MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik

Examinator: Sofia Tirabassi

Tentamensomskrivning i Combinatorics 7.5 hp 11th January 2022

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved. A score of at least 15 points will ensure a pass grade.

GOOD LUCK!

1. Partitions: (2 points)

Consider r a positive integer and let a_r be the number of (unordered) partitions of r such that:

- no summand is larger than 4;
- 3 appears at least 3 times;
- 4 appears at most 2 times.

Express of the generating function of a_r , $r \in \mathbb{N}_{>0}$, as a quotient of polynomials. **Solution:** We know from the lectures and textbook that the generating function for p(r) the number of unordered partitions of r is

$$\prod_{n\in\mathbb{N}_{>0}}\frac{1}{1-x^n}.$$

If we assume that the highest summand is 4 the generating functions becomes

$$\prod_{n=1}^{4} \frac{1}{1-x^n}.$$

The conditions that there could be at most 2 fours change the generating function in the following

$$\prod_{n=1}^{3} \frac{1}{1-x^n} \cdot (1+x^4+x^8).$$

We just have to see the effect of the condition on the numbers of 3. So we have that

$$f(x) = \left(\frac{1}{1-x}\right) \cdot \left(\frac{1}{1-x^2}\right) \cdot \left(\sum_{n=3}^{\infty} x^{3n}\right) \cdot (1+x^4+x^8)$$

$$= \left(\frac{1}{1-x}\right) \cdot \left(\frac{1}{1-x^2}\right) \cdot \left[x^9 \cdot \left(\sum_{n=1}^{\infty} x^{3n}\right)\right] \cdot (1+x^4+x^8)$$

$$= \left(\frac{1}{1-x}\right) \cdot \left(\frac{1}{1-x^2}\right) \cdot \left(\frac{x^9}{1-x^3}\right) \cdot (1+x^4+x^8)$$

$$= \left(\frac{1}{1-x}\right) \cdot \left(\frac{1}{1-x^2}\right) \cdot \left(\frac{1}{1-x^3}\right) \cdot (x^9+x^{13}+x^{17})$$

2. Rook polynomials:

- (a) (2 point) Define the **rook numbers** and the **rook polynomial** of a chessboard C.
- (b) (3 points) Calculate the rook polynomial of the following 4×4 chessboard.

(c) (2 point) State formally how the rook polynomial of the union of two disjoint chessboards C_1 and C_2 can be written in terms of the rook polynomials of the C_i 's

2

(d) (2 points) Prove your statement in point (d).

Soulution: For (a), (b), and (c) we refer to the textbook.

(d) Using the forumla $r(C, x) = xr(C_e, x) + r(C_s, x)$ one arrives at the result

$$r(C, x) = 1 + 8x + 20x^2 + 16x^3 + 4x^4$$

3. Recursion:

Consider the following recursion relation

$$a_{n+2} - 6a_{n+1} + 9a_n = 5$$

With boundary conditions $a_0 = 0$ and $a_1 = 1$.

- (a) (3 points) Solve the relation finding a closed formula for a_n .
- (b) (2 points) Express the generating function of the sequence $\{a_n\}_{n\in\mathbb{N}}$ as a quotient of polynomials.

Solution: (a) The characteristic equation of the recursion relation is $x^2 - 6x + 9 = 0$ which has a double real root x = 3. Therefore the general solution of the homogeneous relation is

$$a_n^{(h)} = (A + Bn)3^n,$$

with A and B real numbers. We observe that the right hand side is of the form $5(1)^n$. Has 1 is not a root of the characteristic equation, a particular solution of the recursion relation will be

$$a_n^{(p)} = \alpha \tag{1}$$

for some constant α . We plug this in the recursion relation to determine α . We get

$$\alpha - 6\alpha + 9\alpha = 5$$

from which we deduce that $\alpha = \frac{5}{4}$. So the general solution of the recursion relation is

$$a_n = (A + Bn)3^n + \frac{5}{4}.$$

Now we have to determine the values of A and B using the boundary conditions. We get that

$$0 = a_0 = A + \frac{5}{4},$$

thus we have that $A = -\frac{5}{4}$. From the second condition we have that

$$1 = a_1 = (A+B)3 + \frac{5}{4} = -\frac{5}{2} + 3B.$$

We deduce that $B = -\frac{7}{6}$. Thus the solution of the recursion relation with boundary condition is

$$a_n = (-\frac{5}{4} + \frac{7}{6}n)3^n + \frac{5}{4}.$$

(b) We have that

$$\sum_{n=0}^{\infty} a_{n+2} x^{n+2} - 6 \sum_{n=0}^{\infty} a_{n+1} x^{n+2} + 9 \sum_{n=0}^{\infty} a_n x^{n+2} = 5 \sum_{n=0}^{\infty} x^{n+2}.$$

