x) — g(x). Then QR is an equiva-
lence relation on F[x].

Proof: The verification of the reflexive, symmetric, and transitive properties of R is left for
the reader.

When the situation in Theorem 17.10 occurs, we say that f(x) is congruent to g(x)
modulo s(x) and write f(x) = g(x) (mod s(x)). The relation QR is referred to as congruence
modulo s(x).

Let us examine the equivalence classes for one such relation.

Let s(x) = x2 + x + 1 € Z,[x]. Then

a)0]=[x2+x+11={0,x24+x+ 1, x> +x24+x, c+Dx24+x+1),...}
={t(x)(x? + x + D]t (x) € Zy[x]}
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b)) [={,x2+x,xC2+x+D+1, c+ D2 +x+D+1,...}
= {t(x)(x? 4+ x + 1) + 1|t (x) € Z,[x]}

OXl={x, 2+ 1L xC2+x+D+x, c+DE2+x+D)+x,...}
= {t(x)(x? 4+ x + 1) + x|t (x) € Zy[x]}

dDx+1=x+LxEx@2+x+D+@E+D, c+DE2+x+1)
+ x4+, )= @@+ x+ D)+ (x4 D]tx) € Zo[x]}

Are these all of the equivalence classes? If f(x) € Z,[x], then by the division algo-
rithm f(x) = q(x)s(x) + r(x), where r(x) =0 or degree r(x) < degree s(x). Since
fx) —r(x) =q(x)s(x), it follows that f(x)=r(x) (mods(x)), so f(x)e€[r(x)].
Consequently, to determine all the equivalence classes, we consider the possibilities for
r(x). Here r(x) = 0 or degree r(x) <2, so r(x) = ax + b, where a, b € Z,. With only
two choices for each of a, b, there are four possible choices for r(x): 0, 1, x, x + 1.

We now place a ring structure on the equivalence classes of Example 17.9. Recalling
how this was accomplished in Chapter 14 for Z,,, we define addition by [ f(x)] + [g(x)] =
[f(x) 4+ g(x)]. Since degree (f(x) + g(x)) < max{degree f(x),degree g(x)}, we can find
the equivalence class for [ f(x) + g(x)] without too much trouble. Here, for example,
[x]+[x+1]1=[x+ (x+ 1)] =[2x + 1] = [1] because 2 = 0 in Z;.

In defining the multiplication of these equivalence classes, we run into a little more diffi-
culty. For instance, what is [x][x] in Example 17.9? If, in general, we define [ f (x)][g(x)] =
[f(x)g(x)], it is possible that degree f(x)g(x) > degree s(x), so we may not readily
find [ f(x)g(x)] in the list of equivalence classes. However, if degree f(x)g(x) > degree
s(x), then using the division algorithm, we can write f(x)g(x) = g(x)s(x) + r(x), where
r(x) = 0 or degree r(x) < degree s(x). With f(x)g(x) = g(x)s(x) + r(x), it follows that
f(x)g(x) =r(x) (mod s(x)), and we define [ f(x)g(x)] = [r(x)], where [r(x)] does occur
in the list of equivalence classes.

From these observations we construct Tables 17.1 and 17.2 for the addition and multi-
plication, respectively, of {[0], [1], [x], [x + 1]}. (In these tables we write a for [a].)

Table 17.1 Table 17.2
+ 0 1 X x+1 0 1 X x+1
0 0 1 X x+1 0 0 0 0 0
1 1 0 x+1 X 1 0 1 x x+1
X X x+1 0 1 X 0 X x+1 1
x+1 | x+1 X 1 0 x+1[|0 x+1 1 X

From the multiplication table (Table 17.2), we find that these equivalence classes form
not only a ring but also a field, where [1]7! = [1], [x]™' = [x + 1], and [x + 1]7' = [x].
This field of order 4 is denoted by Z,[x]/(x? + x + 1), and we observe that it contains (an
isomorphic copy of) the subfield Z,. [In general, a subring (R, +, -) of a field (F, +, )
is called a subfield when (R, +, ) is a field.] In addition, for the nonzero elements of this
field we find that [x]' = [x], [x]®> = [x + 1], [x]? = [1], so we have a cyclic group of order
3. But the nonzero elements of any field form a group under multiplication, and any group
of order 3 is cyclic, so why bother with this observation? In general, the nonzero elements
of any finite field form a cyclic group under multiplication. (A proof for this can be found
in Chapter 12 of reference [10].)
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The preceding construction is summarized in the following theorem. An outline of the
proof is given in the Section Exercises.

THEOREM 17.11

EXAMPLE 17.10

Let s(x) be a nonzero polynomial in F[x].

a) The equivalence classes of F[x] for the relation of congruence modulo s(x) form a
commutative ring with unity under the closed binary operations

[f)]+[g(x)] = [f(x) + gx)], [f)Ig()] = [f(x)g(x)] = [r(x)],
where r(x) is the remainder obtained upon dividing f(x)g(x) by s(x). This ring is
denoted by F[x]/(s(x)).

b) If s(x) is irreducible in F[x], then F[x]/(s(x)) is a field.
¢) If |F| = q and degree s(x) = n, then F[x]/(s(x)) contains ¢" elements.

Before we continue we wish to emphasize that for s(x) irreducible in F[x] the ele-
ments in the field F[x]/(s(x)) are not simply polynomials (in x). But how can this be, con-
sidering the presence of the symbol x in each of the elements [x] and [x + 1] in the field
Z,[x]/(x* + x + 1) of Example 17.9? In order to make our point more apparent we consider
an infinite example that is somewhat familiar to us.

Here we let F = (R, +, +), the field of real numbers, and we consider the irreducible poly-
nomial s(x) = x? + 1in R[x]. From part (b) of Theorem 17.11 we learn that R[x]/(s(x)) =
R[x]/(x% + 1) is a field.

For all f(x) € R[x] it follows by the division algorithm that

fx)=qx)x*+1)+r(x), wherer(x)=0o0r0<degr(x)<1.
Therefore,
R[x]/(x*+ 1) = {[a + bx]|a, b € R},

where it can be shown that [a 4+ bx] = [a] + [bx] = [a] + [b][x].
Among the (infinitely many) elements of R[x]/(x? + 1) are the following:

1) [1] = {1 4+ t(x)(x? + 1|t (x) € R[x]}, where we find the elements x2 + 2 and 3x> +
3x + 1 (from R[x]);

2) [r] = {r + t(x)(x? + 1|t (x) € R[x]}, where r is any (fixed) real number;

3) [-1]={-1+4t(x)(x* + 1)|t(x) € R[x]}, where we find the polynomial —1 +
(D) (x% +1) = x> —so, [x][x] = [x?] = [-1]; and

4) [vV2x — 3] = {(V2x = 3) + 1 (x)(x2 + )|t (x) € R[x]}.

Now let us consider the field (C, +, -) of complex numbers and the correspondence
h:R[x]/(x*+ 1) - C,

where h([a + bx]) = a + bi.

For all [a+ bx], [c+dx]€R[x]/(x>+ 1), we have [a+ bx]=[c+dx] <
(@a+bx) — (c +dx) =t(x)(x>+ 1), for some r(x)eRx]< (@—c)+ (b —d)x =
t(x)(x? + 1). If £ (x) is not the zero polynomial, then we have (a — ¢) + (b — d)x, a poly-
nomial of degree less than 2, equal to #(x)(x% + 1), a polynomial of degree at least 2.
Consequently, t(x) =0, so a + bx = c+dx and a = ¢, b = d. This guarantees that the
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correspondence given by 4 is actually a function. In fact, 4 is an isomorphism of fields.
(See Exercise 24 in the exercises at the end of this section.) To establish that / preserves
the operation of multiplication, for example, we observe that

h([a + bx][c + dx]) = h([ac + adx + bcx + bdx?])
= h([ac + (ad + bc)x] + [bd][x?])
= h(lac + (ad + bc)x] + [bd1[—1])
= h(lac — bd) + (ad + bc)x])
= (ac — bd) + (ad + be)i = (a + bi)(c + di)
= h(la + bxDh([c + dx]).

Since R[x]/(x? + 1) is isomorphic to C, the correspondence /([x]) = i makes us think
of [x] as a number in R[x]/(x?> 4+ 1) and not as a polynomial in x (in R[x]). The number
[x] represents an equivalence class of polynomials in R[x], and this number [x] behaves
like the complex number i in the field (C, +, ). We should also note that for each real
number r, h([r]) = r, and {[r]|r € R} is a subfield of R[x]/(x? + 1), which is isomorphic
to the subfield R of C.

