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@ Connected sets (Rudin 2.45-2.47)
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Given E C X, an open cover of E is a collection {U, }.ca 0Of open
sets of X such that
Ec|JU.

Definition: Compact set

Given K C X, we say that it is compact if, for every open covering
{U, }aca there are finitely many a4, ..., a, such that

i=1
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Compact sets are closed.
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Theorem

Let K be a compact set and C C K a closed set (relatively to X).
Then C is compact.

Corollary
If Cis closed and K is compact then C N K is compact.
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Intersection of compact

Theorem

Let {K, } a collection of compact sets such as any finite intersection is
non-empty. Then,

(K #0

Corollary
If {K,} is a sequence of compact sets such that K, > K1 then we
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Limits in compact sets S
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Any infinite subset of a compact set K has a limit point in K.
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Compact subsets of R” &
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Let (X, d) be R with the Euclidean distance. We want to prove the
following theorem

Theorem: Heine—Borel
For the following are equivalent
“0 E is closed andclgogndqd 1od)

@ E is compact
© every infinte subset of E has a limit point in E.
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k-cells
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A (closed) k-cell / is a subset of R¥ which is a product of (closed)
intervals. That is there are (a1, ..., ax) and (b, ..., bx), with b; > a;
such that
I={(x,....xn) e Bl a < x < b}
If we set 1 «—
k 2
ot deee - (Ye-ar) @
i=1 —

we have that ij

d(x,y) <4(/)
forall x and y in I.

Proposition
We have that E C R’is bounded if, and only if, it is contained in a
k-cell. 2.F ~2 uos cnddo- o k-l
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The intersection of a sequence of nested interval in R is not empty.

Lemma

The intersection of a sequence of nested k-cells in R¥ is not empty.
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Every k-cell is a compact subset of R¥.
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Weierstrass Theorem fkhlm
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Theorem
Every bounded infinite subset of R¥ has a limit point in RX.
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Definiton (usual connected set)

A subset E of X is said to be connected if it cannot be written as
union as a union of two disjoint, nonempty sets open with respect to

the restricted metric

E4U\0 UL




Connected sets e
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Definiton (usual connected set)
A subset E of X is said to be connected if it cannot be written as
union as a union of two disjoint, nonempty sets open with respect to
the restricted metric
In other words, if there are two open sets U; and U, in X such that
@ EC U Uls
e EnU Nl = ]
Then ENU;=0orEnlU, =0



Connected sets - A la Rudin 5
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Two subsets A and B of a metric space X are said to be separated if

ANB=( andBNA=1(



Connected sets - A la Rudin 5
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Two subsets A and B of a metric space X are said to be separated if

ANB=( andBNA=1(

A subset E of X is said to be connected if it cannot be written as
union of two nonempty separtaed subsets.
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Connected sets - A la Rudin e
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Two subsets A and B of a metric space X are said to be separated if

ANB=( andBNA=1(

A subset E of X is said to be connected if it cannot be written as
union of two nonempty separtaed subsets.

The two definitions are equivalent. This is a nice exercise to do :).
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A subset E C R is connected if, and only if, for all x < y in E we have
that [x,y] C E €2 (1.2 €, wwpt)
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Thank you for your attention!