We can rewrite this has

$$f(x) - a_0 - a_1 x - 6x(f(x) - a_0) + 9x^2 f(x) = 5\frac{x^2}{1 - x},$$

where f is the generating function of the a_n 's. Now we use the boundary conditions an s we get the following equation

$$f(x) - x - 6xf(x) + 9x^2f(x) = 5\frac{x^2}{1 - x}$$

which we solve for f(x) and get

$$f(x) = \frac{4x^2 + x}{(1 - x)(1 - 6x + 9x^2)}.$$

4. Graphs:

Consider the (simple and loop-free) complete bipartite graph $K_{n,m}$.

- (a) (2 points) Give conditions on n and m such that $K_{n,m}$ is connected.
- (b) (2 points) Give conditions on n and m such that $K_{n,m}$ has an Euler circuit.
- (c) (2 points) Give conditions on n and m such that $K_{n,m}$ has an Hamilton path.
- (d) (2 points) Compute the chromatic polynomial of $K_{2,2}$. (Formula: you can use that $p(K_n, x) = x(x-1)(x-2)\cdots(x-n+1)$

Solution: (a) If n and m are both positive, the graph is connected. In fact let consider $V(K_{n,m}) = V_1 \cup V_2$, and take a and b in V. If they belong to different V_i 's then the edge $\{a,b\}$ is in $E(K_{n,m})$. Suppose otherwise that both a and b are in V_1 then there is a vertex $c \in V_2$ (m is positive) which is adjacent to both a and b (by the completeness of $K_{n,m}$. Thus (a,c,b) is a path connecting a and b. A similar argument, with the assumption that n is positive let us construct a path from a to b when a and b are in V_i .

- (b) To have an Euler circuit the degree of every vertex has to be even. Let $a \in V(K_{n,m}) = V_1 \cup V_2$. Then $\deg(a) = m$ if $a \in V_1$ or n otherwise. Therefore $K_{n,m}$ has an Euler circuit if, and only if, both n and m are even.
- (c) If the degree of two non adjacent vertices is bigger or equal $n+m\geq 3$ we have an Hamilton path. Two vertices a and b in $V(K_{n,m})=V_1\cup V_2$ are not adjacent if, and only if, they belong to the same V_i . In this case their degree is the size of the other V_i . Thus we have that $2m\geq m+n$ and $2n\geq n+m$ are two conditions that ensure the existence of an Hamilton path. We deduce that an Hamilton path exists when $n=m\geq 2$.

Alternatively, we have an Hamilton path if $n + m \ge 3$ and the sum of the degrees of any two vertices is at least nm - 1. We get this 3 conditions

- (a) $n+m \ge n+m-1$, which is always satisfied
- (b) $2n \ge n + m 1$, which is equivalent to $n \ge m 1$;
- (c) $2m \ge n + m 1$ which is equivalent to $m \ge n 1$.

Thus if we take n = m - 1, or m = n - 1, all the conditions are satisfied and there is an Hamilton path. (d) This is an example in the book.

5. Latin squares:

Let q be a prime different from 2 or 3. Define the $q \times q$ matrix $A = (a_{ij})$ by $a_{ij} \equiv 2i + j \pmod{q}$

- (a) (2 points) Write A when q = 5. Observe that it is a Latin square.
- (b) (2 points) For q=5 find a Latin square which is orthogonal to A. (Hint: 3 is a unit in \mathbb{F}_5)
- (c) (2 points) Show that for every q, the matrix A is a Latin square. (**Hint:** You need to show that $a_{ij} = a_{ik}$ implies j = k and that $a_{ij} = a_{lj}$ implies i = l.)

Solution: (a)

(b) We know that $a_{i,j} \equiv 3i + j \pmod{q}$ will produce a Latin square ortogonal to the one given above:

(c) Suppose that $a_{ij} = a_{ik}$. Then we have that

$$2i + j \equiv 2i + k \pmod{q}$$
.

The rules of the operation in \mathbb{F}_q guarantee that j = k. Suppose now that $a_{ij} = a_{lj}$ for some j then we have

$$2i + j \equiv 2l + j \pmod{q},$$

which is equivalent to $2i \equiv 2j \pmod{q}$. Since 2 is a unit in \mathbb{F}_q we deduce that $i \equiv j \pmod{q}$.