Finally, if we identify the field R[x]/(x2 4 1) with the field (C, +, -), we can summarize
what has happened above as follows: We started with the irreducible polynomial s(x) =
x2 41 in R[x], which had no root in the field (R, +, -). We then enlarged (R, +, +) to
(C, +, +) and in C we found the root i (and the root —i) for s(x), which can now be
factored as (x + i)(x — i) in C[x].

Since our major concern in the chapter is with finite fields, we now examine another
example of a finite field that arises by virtue of Theorem 17.11.

In Z;3[x] the polynomial s(x) = x? 4+ x + 2 is irreducible because s(0) = 2, s(1) = 1, and
s(2) = 2. Consequently, Z3[x]/(s(x)) is a field containing all equivalence classes of the
form [ax + b], where a, b € Z3. These arise from the possible remainders when a polyno-
mial f(x) € Z3[x] is divided by s(x). The nine equivalence classes are [0], [1], [2], [x],
[x + 11, [x + 2], [2x], [2x + 1], and [2x + 2].

Instead of constructing a complete multiplication table, we examine four sample multi-
plications and then make two observations.

a) [2x]lx] = [2x2] = [2x2 + 0] = [2x2 + (x* + x + 2)] = Bx* + x + 2] = [x + 2]
because 3 = 0 in Z3.
b) [x + 1[x+2]=[x2+3x+2] = [x2+ 2] = [x2 + 2+ 2(x% + x +2)] = [2x].

) 2x+2P =[4x*+8x+4]1=[x2+2x+ 1] =[(—x —2) + 2x + 1)] since x’=
(—x — 2) (mod s(x)). Consequently, [2x + 21> = [x — 1] = [x + 2].

d) Often we write the equivalence classes without brackets and concentrate on the coef-
ficients of the powers of x. For example, 11 is written for [x 4+ 1] and 21 represents
[2x + 1]. Consequently, (21) - (12) = [2x + 1][x +2] = [2x2 + 5x + 2] =
2x2 4+ 2x +2] =[2(—x = 2) + 2x + 2] = [-4 + 2] = [-2] = [1],s0 21)"! = (12).

e) We also observe that

[x]' = [x] P =02x+2]  [xP =[2x] 7 =[x +1]
KP=2x+1]  [xI*=[2] XI°=[x+2] [PF=[1]
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Therefore the nonzero elements of Z3[x]/(s(x)) form a cyclic group under multipli-
cation.

f) Finally, when we consider the equivalence classes [0], [1], [2], we realize that they
provide us with a subfield of Z3[x]/(s(x)) —a subfield we identify with the field
(Z37 +, ’)-

Definition 17.8

EXAMPLE 17.12

In Example 17.9 (and in the discussion that follows it) and in Example 17.11, we con-
structed finite fields of orders 4 (= 2%) and 9 (= 3?), respectively. Now we shall close this
section as we investigate other possibilities for the order of a finite field. To accomplish this
we need the following idea.

Let (R, +, ) be a ring. If there is a least positive integer n such that nr = z (the zero of
R) for all r € R, then we say that R has characteristic n and write char(R) = n. When no
such integer exists, R is said to have characteristic 0.

a) The ring (Z3, +, -) has characteristic 3; (Z4, +, +) has characteristic 4; in general,
(Z,,, +, +) has characteristic n.

b) The rings (Z, +, -) and (Q, +, -) both have characteristic 0.

¢) A ring can be infinite and still have positive characteristic. For example, Z3[x] is an
infinite ring but it has characteristic 3.

d) The ring in Example 17.9 has characteristic 2. In Example 17.11 the characteristic of
the ring is 3. Unlike the examples in part (a), the order of a finite ring can be different
from its characteristic.

Examples 17.9 and 17.11, however, are more than just rings. They are fields with
prime characteristic. Could this property be true for all finite fields?

THEOREM 17.12

Let (F, +, ) be a field. If char(F) > 0, then char(F) must be prime.

Proof: In this proof we write the unity of F as u so that it is distinct from the positive integer 1.
Let char(F) = n > 0. If n is not prime, we write n = mk, wherem, k € Z" and 1 <m <n,
1 < k < n. By the definition of characteristic, nu = z, the zero of F. Hence (mk)u = z. But

mkyw)=wu+u+---+u)y=w+u+---+u)u+u+---+u)= (mu)ku).

mk summands m summands k summands

With F afield, (mu)(ku) = z = (mu) = z or (ku) = z. Assume without loss of generality
that ku = z. Then for each r € F, kr = k(ur) = (ku)r = zr = z, contradicting the choice
of n as the characteristic of . Consequently, char(F) is prime.

(The proof of Theorem 17.12 actually requires that F only be an integral domain.)

If F is a finite field and m = | F|, then ma = z forall a € F because (F, +) is an additive
group of order m. (See Exercise 8 of Section 16.3.) Consequently, F has positive charac-
teristic and by Theorem 17.12 this characteristic is prime. This leads us to the following
theorem.
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THEOREM 17.13

A finite field F has order p’, where p is a prime and t € Z™.

Proof: Since F is a finite field, let char(F) = p, a prime, and let u denote the unity and z the
zero element. Then Sy = {u, 2u, 3u, ..., pu =z} is a set of p distinct elements in F. If
not,mu =nuforl <m<n<pand (n —m)u =z,withO <n —m < p.Soforallx € F
we now find that (n — m)x = (n — m)(ux) = [(n — m)ulx = zx = z, and this contradicts
char(F) = p.If F = S, then | F| = p' and the result follows. If not, leta € F — Sy. Then
S1 = {ma + nu|0 < m, n < p} is a subset of F with |S;| < p%. If |S;| < p?, then ma +
nu = mpa + nau, with0 < my, my, ny, ny < p and at least one of my; — mp, n, — n; # 0.
Should m; — m, = 0, then (m; — my)a = z = (ny — ny)u, with 0 < |n, — n;| < p. Con-
sequently, for all x € F, |ny — ni|lx = |ny — ni|(ux) = (|np — nylu)x = zx = z with 0 <
|[ny — ny| < p = char(F), another contradiction. If n; — ny = 0, then (m; — m,)a = z with
0 < |m; — my| < p. Since F is a field and a # z we know thata™' € F, so |m; — malu =
|my — malaa™" = za=! = z with 0 < [m; — my| < p —yet another contradiction. Hence
neither m; — my nor n; — ny is 0. Therefore, (m; — my)a = (ny — ny)u # z. Choose
ke€Z" such that 0 <k < p and k(m; —my) =1 (mod p). Then a = k(m; — my)a =
k(n, — ny)u, and a € Sy, one more contradiction. Hence |S;| = pz, and if F = S| the
theorem is proved. If not, continue this process with an element b € F — S;. Then S, =
{€b + ma + nu|0 < £, m, n < p} will have order p>. (Prove this.) Since F is finite, we
reach a point where F = S,_; forsome t € Z*, and |F| = |S,_;| = p'.

As aresult of this theorem there can be no finite fields with orders such as 6, 10, 12, 14,
15, . ... Inaddition, for each prime p and each t € Z™, there is really only one field of order
p'. Any two finite fields of the same order are isomorphic. These fields were discovered
by the French mathematician Evariste Galois (1811-1832) in his work on the nonexistence
of formulas for solving general polynomial equations of degree > 5 over Q. As a result, a
finite field of order p’ is denoted by G F(p'), where the letters G F stand for Galois field.

EXERCISES 17.2

1. Determine whether or not each of the following polynomi-
als is irreducible over the given fields. If it is reducible, provide
a factorization into irreducible factors.

7. An outline for a proof of Theorem 17.8 follows.
a) Let § = {s(x) f(x) + 1(x)g(x)|s(x), 1 (x) € F[x]}. Se-
lect an element m(x) of minimum degree in S. (Recall that
the zero polynomial has no degree, so it is not selected.)
Can we guarantee that m (x) is monic?

a) x2+3x—1loverQ,R, C
b) x* —2over Q,R, C
¢) x2+x+ 1overZs, Zs, Z,
d) x*+ x>+ 1overZ,
e) x> +3x2 —x + 1 over Zs

b) Show that if 4(x) € F[x] and A(x) divides both f(x)
and g(x), then i(x) divides m(x).

¢) Show that m(x) divides f(x). If not, use the divi-
sion algorithm and write f(x) = g(x)m(x) + r(x), where
r(x) # 0 and degree r(x) < degree m(x). Then show that
r(x) € S and obtain a contradiction.

2. Give an example of a polynomial f(x) € R[x] where f (x)

d) Repeat the argument in part (c) to show that m(x) di-

has degree 6, is reducible, but has no real roots. vides g (x).

