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Please read carefully the general instructions:

• During the exam any textbook, class notes, or any other supporting material is forbidden.

• In particular, calculators are not allowed during the exam.

• In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.

• Use natural language, not just mathematical symbols.

• Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).

• A maximum score of 30 points can be achieved. A score of at least 15 points will ensure a pass grade.

GOOD LUCK!



1. Partitions: (2 points)
Consider r a positive integer and let ar be the number of (unordered) partitions of r such that:

• no summand is larger than 4;

• 3 appears at least 3 times;

• 4 appears at most 2 times.

Express of the generating function of ar, r ∈ N>0, as a quotient of polynomials. Solution: We know
from the lectures and textbook that the generating function for p(r) the number of unordered partitions
of r is ∏

n∈N>0

1

1− xn
.

If we assume that the highest summand is 4 the generating functions becomes

4∏
n=1

1

1− xn
.

The conditions that there could be at most 2 fours change the generating function in the following

3∏
n=1

1

1− xn
· (1 + x4 + x8).

We just have to see the effect of the condition on the numbers of 3. So we have that

f(x) =

(
1

1− x

)
·
(

1

1− x2

)
·

( ∞∑
n=3

x3n

)
· (1 + x4 + x8)

=

(
1

1− x

)
·
(

1

1− x2

)
·

[
x9 ·

( ∞∑
n=1

x3n

)]
· (1 + x4 + x8)

=

(
1

1− x

)
·
(

1

1− x2

)
·
(

x9

1− x3

)
· (1 + x4 + x8)

=

(
1

1− x

)
·
(

1

1− x2

)
·
(

1

1− x3

)
· (x9 + x13 + x17)

2. Rook polynomials:

(a) (2 point) Define the rook numbers and the rook polynomial of a chessboard C.

(b) (3 points) Calculate the rook polynomial of the following 4× 4 chessboard.

(c) (2 point) State formally how the rook polynomial of the union of two disjoint chessboards C1 and
C2 can be written in terms of the rook polynomials of the Ci’s
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(d) (2 points) Prove your statement in point (d).

Soulution: For (a), (b), and (c) we refer to the textbook.
(d) Using the forumla r(C, x) = xr(Ce, x) + r(Cs, x) one arrives at the result

r(C, x) = 1 + 8x+ 20x2 + 16x3 + 4x4

3. Recursion:
Consider the following recursion relation

an+2 − 6an+1 + 9an = 5

With boundary conditions a0 = 0 and a1 = 1.

(a) (3 points) Solve the relation finding a closed formula for an.

(b) (2 points) Express the generating function of the sequence {an}n∈N as a quotient of polynomials.

Solution: (a) The characteristic equation of the recursion relation is x2 − 6x + 9 = 0 which has a
double real root x = 3. Therefore the general solution of the homogeneous relation is

a(h)n = (A+Bn)3n,

with A and B real numbers. We observe that the right hand side is of the form 5(1)n. Has 1 is not a
root of the characteristic equation, a particular solution of the recursion relation will be

a(p)n = α (1)

for some constant α. We plug this in the recursion relation to determine α. We get

α− 6α+ 9α = 5

from which we deduce that α = 5
4 . So the general solution of the recursion relation is

an = (A+Bn)3n +
5

4
.

Now we have to determine the values of A and B using the boundary conditions. We get that

0 = a0 = A+
5

4
,

thus we have that A = − 5
4 . From the second condition we have that

1 = a1 = (A+B)3 +
5

4
= −5

2
+ 3B.

We deduce that B = − 7
6 . Thus the solution of the recursion relation with boundary condition is

an = (−5

4
+

7

6
n)3n +

5

4
.

(b) We have that

∞∑
n=0

an+2x
n+2 − 6

∞∑
n=0

an+1x
n+2 + 9

∞∑
n=0

anx
n+2 = 5

∞∑
n=0

xn+2.

We can rewrite this has

f(x)− a0 − a1x− 6x(f(x)− a0) + 9x2f(x) = 5
x2

1− x
,
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where f is the generating function of the an’s. Now we use the boundary conditions an s we get the
following equation

f(x)− x− 6xf(x) + 9x2f(x) = 5
x2

1− x
,

which we solve for f(x) and get

f(x) =
4x2 + x

(1− x)(1− 6x+ 9x2)
.

4. Graphs:
Consider the (simple and loop-free) complete bipartite graph Kn,m.

(a) (2 points) Give conditions on n and m such that Kn,m is connected.
(b) (2 points) Give conditions on n and m such that Kn,m has an Euler circuit.
(c) (2 points) Give conditions on n and m such that Kn,m has an Hamilton path.
(d) (2 points) Compute the chromatic polynomial of K2,2. (Formula: you can use that p(Kn, x) =

x(x− 1)(x− 2) · · · (x− n+ 1))

Solution: (a) If n and m are both positive, the graph is connected. In fact let consider V (Kn,m) =
V1 ∪ V2, and take a and b in V . If they belong to different Vi’s then the edge {a, b} is in E(Kn,m).
Suppose otherwise that both a and b are in V1 then there is a vertex c ∈ V2 (m is positive) which is
adjacent to both a and b (by the completeness of Kn,m. Thus (a, c, b) is a path connecting a and b. A
similar argument, with the assumption that n is positive let us construct a path from a to b when a
and b are in Vi.
(b) To have an Euler circuit the degree of every vertex has to be even. Let a ∈ V (Kn,m) = V1 ∪ V2.
Then deg(a) = m if a ∈ V1 or n otherwise. Therefore Kn,m has an Euler circuit if, and only if, both n
and m are even.
(c) If the degree of two non adjacent vertices is bigger or equal n+m ≥ 3 we have an Hamilton path.
Two vertices a and b in V (Kn,m) = V1 ∪ V2 are not adjacent if, and only if, they belong to the same
Vi. In this case their degree is the size of the other Vi. Thus we have that 2m ≥ m+n and 2n ≥ n+m
are two conditions that ensure the existence of an Hamilton path. We deduce that an Hamilton path
exists when n = m ≥ 2.
Alternatively, we have an Hamilton path if n+m ≥ 3 and the sum of the degrees of any two vertices
is at least nm− 1. We get this 3 conditions

(a) n+m ≥ n+m− 1, which is always satisfied
(b) 2n ≥ n+m− 1, which is equivalent to n ≥ m− 1;
(c) 2m ≥ n+m− 1 which is equivalent to m ≥ n− 1.

Thus if we take n = m − 1, or m = n − 1, all the conditions are satisfied and there is an Hamilton
path. (d) This is an example in the book.

5. Latin squares:
Let q be a prime different from 2 or 3. Define the q × q matrix A = (aij) by aij ≡ 2i+ j( mod q)

(a) (2 points) Write A when q = 5. Observe that it is a Latin square.
(b) (2 points) For q = 5 find a Latin square which is orthogonal to A. (Hint: 3 is a unit in F5)
(c) (2 points) Show that for every q, the matrix A is a Latin square. (Hint: You need to show that

aij = aik implies j = k and that aij = alj implies i = l.)

Solution: (a)
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

4



(b) We know that ai,j ≡ 3i+ j( mod q) will produce a Latin square ortogonal to the one given above:

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

(c) Suppose that aij = aik. Then we have that

2i+ j ≡ 2i+ k( mod q).

The rules of the operation in Fq guarantee that j = k. Suppose now that aij = alj for some j then we
have

2i+ j ≡ 2l + j( mod q),

which is equivalent to 2i ≡ 2j( mod q). Since 2 is a unit in Fq we deduce that i ≡ j( mod q).
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