3. Determine all polynomials f(x) € Z,[x] such that 1 <
degree f(x) <3 and f(x) is irreducible (over Z,).

4. Let f(x) = 2x% 4+ 1)(5x3 — 5x +3)(4x — 3) € Z[x].

8. Prove Theorems 17.9 and 17.10.

9. Use the Euclidean algorithm for polynomials to find the gcd
of each pair of polynomials, over the designated field F. Then

Write f(x) as the product of a unit and three monic poly- write the gcd as s (x) £ (x) + 1(x)g(x), where s(x), ¢ (x) € F[x].

nomials.

5. How many monic polynomials in Z,[x] have degree 57
6. Prove Theorem 17.7.

a) f)=x?+x—-2,8(x)=x"—x*+x3+x2 -
x — 1in Q[x]
b) f(x) =x*+x*+1,8(x) = x* + x + Lin Z,[x]



814 Chapter 17 Finite Fields and Combinatorial Designs

¢ f(x)=x*4+2x2+2x +2,g(x) =2x> + 2x%* +
x + 1in Z3[x]

10. If F is any field, let f(x), g(x) € F[x]. If f(x), g(x) are
relatively prime, prove that there is no element a € F with
f(a)=0and g(a) =0.

11. Let f(x), g(x) € R[x] with f(x) = x3 +2x> +ax — b,
g(x) = x> 4+ x2 — bx + a. Determine values for a, b so that
the ged of f(x), g(x) is a polynomial of degree 2.

12. For Example 17.9, determine which equivalence class
contains each of the following:

a) x*+x34+x+1

b) x>+ x2+1

o) x*+x34+x2+1
13. An outline for the proof of Theorem 17.11 follows.

a) Prove that the operations defined in part (a) of The-
orem 17.11 are well-defined by showing that if f(x)=
fi(x) (mods(x)) and g(x) = g;(x) (mod s(x)), then
F(x) +g(x) = fi(x) + gi(x) (mod s(x)) and f(x)g(x) =
fi(x)gi1(x) (mod s (x)).
b) Verify the ring properties for the equivalence classes in
Flx]/(s(x)).
¢) Let f(x) € F[x], with f(x) # 0 and degree f(x) < de-
gree s(x). If s(x) is irreducible in F[x], why does it follow
that 1 is the ged of f(x) and s(x)?
d) Use part (c) to prove that if s(x) is irreducible in F[x],
then F[x]/(s(x)) is a field.
e) If |F| = q and degree s(x) = n, determine the order of
F[x]/(s(x)).

14. a) Show that s(x) = x2 + 1 is reducible in Z,[x].
b) Find the equivalence classes for the ring Z,[x]/(s(x)).
¢) Is Z,[x]/(s(x)) an integral domain?

15. For the field in Example 17.11, find each of the following:

a) [x +2][2x + 2] + [x + 1]

b) [2x + 11%[x +2]

c) 22)7 ' =[2x +2]!

16. Lets(x) = x* + x> + 1 € Z,[x].
a) Prove that s(x) is irreducible.
b) What is the order of the field Z,[x]/(s(x))?
¢) Find [x? + x + 117" in Z,[x]/(s(x)). (Hint: Find a, b,
¢, d € Z, so that [x? + x + 1][ax® + bx* + cx + d]
=[11)
d) Determine [x> + x + 1][x? + 1]in Z,[x]/(s (x)).

B

17. For p a prime, let s(x) be irreducible of degree n in Z, [x].
a) How many elements are there in the field Z, [x]/ (s (x))?

b) How many elements in Z,[x]/(s(x)) generate the
multiplicative group of nonzero elements of this field?

18. Give the characteristic for each of the following rings:
a) Zy b) Z,[x] ¢) Qlx]
d) Z[V/5] = {a + b\/5|a, b € Z}, under the binary oper-
ations of ordinary addition and multiplication of real num-
bers.

19. In each of the following rings, the operations are compo-
nentwise addition and multiplication, as in Exercise 18 of
Section 14.2. Determine the characteristic in each case.

a) Z, XZ3 b) Z3 X Zy4 c) Zy X Zs
d) Z,XZ,formneZ " m,n>2
e) Zs XZ

20. For Theorem 17.13, prove that |S,| = p3.

21. Find the orders n for all fields GF(n), where 100 <
n < 150.

22. Construct a finite field of 25 elements.
23. Construct a finite field of 27 elements.

24. a) Prove that the function % in Example 17.10 is one-to-
one and onto and preserves the operation of addition.

b) Let(F, +, ) and (K, &, ©) betwofields.If g: F - K
is a ring isomorphism and a is a nonzero element of F (that
is, @ is a unit in F), prove that g(a~!) = [g(a)]~". (Con-
sequently, this function g establishes an isomorphism of
fields. In particular, the function # of Example 17.10 is
such a function.)

a) Let Q[v2] = {a + bv/2|a, b € Q}. Prove that
(Q[«/E], +, +) is a subring of the field (R, +, +). (Here the
binary operations in R and Q[+/2] are those of ordinary
addition and multiplication of real numbers.)

b) Prove that Q[+/2] is a field and that Q[x]/(x* — 2) is
isomorphic to Q[«/E].

26. Let p be a prime. (a) How many monic quadratic (degree
2) polynomials x? 4+ bx + c in Z »[x] can we factor into linear
factors in Z,[x]? (For example, if p =5, then the polynomial
x? 4 2x + 2inZs[x] would be one of the quadratic polynomials
for which we should account, under these conditions.) (b) How
many quadratic polynomials ax? + bx + ¢inZ,[x] can we fac-
tor into linear factors in Z,[x]? (c) How many monic quadratic
polynomials x2 + bx + ¢ in Z,[x] are irreducible over Z,?
(d) How many quadratic polynomials ax? 4+ bx + c in Z,[x]
are irreducible over Z,?

25

o
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17.3

Latin Squares

EXAMPLE 17.13

Our first application for this chapter deals with the structure called a Latin square. Such
configurations arise in the study of combinatorial designs and play a role in statistics—in
the design of experiments. We introduce the structure in the following example.

A petroleum corporation is interested in testing four types of gasoline additives to determine
their effects on mileage. To do so, a research team designs an experiment wherein four
different automobiles, denoted A, B, C, and D, are run on a fixed track in a laboratory. Each
run uses the same prescribed amount of fuel with one of the additives present. To see how
each additive affects each type of auto, the team follows the schedule in Table 17.3, where
the additives are numbered 1, 2, 3, and 4. This schedule provides a way to test each additive
thoroughly in each type of auto. If one additive produces the best results in all four types,
the experiment will reveal its superior capability.

The same corporation is also interested in testing four other additives developed for
cleaning engines. A similar schedule for these tests is shown in Table 17.4, where these
engine-cleaning additives are also denoted as 1, 2, 3, and 4.

Table 17.3 Table 17.4
Day Day
Auto | Mon Tues Wed Thurs Auto | Mon Tues Wed Thurs
A 1 2 3 4 A 1 2 3 4
B 2 1 4 3 B 3 4 1 2
C 3 4 1 2 C 4 3 2 1
D 4 3 2 1 D 2 1 4 3

Furthermore, the research team is interested in the combined effect of both types of
additives. It requires 16 days to test the 16 possible pairs of additives (one for improved
mileage, the other for cleaning engines) in every automobile. If the results are needed in
four days, the research team must design the schedules so that every pair is tested once by
some auto. There are 16 ordered pairs in {1, 2, 3, 4} X {1, 2, 3, 4}, so this can be done in
the allotted time if the schedules in Tables 17.3 and 17.4 are superimposed to obtain the
schedule in Table 17.5. Here, for example, the entry (4, 3) indicates that on Tuesday, auto
C is used to test the combined effect of the fourth additive for improved mileage and the
third additive for maintaining a clean engine.

Table 17.5

Day
Auto | Mon Tues Wed Thurs

1,1 2,2) 3,3 &4
2,3 1,9 &1 G2
3,4 &3 1,2 @0
4,2 31 2,49 1,3

oQw >
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What has happened here leads us to the following concepts.

Definition 17.9 An n X n Latin square is a square array of symbols, usually 1, 2, 3, ..., n, where each
symbol appears exactly once in each row and each column of the array.

EXAMPLE 17.14 a) Tables 17.3 and 17.4 are examples of 4 X 4 Latin squares.

b) For all n > 2, we can obtain an n X n Latin square from the table of the group (Z,, +)
if we replace the occurrences of 0 by the value of n.

From the two Latin squares in Example 17.13 we were able to produce all of the ordered
pairs in § X §, for S = {1, 2, 3, 4}. We now question whether or not we can do this for
n X n Latin squares in general.

Definition 17.10 Let Ly = (a,)), L, = (b,)) be two n X n Latin squares, where 1 <i,j <n and each g;,,
bjefl,2,3,...,n} If the n? ordered pairs (a,j, bj), 1 <i,j <n, are distinct, then L,,
L, are called a pair of orthogonal Latin squares.

EXAMPLE 17.15 a) There is no pair of 2 X 2 orthogonal Latin squares because the only possibilities are
1 2 2 1
L] . 21 and L2. 1 2

b) In the 3 X 3 case we find the orthogonal pair

1 2 3 1 2 3
L: 2 3 1 and Ly: 3 1
31 2 2 3 1

Table 17.6

¢) The two 4 X 4 Latin squares in Example 17.13 form an orthogonal pair. The 4 X 4
Latin square shown in Table 17.6 is orthogonal to each of the Latin squares in that
example.

W N A
H— N
—_ AN W
N W= B

We could continue listing some larger Latin squares, but we’ve seen enough of them at
this point to ask the following questions:

1) Is there any n > 2 for which there is no pair of orthogonal n X n Latin squares? If
so, what is the smallest such n?

2) For n > 1, what can we say about the number of n X n Latin squares that can be
constructed so that each pair of them is orthogonal?

3) Is there a method to assist us in constructing a pair of orthogonal n X n Latin squares
for certain values of n > 2?

Before we can examine these questions, we need to standardize some of our results.

Definition 17.11 If L is an n X n Latin square, then L is said to be in standard form if its first row is
1 2 3 ... n
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Except for the Latin square L, in Example 17.15(a), all the Latin squares we’ve seen in
this section are in standard form. If a Latin square is not in standard form, it can be put in
that form by interchanging some of the symbols.

The 5 X 5 Latin square shown in (a) is not in standard form. If, however, we replace each
occurrence of 4 with 1, each occurrence of 5 with 4, and each occurrence of 1 with 5, then
the result is the (standard) 5 X 5 Latin square shown in (b).

4 2 3 51 1 2 3 45

1 3 5 4 2 53 4 12

34 2 15 31 2 5 4

25 1 3 4 2 4 5 31

51 4 2 3 4 5 1 2 3
(a) (b)

It is often convenient to deal with Latin squares in standard form. But will this affect our
results on orthogonal pairs in any way?

THEOREM 17.14

Let L;, L, be an orthogonal pair of n X n Latin squares. If L, L, are standardized as
LY, L3, then LT, L} are orthogonal.
Proof: The proof of this result is left for the reader.

These ideas are needed for the main results of this section.

THEOREM 17.15

EXAMPLE 17.17

Inn € Z*, n > 2, then the largest possible number of n X n Latin squares that are ortho-
gonal in pairs is n — 1.

Proof: Let Ly, L), ..., L, bek d1st1nct n X n Latin squares that are in standard form and
orthogonal in pairs. We write a ) to denote the entry in the ith row and jth column of
Ly, where 1 <i,j<n,1<m < k. Since these Latin squares are in standard form, we
have a('") =1, a('") =2,...,and a('") = n for all 1 <m < k. Now consider aé’l"), for all

1 <m < k. These entries in the second row and first column are below a7’ = 1. Thus

ay’ # 1, for all 1 <m <k, or the conﬁguration is not a Latin square. Further, if there

exists 1 < £ <m <k with a21) = a}", then the pair Ly, L,, cannot be an orthogonal pair.
(Why not?) Consequently, there are at best n — 1 choices for the ay; entries in any of our
n X n Latin squares, and the result follows from this observation.

This theorem places an upper bound on the number of n X n Latin squares that are
orthogonal in pairs. We shall find that for certain values of n, this upper bound can be
attained. In addition, our next theorem provides a method for constructing these Latin
squares, though initially not in standard form. The construction uses the structure of a finite
field. Before proving this theorem for the general situation, however, we shall examine one
special case.

Let F={f|l<i<S5}=2Zswith fi =1, =2, f3=3, f4 =4, and f5 =5, the zero
OfZ5.
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For 1 <k <4,let L; be the 5 X 5 array (a,.(f)), where 1 <i,j <5 and
a) = ffi + f;.

When k = 1, we construct L; = (a,.(})) as follows. Here af;) =fAfi+ fi=fi+ ffor
1 <i,j <5.Withi = 1, the first row of L, is calculated as follows:

ay = fi+ fi=2 ay=fi+f£=3 ay) = fi+ fr=4
af =fH+fi=5  a=f+fs=1
The entries in the second row of L; are computed when i = 2. Here we find
a)=fHh+fi=3  al=fH+hHh=4  a=H+f=5
ay) = fo+ fa=1 ay) = o+ fs =2
Continuing these calculations, we obtain the Latin square L as
2 3 4 5 1
34 5 1 2
4 5 1 2 3
51 2 3 4
1 2 3 45

For k = 2, the entries of L, are given by the formula al(jz) =fHfi+fi=2fi+f.To
obtain the first row of L,, we set i equal to 1 and compute

a?=2fi+fi =3 ay) =2f+ fr=4 a? =2fi+f=5
ay =2fi+ f= af =2fi+fs=2
When i is set equal to 2, the entries in the second row of L, are calculated as follows:
ai =2H+fi=5  aF=2h+f=1 a =2hH+ f=2
al =2H+ fr=3 Al =2fH+fs=4
Similar calculations for i = 3, 4, and 5 result in the Latin square L, given by
3 4 5 1 2
51 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5

It is straightforward to check that the two Latin squares L; and L, are orthogonal. In
Exercise 5 (at the end of this section) the reader will be asked to calculate L3 and L4. Our
next result will verify that the four arrays L, L, L3, and L4 are Latin squares and that they
are orthogonal in pairs.

THEOREM 17.16 Letn e ZT,n > 2.If pisaprimeandn = p’, fort € Z*, then there are n — 1 Latin squares
that are n X n and orthogonal in pairs.
Proof: Let F = G F(p'), the Galois field of order p’ = n. Consider F = {fi, f2, ..., fu},
where f) is the unity and f;, is the zero element.
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We construct n — 1 Latin squares as follows.

For each 1 <k <n —1, let L; be the n X n array (ai(f)), 1 <i,j <n, where a
fefi + fj.

First we show that each L, is a Latin square. If not, there are two identical elements of
F in the same row or column of L;. Suppose that a repetition occurs in a column — that is,
al) =al) for 1 <r,s <n.Thenal,) = fif, + f; = fifs + f; = a(j . This implies that
fefr = fi fs, by the cancellation for addition in F. Since k # n, it follows that f; # f,, the
zero of F. Consequently, f; is invertible, so f, = f; and r = 5. A similar argument shows
that there are no repetitions in any row of L.

k)
7]

At this point we have n — 1 Latin squares, L, L,, ..., L,—;. Now we shall prove that
they are orthogonal in pairs. If not, let 1 <k <m <n — 1 with
k .. ..
afj) = af’;), ai(;") = af's"), 1<i,j,rs<n, and @, j) # (r, 5).

{Then the same ordered pair occurs twice when we superimpose L; and L,,.) But
al) =a® < fifi+ fj = fif, + f,  and
a’ = al < fufi + i = fufr + £

Subtracting these equations, we find that (fy — fi)fi = (fx — fu)fr- With k #m,
(fx — fm) is not the zero of F, so it is invertible and we have f; = f,. Putting this back into
either of the prior equations, we find that f; = f;. Consequently, i = r and j = s. Therefore
for k # m, the Latin squares L; and L,, form an orthogonal pair.

The first value of » that is not a power of a prime is 6. The existence of a pair of 6 X 6
orthogonal Latin squares was first investigated by Leonhard Euler (1707-1783) when he
sought a solution to the “problem of the 36 officers.” This problem deals with six different
regiments wherein six officers, each with a different rank, are selected from each regiment.
(There are only six possible ranks.) The objective is to arrange the 36 officersina 6 X 6
array so that in each row or column of the array, every rank and every regiment is represented
exactly once. Hence each officer in the square array corresponds to an ordered pair (i, j)
where 1 < i, j < 6, withi for his regiment and j for his rank. In 1782 Euler conjectured that
the problem could not be solved — that there is no pair of 6 X 6 orthogonal Latin squares.
He went further and conjectured that for all n € Z™, if n = 2 (mod 4), then there is no pair
of n X n orthogonal Latin squares. In 1900 G. Tarry verified Euler’s conjecture for n = 6
by a systematic enumeration of all possible 6 X 6 Latin squares. However, it was not until
1960, through the combined efforts of R. C. Bose, S. S. Shrikhande, and E. T. Parker, that
the remainder of Euler’s conjecture was proved false. They showed that if n € Z* with
n =2 (mod 4) and n > 6, then there exists a pair of n X n orthogonal Latin squares.

For more on this result and Latin squares in general, the reader should consult the chapter
references.

b) Find a4 X 4 Latin square in standard form that is orthog-
EXERCISES 17.3 onal to the result in part (a).

1. a) Rewrite the following 4 X 4 Latin square in standard ¢) Apply the reverse of the process in part (a) to the result

form.

1
3
2
4

in part (b). Show that your answer is orthogonal to the given
4 X 4 Latin square.

4

2
2. Prove Theorem 17.14.

3

1

W o= AN

3
1
4
2 3. Complete the proof of the first part of Theorem 17.16.
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4. The three 4 X 4 Latin squares in Tables 17.3, 17.4, and 17.6 8. A Latin square L is called self-orthogonal if L and its trans-
are orthogonal in pairs. Can you find another 4 X 4 Latin square pose L" form an orthogonal pair.

that is orthogonal to each of these three? a) Show that there is no 3 X 3 self-orthogonal Latin square.
5. Complete the calculations in Example 17.17 in order to ob-
tain the two 5 X 5 Latin squares L3 and L4. Rewrite each Latin
square L,, for 1 <i <4, in standard form.

b) Give an example of a 4 X 4 Latin square that is self-
orthogonal.

¢) If L = (a,) is an n X n self-orthogonal Latin square,
prove that the elements a,,, for 1 <i < n, must all be dis-
tinct.

6. Find three 7 X 7 Latin squares that are orthogonal in pairs.
Rewrite these results in standard form.

7. Extend the experiment in Example 17.13 so that the research
team needs three 4 X 4 Latin squares that are orthogonal in
pairs.

174
Finite Geometries and Affine Planes

In the Euclidean geometry of the real plane, we find that (a) two distinct points determine a
unique line and (b) if £ is a line in the plane, and P a point not on £, then there is a unique line
¢’ that contains P and is parallel to £. During the eighteenth and nineteenth centuries, non-
Euclidean geometries were developed when alternatives to condition (b) were investigated.
Yet all of these geometries contained infinitely many points and lines. The notion of a finite
geometry did not appear until the end of the nineteenth century in the work of Gino Fano
(Giornale di Matematiche, 1892).

How can we construct such a geometry? To do so, we return to the more familiar Eu-
clidean geometry. In order to describe points and lines in this plane algebraically, we intro-
duced a set of coordinate axes and identified each point P by an ordered pair (c, d) of real
numbers. This description set up a one-to-one correspondence between the points in the
plane and the set R X R. By using the idea of slope, we could uniquely represent each line
in this plane by either (1) x = a, where the slope is infinite, or (2) y = mx + b, where m is
the slope; a, m, and b are real numbers. We also found that two distinct lines are parallel if
and only if they have the same slope. When their slopes are distinct, the lines intersect in a
unique point.

Instead of using real numbers a, b, ¢, d, m for the point (¢, d) and the lines x = a,
y = mx + b, we now turn to a comparable finite structure, the finite field. Our objective is
to construct what is called a (finite) affine plane.

Definition 17.12 Let P be a finite set of points, and let &£ be a set of subsets of P, called lines. A ( finite)
affine plane on the sets % and < is a finite structure satisfying the following conditions.

A1) Two distinct points of % are (simultaneously) in only one element of &; that is, they
are on only one line.

A2) For each £ € &, and each P € P with P ¢ £, there exists a unique element £’ € &
where P € £’ and £, ¢’ have no point in common.

A3) There are four points in P, no three of which are collinear (that is, no three of these
four points are in any one of the subsets £ € &£).

The reason for condition (A3) is to avoid uninteresting situations like the one shown in
Fig. 17.1. If only conditions (A1) and (A2) were considered, then this system would be an
Figure 17.1 affine plane.
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We return now to our construction. Let F = G F (n), where n = p' for some prime p and
t € Z*. In constructing our affine plane, denoted by AP (F), we let P = {(c, d)|c, d € F}.
Thus we have n? points.

How many lines should we have for the set £?

The lines fall into two categories. For a line of infinite slope the equation is x = a, where
a € F. Thus we have n such “vertical lines.” The other lines are given algebraically by
y = mx + b, where m, b € F. With n choices for each of m and b, it follows that there are
n? lines that are not “vertical.” Hence |£| = n2 + n.

Before we verify that AP (F), with P and & as constructed, is an affine plane, we make
two other observations.

First, for each line £ € &, if £ is given by x = a, then there are n choices for y on
£ ={(a, y)|y € F}. Thus £ contains exactly n points. If £ is given by y = mx + b, for
m, b € F, then for each choice of x we have y uniquely determined, and again £ consists
of n points.

Now consider any point (c, d) € P. This point is on the line x = ¢. Furthermore, on each
line y = mx + b of finite slope m, d — mc uniquely determines b. With n choices for m, we
see that the point (c, d) is on the n lines of the form y = mx + (d — mc). Overall, (c, d) is
onn + 1 lines.

Thus far in our construction of AP (F) we have a set P of points and a set & of lines
where (a) |P| = n?; (b) |£| = n? + n; (c) each £ € & contains n points; and (d) each point
in P is on exactly n + 1 lines. We shall now prove that A P (F) satisfies the three conditions
to be an affine plane.

Al) Let (c, d), (e, f) € P. Using the two-point formula for the equation of a line, we
have

e—a)y—d)y=(f—-d)x—c) )

as a line on which we find both (c, d) and (e, f). Each of these pointsisonn + 1
lines. Could there be a second line containing both of them?

The point (c, d) is on the line x = c. If (e, f) is also on this line, then e =
¢, but f # d because the points are distinct. With e = ¢, Eq. (1) reduces to 0 =
(f —d)(x —c¢),orx = cbecause f — d # 0, and so we do not have a second line.

With ¢ # e, if (c, d), (e, f) are on a second line of the form y = mx + b,
thend = mc + b, f = me + b,and (f — d) = m(e — c). Our coefficients are taken
fromafieldande # c,som = (f —d)(e—c)'andb=d —mc=d — (f —d) -
(e — ¢)~'c. Consequently, this second line containing (c, d) and (e, f) is

y=(—-de—0o)'x+[d—(f —d)e—c)c]

or, because multiplication in F is commutative, (¢ — ¢)(y —d) = (f —d)(x —¢),
which is Eq. (1). Thus two points from % are on only one line, and condition (A1)
is satisfied.

A2) To verify this condition, consider the point P and the line £ as shown in Fig. 17.2.
Since there are n points on any line, let Py, Ps, ..., P, be the points of £. (These
are the only points on ¢, although the figure might suggest others.) The point P is
not on £, so P and P; determine a unique line ¢;, for each 1 <i < n. We showed
earlier that each point is on n + 1 lines, so now there is one additional line £’ with
P on £’ and with ¢’ not intersecting £.

A3) The last condition uses the field F. Since |F| > 2, there is the unity 1 and the
zero element 0 in F. Considering the points (0, 0), (1, 0), (0, 1), (1, 1), if line £
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Figure 17.2

contains any three of these points, then two of the points have the form (c, ¢), (c, d).
Consequently the equation for £ is given by x = ¢, which is not satisfied by either
(d, ¢) or (d, d). Hence no three of these points are collinear.

We have now shown the following.

THEOREM 17.17

EXAMPLE 17.18

EXAMPLE 17.19

If F is a finite field, then the system based on the set % of points and the set £ of lines, as
described above, is an affine plane denoted by A P (F).

Some particular examples will indicate a connection between these finite geometries, or
affine planes, and the Latin squares of the previous section.

For F = (Z;, +, +), we have n = | F| = 2. The affine plane in Fig. 17.3 has n? = 4 points
and n? 4+ n = 6 lines. For example, the line £, = {(1, 0), (1, 1)}, and ¢4 contains no other
points that the figure might suggest. Furthermore, £5 and ¢¢ are parallel lines in this finite
geometry because they do not intersect.

0,1 1,1
3 €5

6

(0,0) (1,0)

Figure 17.3

Let F = G F(2%) — the field of Example 17.9. Recall the notation of Example 17.11(d) and
write F = {00, 01, 10, 11}, with addition and multiplication given by Table 17.7. We use
this field to construct a finite geometry with n?> = 16 points and n> + n = 20 lines. The 20
lines can be partitioned into five parallel classes of four lines each.

Class 1: Here we have the lines of infinite slope. These four “vertical” lines are given
by the equations x = 00, x = 01, x = 10, and x = 11.

Class 2: For the “horizontal” class, or class of slope 0, we have the four lines y = 00,
y=01,y=10,and y = 11.
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Table 17.7
+ 00 01 10 11 . 00 01 10 11
00 00 01 10 11 00 00 00 00 00
01 01 00 11 10 01 00 01 10 11
10 10 11 00 01 10 00 10 11 01
11 11 10 01 00 11 00 11 01 10

823

Class 3: The lines with slope 01 are those whose equations are y = 0lx + 00, y =
01x 401,y =01x + 10, and y = Olx + 11.

Class 4: This class consists of the lines with equations y = 10x + 00, y = 10x + 01,
y =10x + 10, and y = 10x + 11.
Class 5: The last class contains the four lines given by y = 11x 4+ 00, y = 11x + 01,
y=11lx+10,and y = 11x + 11.

Since each line in A P (F') contains four points and each parallel class contains four lines,
we shall see now how three of these parallel classes partition the 16 points of AP (F).

4 3 2 1
(00,11) (01,11) (10,11) (11,11)

2
(11,10)

3
(00,10)

4
(01,10)

1
(10,10)

1
(01,01)

4
(10,01)

(00,01) (11,01)

1
(00,00)

4
(11,00)

2
(01,00)

3
(10,00)

Figure 17.4

For the class with m = 01, there are four lines: (1) y = 01lx + 00; (2) y = 01x + O1;
(3)y =01x 4+ 10; and (4) y = 01x + 11. Above each point in A P(F) we write the number
corresponding to the line it is on. (See Fig. 17.4.) This configuration can be given by the
following Latin square:

4 3 2 1
3 4 1 2
2 1 4 3
1

2 3 4

If we repeat this process for classes 4 and 5, we get the partitions shown in Figs. 17.5
and 17.6, respectively. In each class the lines are listed, for the given slope, in the same

order as for Fig. 17.4. Within each figure is the corresponding Latin square.

These figures give us three 4 X 4 Latin squares that are orthogonal in pairs.
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4 2 1 3
[ ° ° °
(00,11) (01,11) (10,11) (11,11)

3 1 2 4
O ° ° °
(00,170) (01,70) (10,10) (11,10)

2 4 3 1
[ ] ° [ ] [ ]
1
(00,01) (01,01) (10,01) (11,01) 4213
3124
1 3 4 2
° ° ° ° 2 4 31
(00,00) (01,000 (10,00) (11,00) 13 42
Figure 17.5

4 1 3 2
° ° ° °
(00,11) (01,11) (10,11) (11,11)

3 2 4 1
° ° ° °
(00,10) (01,170) (10,10) (11,10)

2 3 1 4

L] [ ] [ ] °

1 11,01
(00,01) (01,01) (10,01) (11,01) 4132
3241

1 4 2 3
(00,00) (01,00) (10,00) (11,00) 1423

Figure 17.6

The results of this example are no accident, as demonstrated by the following theorem.

THEOREM 17.18

Let F = GF(n), where n >3 and n = p’, p a prime, ¢t € Z". The Latin squares that arise

from AP(F) for the n — 1 parallel classes, where the slope is neither O nor infinite, are

orthogonal in pairs.

Proof: A proof of this result is outlined in the Section Exercises.

EXERCISES 17.4

1. Complete the following table dealing with affine planes.

Field Number of Points

Number of Lines

Number of
Lines on a Point

Number of
Points on a Line

25

GF(3?)

56

17

31

2. How many parallel classes do each of the affine planes in
Exercise 1 determine? How many lines are in each class?

3. Construct the affine plane A P(Z). Determine its parallel
classes and the corresponding Latin squares for the classes of
finite nonzero slope.

4. Repeat Exercise 3 with Zs taking the place of Zj.

5. Determine each of the following lines.
a) The line in AP(Z;) that is parallel to y = 4x + 2 and
contains (3, 6).

b) The line in AP (Z,,) that is parallel to 2x +3y +4 =0
and contains (10, 7).

¢) The line in AP(F), where F = G F(22), that is parallel
to 10y = 11x 4+ 01 and contains (11, 01). (See Table 17.7.)

6. Suppose we try to construct an affine plane AP (Zs) as we
did in this section.

a) Determine which of the conditions (A1), (A2), and (A3)
fail in this situation.

b) Find how many lines contain a given point P and how
many points are on a given line £, for this “geometry.”

7. The following provides an outline for a proof of Theorem
17.18.

a) Consider a parallel class of lines given by y = mx + b,
where m € F, m # 0. Show that each line in this class inter-
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sects each “vertical” line and each “horizontal” line in ex- slope, are orthogonal, assume that an ordered pair (i, j) ap-
actly one point of AP (F). Thus the configuration obtained pears more than once when one square is superimposed upon
by labeling the points of AP (F), as in Figs. 17.4, 17.5, and the other. How does this lead to a contradiction?

17.6, is a Latin square.

b) To show that the Latin squares corresponding to two dif-
ferent classes, other than the classes of slope 0 or infinite

17.5
Block Designs and Projective Planes

In this final section, we examine a type of combinatorial design and see how it is related to
the structure of a finite geometry. The following example will illustrate this design.

Dick (d) and his wife Mary (m) go to New York City with their five children — Richard (r),

EXAMPLE 17.20

Peter (p), Christopher (c), Brian (), and Julie (j). While staying in the city they receive
three passes each day, for a week, to visit the Empire State Building. Can we make up a
schedule for this family so that everyone gets to visit this attraction the same number of

times?
The following schedule is one possibility.
1) b,c,d 2) b, j,r 3) b,m, p 4 c,j,m
5)c,p,r 6)d,j,p 7 d,m,r

Here the result was obtained by trial and error. For a problem of this size such a technique
is feasible. However, in general, a more effective strategy is needed. Furthermore, in asking
for a certain schedule, we may be asking for something that doesn’t exist. In this problem,
for example, each pair of family members is together on only one visit. If the family had
received four passes each day, we would not be able to construct a schedule that maintained
this property.

The situation in this example generalizes as follows.

Definition 17.13 Let V be a set with v elements. A collection {B;, Bs, ..., By} of subsets of V is called a
balanced incomplete block design, or (v, b, r, k, A)-design, if the following conditions are
satisfied:

a) Foreach 1 <i < b, the subset B, contains k elements, where k is a fixed constant and
k<.

b) Each element x € V isin r (< b) of the subsets B;, 1 <i <b.

¢) Every pair x, y of elements of V appears together in A (< b) of the subsets B;,
1<i<b.

The elements of V are often called varieties because of the early applications in the design
of experiments that dealt with tests on fertilizers and plants. The b subsets By, B;, ..., By
of V are called blocks, where each block contains k varieties. The number r is referred to as
the replication number of the design. Finally, A is termed the covalency for the design. This
parameter makes the design balanced in the following sense. For general block designs we
have a number A, for each pair x, y € V; if A, is the same for all pairs of elements from
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V, then A represents this common measure and the design is called balanced. In this text
we only deal with balanced designs.

a) The schedule in Example 17.20 is an example of a (7, 7, 3, 3, 1)-design.

EXAMPLE 17.21
b) For V = {1, 2, 3, 4, 5, 6}, the ten blocks
1 2 4 1 3 4 1
1 2 6 1 35 2 35 2

constitute a (6, 10, 5, 3, 2)-design.

¢) If F is a finite field, with | F| = n, then the affine plane A P (F) yields an
(n?, n® +n, n+ 1, n, 1)-design. Here the varieties are the n? points in AP (F); the
n? + n lines are the blocks of the design.

At this point there are five parameters determining our design. We now examine how
these parameters are related.

THEOREM 17.19 Fora (v, b, r, k, A)-design, (1) vr = bk and ) A(v — 1) = r(k — 1).

Proof:

1) With b blocks in the design and k elements per block, listing all the elements of the
blocks, we get bk symbols. This collection of symbols consists of the elements of V
with each element appearing r times, for a total of vr symbols. Hence vr = bk.

2) For this property we introduce the pairwise incidence matrix A for the design. With
|V]=v,lett = (5), the number of pairs of elements in V. We construct the ¢ X b
matrix A = (g;;) by defining a;; = 1 if the ith pair of elements from V is in the jth
block of the design; if not, a;; = 0.

B B, By,
X1X2 ap ap aip
X1X3 asy an @Qp
X1Xy Ay-11 Qy-12 Ay—-1b
X2X3 ay1 ay2 ayp
Xy—1Xy L ar1 a2 arp |

We now count the number of 1’s in matrix A in two ways.

a) Consider the rows. Since each pair x;, x;, for 1 <i < j < v, appears in A blocks, it
follows that each row contains A 1’s. With ¢ rows in the matrix, the number of 1’s is
then At = Av(v — 1)/2.

b) Now consider the columns. As each block contains k elements, this determines (’;) =
k(k — 1)/2 pairs, and this is the number of 1’s in each column of matrix A. With b
columns, the total number of 1’s is bk(k — 1) /2.

Then, Av(v — 1)/2 = bk(k — 1)/2 = vr(k — 1)/2,s0 A(v — 1) = r(k — 1).




Definition 17.14

EXAMPLE 17.22
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As we mentioned earlier, when n is a power of a prime, an (n%, n> +n,n+ 1, n, 1)-
design can be obtained from the affine plane A P (F), where F = G F (n). Here the points
are the varieties and the lines are the blocks. We shall now introduce a construction that
enlarges A P (F') to what is called a finite projective plane. From this projective plane we can
construct an (N2 +n+1,n%+n+1,n+1,n+1, 1)-design. First let us see how these
two kinds of planes compare.

If %’ is a finite set of points and &’ a set of lines, each of which is a nonempty subset of
%', then the (finite) plane based on %’ and &’ is called a projective plane if the following
conditions are satisfied.

P1) Two distinct points of %’ are on only one line.

P2) Any two lines from &’ intersect in a unique point.

P3) There are four points in %', no three of which are collinear.

The difference between the affine and projective planes lies in the condition dealing with
the existence of parallel lines. Here the parallel lines of the affine plane based on % and &£
will intersect when the given system is enlarged to the projective plane based on %" and &'.

The construction proceeds as follows.

Start with an affine plane AP (F) where F = G F(n). For each point (x, y) € P, rewrite
the point as (x, y, 1). We then think of the points as ordered triples (x, y, z) where z = 1.
Rewrite the equations of the lines x =cand y =mx + b in AP(F)asx =czand y =
mx + bz, where z = 1. We still have our original affine plane A P (F), but with a change of
notation.

Add the set of points {(1, 0, 0)} U {(x, 1, 0)|x € F} to P to get the set P'. Then |P'| =
n% + n + 1. Let £, be the subset of %’ consisting of these new points. This new line can be
given by the equation z = 0, with the stipulation that we never have x = y = z = 0. Hence
0,0,0) ¢ P

Now let us examine these ideas for the affine plane A P(Z,). Here P = {(0, 0), (1, 0),
0, 1), (1, 1)}, so

P ={(0,0,1), (1,0, 1), O, 1, 1), (1,1, D}U{(1,0,0), (0, 1, 0), (1, 1, 0)}.
The six lines in & were originally

x=0:{(0,0), 0, D}  y=0:{0,0), (1,0} y=x:{(0,0),(, 1}
x=1{1,0,, D}  y=1{01,(, D} y=x+1:{0,1),(,0)}

We rewrite these as
x=0 y=0 y=x xX=z y=12z y=x+4+z2
and add anew line £, defined by z = 0. These constitute the set £’ of lines for our projective

plane. And now at this point we consider z as a variable. Consequently, the line x = z
consists of the points (0, 1, 0), (1, 0, 1), and (1, 1, 1). In fact, each line of & that contained
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two points will now contain three points when considered in &’. The set &’ consists of the
following seven lines.

x=0:{(0,0, 1), (0, 1, 0), (0, 1, 1)} y=12:{(1,0,0), (0, 1, 1), (1, 1, 1)}
y=0:{(0,0, 1), (1,0, 0), (1,0, 1)} y=x:{(0,0,1), (1,1,0), (1, 1, 1)}
x=2z:{0,1,0), (1,0, 1), (1, 1, 1)} y=x+z{@0,1,1),(1,1,0), (1,0, 1)}

72=0(x): {(1,0,0), (0, 1,0), (1, 1, 0)}

In the original affine plane the lines x = 0 and x = 1 were parallel because no point
in this plane satisfied both equations simultaneously. Here in this new system x = 0 and
x = z intersect in the point (0, 1, 0), so they are no longer parallel in the sense of A P(Z,).
Likewise, y = x and y = x + 1 were parallel in AP (Z,), whereas here the lines y = x
and y = x + z intersect at (1, 1, 0). We depict this projective plane based on %’ and &’ as
shown in Fig. 17.7. Here the “circle” through (1, 0, 1), (1, 1, 0), and (0, 1, 1) is the line
y = x + z. Note that every line intersects £.,, which is often called the line at infinity. This
line consists of the three points at infinity. We define two lines to be parallel in the projective
plane when they intersect in a point at infinity (or on £).

(0,0,1)

(1,0,0) ©,1,1) a1

z=0(£,) y=z x=12z
Figure 17.7

This projective plane provides us with a (7, 7, 3, 3, 1)-design like the one we developed
by trial and error in Example 17.20.

We generalize the results of Example 17.22 as follows: Let n be a power of a prime. The
affine plane AP (F), for F = G F (n), provides an example of an (n?, n> + n, n + 1, n, 1)-
design. In AP(F) the n®> + n lines fall into n + 1 parallel classes. For each parallel class
we add a point at infinity to AP (F). The point (0, 1, 0) is added for the class of lines
X =cz, ¢ € F; the point (1, 0, 0) for the class of lines y = bz, b € F. When m € F and
m # 0, then we add the point (m~", 1, 0) for the class of lines y=mx + bz, b e F.The
line at infinity, £, is then defined as the set of n + 1 points at infinity. In this way we
obtain the projective plane over G F(n), which has n? 4+ n + 1 points and n% + n + 1 lines.
Here each point is on n + 1 lines, and each line contains n + 1 points. Furthermore, any
two points in this plane are on only one line. Consequently, we have an example of an
m*+n+1,n+n+1,n+1,n+1, 1)-design.



EXERCISES 17.5

1. Let V = {1, 2, ..., 9}. Determine the values of v, b, r, k,
and A for the design given by the following blocks.

126 147 234 279 378

135 189 258 369 459
2. Find an example of a (4, 4, 3, 3, A)-design.
3. Find an example of a (7, 7, 4, 4, A)-design.

4. Complete the following table so that the parameters v, b,
r, k, A in any row may be possible for a balanced incomplete
block design.

468
567

v b r k A
4 3 2
9 12 3
10 9 2
13 4 4

30 10 3

5. Is it possible to have a (v, b, r, k, A)-design where
@b=28,r=4,k=3?20b)v=17,r =8,k =5?

6. Given a (v, b, r, k, A)-design with b = v, prove that if v is
even, then A is even.

7. A (v, b, r, k, M)-design is called a triple system if k = 3.
When k =3 and A = 1, we call the design a Steiner triple
system.

a) Prove that in every triple system, A(v — 1) is even and
Av(v — 1) is divisible by 6.
b) Prove that in every Steiner triple system, v is congruent
to 1 or 3 modulo 6.
8. Verify that the following blocks constitute a Steiner triple
system on nine varieties.
128 147 234 279 389 468
135 169 256 367 459 578
9. In a Steiner triple system with b = 12, find the values of v
andr.

10. In each of the following, %’ is a set of points and &’ a set
of lines, each of which is a nonempty subset of %’. Which of
the conditions (P1), (P2), and (P3) of Definition 17.14 hold for
the given %’ and £'?
a) P ={a, b, c}
£ ={{a, b}, {a, c}, {b, c}}
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b) ¥ ={(x,y,2)lx,y,zeR} =R
<&’ is the set of all lines in R3.

c) P is the set of all lines in R? that pass through (0, 0, 0).

&' is the set of all planes in R? that pass through

(0, 0, 0).
11. Bowling teams of five students each are formed from a class
of 15 college freshmen. Each of the students bowls on the same
number of teams; each pair of students bowls together on two
teams. (a) How many teams are there in all? (b) On how many
different teams does each student bowl?

12. Mrs. Mackey gave her computer science class a list of 28
problems and directed each student to write algorithms for the
solutions of exactly seven of these problems. If each student did
as instructed and if for each pair of problems there was exactly
one pair of students who wrote algorithms to solve them, how
many students did Mrs. Mackey have in her class?

13. Consider a (v, b, r, k, 1)-design on the set V of varieties,
where |V| = v > 2.If x, y € V, how many blocks in the design
contain either x or y?

14. In a programming class Professor Madge has a total of n
students, and she wants to assign teams of m students to each
of p computer projects. If each student must be assigned to the
same number of projects, (a) in how many projects will each
individual student be involved? (b) in how many projects will
each pair of students be involved?

15. a) If a projective plane has six lines through every point,
how many points does this projective plane have in all?

b) If there are 57 points in a projective plane, how many
points lie on each line of the plane?

16. In constructing the projective plane from AP (Z,) in Ex-
ample 17.22, why didn’t we want to include the point (0, 0, 0)
in the set P'?

17. Determine the values of v, b, r, k, and A for the balanced
incomplete block design associated with the projective plane
that arises from A P(F') for the following choices of F: (a) Zs
(b)Z; (c) GF(8).

18. a) List the points and lines in A P(Z3). How many paral-

lel classes are there for this finite geometry? What are the
parameters for the associated balanced incomplete block
design?
b) List the points and lines for the projective plane that
arises from A P(Z3). Determine the points on £, and use
them to determine the “parallel” classes for this geometry.
What are the parameters for the associated balanced incom-
plete block design?



830

Chapter 17 Finite Fields and Combinatorial Designs

17.6
Summary and Historical Review

The structure of a field was first developed in Chapter 14. In this chapter we examined
polynomial rings and their role in the structure of finite fields, directing our attention to
applications in finite geometries and combinatorial designs.

In Chapter 15 we saw that the order of a finite Boolean algebra could only be a power
of 2. Now we find that for a finite field the order can only be a power of a prime and that
for each prime p and each n € Z™, there is only one field, up to isomorphism, of order p".
This field is denoted by G F(p"), in honor of the French mathematician Evariste Galois
(1811-1832).

¥ 3> 5
Evariste Galois (1811-1832)

The finite fields (Z,, +, -), for p a prime, were obtained in Chapter 14 by means of
the equivalence relation, congruence modulo p, defined on Z. Using these finite fields, we
developed here the integral domains Z,[x]. Then, with s(x) an irreducible polynomial of
degree n in Z,[x], a similar equivalence relation — namely, congruence modulo s(x) —
gaveusasetof p" equivalence classes, denoted Z ,[x]/(s (x)). These p" equivalence classes
became the elements of the field G F (p"). (Although we did not prove every possible result
in general, it can be shown that over the finite field Z, there is an irreducible polynomial
of degree n foreachn € Z*.)

The theory of finite fields was developed by Galois in his work addressing the problem of
the solutions of polynomial equations. As we mentioned in the summary of Chapter 16, the
study of polynomial equations was an area of research that challenged many mathematicians
from the sixteenth to the nineteenth centuries. In the nineteenth century, Niels Henrik Abel
(1802-1829) first showed that the solution of the general quintic could not be given by
radicals. Galois showed that for any polynomial of degree n over a field F, there is a
corresponding group G that is isomorphic to a subgroup of S,, the group of permutations
of {1, 2, 3, ..., n}. The essence of Galois’s work is that such a polynomial equation can be
solved by (addition, subtraction, multiplication, division, and) radicals if its corresponding
group is solvable. Now what makes a finite group solvable? We say that a finite group G is
solvable if it has a chain of subgroups G = K|, D K; D K3 D - - - D K, = {e}, where for all
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2 <i <t, K; is a normal subgroup of K;_, (thatis, xyx~! € K; for all y € K; and for all
x € K;_1), and the quotient group K;_;/K, is abelian. One finds that all subgroups of §;,
for 1 <i <4, are solvable, but for n > 5 there are subgroups of S, that are not solvable.

Though it seems that Galois theory is concerned predominantly with groups, there is
a great deal more on the theory of fields that we have not mentioned. As a consequence
of Galois’s work, the areas of field theory and finite group theory became topics of great
mathematical interest.

For more on Galois theory, the reader will find Chapter 6 of the text by V. H. Larney
[8] and Chapter 12 in the book by N. H. McCoy and T. R. Berger [10] good places to start.
Chapter 5 of I. N. Herstein [6] has more on the topic, while a detailed presentation can be
found in the text by S. Roman [11] and the classic work by O. Zariski and P. Samuel [17].
Appendix E in the text by V. H. Larney [8] includes an interesting short account of the life of
Galois; more on his life can be found in the somewhat fictional account by L. Infeld [7]. The
article by T. Rothman [12] provides a more contemporary discussion of the inaccuracies
and myths surrounding the life, and especially the death, of Galois. The biographical notes
on pages 287-291 of the text by J. Stillwell [14] relate more on the life and work of this
great genius.

The Latin squares, combinatorial designs, and finite geometries of the later sections of the
chapter showed us how the finite field structure entered into problems of design. Dating back
to the time of Leonhard Euler (1707-1783) and the problem of the “36 officers,” the study
of orthogonal Latin squares has been developed considerably since 1900, and especially
since 1960 with the work of R. C. Bose, S. S. Shrikhande, and E. T. Parker. Chapter 7 of
the monograph by H. J. Ryser [13] provides the details of their accomplishments. The text
by C. L. Liu [9] includes ideas from coding theory in its discussion of Latin squares.

The study of finite geometries can be traced back to the work of Gino Fano, who, in
1892, considered a finite three-dimensional geometry consisting of 15 points, 35 lines, and
15 planes. However, it was not until 1906 that these geometries gained any notice, when
O. Veblen and W. Bussey began their study of finite projective geometries. For more on this
topic, the reader should find the texts by A. A. Albert and R. Sandler [1] and H. L. Dorwart
[4] very interesting. The text by P. Dombowski [3] provides an extensive coverage for those
seeking something more advanced.

Finally, the notion of designs was first studied by statisticians in the area called the design
of experiments. Through the research of R. A. Fisher and his followers, this area has come to
play an important role in the modern theory of statistical analysis. In our development, we
examined conditions under which a (v, b, r, k, 1)-design could exist and how such designs
were related to affine planes and finite projective planes. The text by M. Hall, Jr. [5] provides
more on this topic, as does the work by A. P. Street and W. D. Wallis [15]. Chapter XIII of
reference [15] includes material relating to designs and coding theory. A rather thorough
coverage of the topic of designs is given in the work by W. D. Wallis [16], and the text
edited by J. H. Dinitz and D. R. Stinson [2] provides the reader with a collection of more
work in this area.
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SUPPLEMENTARY EXERCISES

1. Determine n if over G F (n) there are 6561 monic polyno-

mials of degree 5 with no constant term.

2. a) Let f(x) =aux"+---+ax+ayeZ[x].Ifr/s €Q,
with ged(r, s) = land f(r/s) = 0, prove thats|a, and r|a,.
b) Find the rational roots, if any exist, of the following
polynomials over Q. Factor f(x) in Q[x].

i) f(x)=2x3+3x2-2x-3

i) fO)=x*4+x>-x?-2x-2
¢) Show that the polynomial f(x) = x'® — x° 4+ x20 4
x> + 1 has no rational root.

3. a) For how many integers n, where 1 < n < 1000, can we
factor f(x) = x* + x — n into the product of two first de-
gree factors in Z[x]?

b) Answer part (a) for f(x) = x> +2x —n.

¢) Answer part (a) for f(x) = x> + 5x —n.

d) Let g(x) =x?>+kx —neZx], for 1<n<1000.
Find the smallest positive integer k so that g(x) cannot
be factored into two first degree factors in Z[x] for all
1 <n <1000.

4. Verify that the polynomial f(x)=x*+x3+x+1 is

reducible over every field F (finite or infinite).

S. If p is a prime, prove thatin Z, [x],

xP—x= H(x—a).

a€lp

6. For any field F, let f(x) = x" + @, x" '+ +ajx +
ap € F[x].1fry, rp, ..., r, are the roots of f(x),andr, € F for
all 1 <i < n, prove that

a) —ap  =ri+rt+ .
b) (—l)”ao =riry--:-ry.

7. Four of the seven blocks in a (7, 7, 3, 3, 1)-design are
{1,3,7}, {1, 5, 6}, {2, 6, 7},and {3, 4, 6}. Determine the other
three blocks.

8. Find the values of b and r for a Steiner triple system where
v =063.

9. a) If a projective plane has 73 points, how many points lie
on each line?
b) If each line in a projective plane passes through 10
points, how many lines are there in the projective plane?
10. A projective plane is coordinatized with the elements of a
field F.If this plane contains 91 lines, what are | F| and char(F)?

11. Let V = {x, xp,..., x,} be the set of varieties and
{By, B,, ..., By} the collection of blocks for a (v, b, r, k, A)-
design. We define the incidence matrix A for the design by

1, ifx, €eB
A= (@), where a,, = {0 othérwisé

a) How many 1’s are there in each row and column of A?

b) Let J,x, be the m X n matrix where every entry is 1.
For J,x, we write J,. Prove that for the incidence matrix
A,A~J,,=r~Jv><,,ande-A :k'JUXb.



Supplementary Exercises 833

¢) Show that 12. Given a (v, b, r, k, A)-design based on the v varieties of
- A e A vV, repl~ace each of the blocks B,, for 1 <i < g bl its com}lle-
A ’ A e A ment B, =V — B,. Then the collection {B, B, ..., By}
A A =] A A P provides the blocks for a (v, b, ', k’, \')-design, also based on
. o . the set V.
A A A -1 a) Find this corresponding complementary (v, b, ', k/,
= =N, + A, A’)-design for the design given in Exercise 1 of Section 17.5.

b) In general, how are the parameters r’, k', A’ of the com-
plementary design related to the parameters v, b, r, k, A of
the original design?

where I, is the v X v (multiplicative) identity.
d) Prove that
det(A - A") = (r = 2)"'[r + (v = DAL = (r = 1) 'rk.






