PRACTICE EXAM

Instructions: Justify your answers. You may use results from the homework sets and from class, but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. You need a score of 12.5/30 or higher to pass this exam. More precisely, the following scale will be used:

A: [26.5, 30], B: [23, 26.5), C: [19.5, 23), D: [16, 19.5), E: [12.5, 16), F: [0, 12.5).

Problem 1. Let $f(x) = x^7 - 2 \in \mathbf{Q}[x]$.

- (a) (1 point) Show that f is irreducible over \mathbf{Q} .
- (b) (2 points) Give an explicit description of a splitting field L for f.
- (c) (1 point) Compute $[L: \mathbf{Q}]$.
- (d) (1 point) Show that L/\mathbf{Q} is Galois.

Problem 2. Let $f(x) = x^7 - 2 \in \mathbb{Q}[x]$ and L be as in Problem 1.

- (a) (3 points) Give generators and relations for $Gal(L/\mathbb{Q})$.
- (b) (2 points) Show that $Gal(L/\mathbb{Q})$ is solvable.
- (c) (1 point) Show that f is solvable by radicals.
- (d) (1 point) Let α be a root of f in L. Is α constructible by straightedge and compass? Explain.

Problem 3. Let ζ_{11} be a primitive 11th root of unity in a field of characteristic zero.

- (a) (1 point) Show that $\mathbf{Q}(\zeta_{11})/\mathbf{Q}$ is Galois.
- (b) (2 points) Give an explicit description of $Gal(\mathbf{Q}(\zeta_{11})/\mathbf{Q})$
- (c) (2 points) Let $\alpha = \zeta_{11} + \zeta_{11}^3 + \zeta_{11}^4 + \zeta_{11}^5 + \zeta_{11}^9$. Find $m_{\alpha,\mathbf{Q}}(x)$. (d) (2 points) Let $\gamma = \zeta_{11} + \zeta_{11}^{-1}$. Find $m_{\gamma,\mathbf{Q}}(x)$. (e) (1 point) Find $m_{\zeta_{11},\mathbf{Q}(\gamma)}(x)$.

Problem 4.

- (a) (2 points) Construct a Galois extension of \mathbf{Q} with Galois group $\mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/3\mathbf{Z}$.
- (b) (1 point) Let $g(x) = x^3 + x^2 2x 1 \in \mathbf{Q}[x]$. What subgroup of S_3 is isomorphic to $\mathrm{Gal}(g)$?
- (c) (2 points) Let p be a prime. Suppose $x^3 + ax + b \in \mathbf{F}_p[x]$ is irreducible. Show that $-4a^3 27b^2$ is a square in \mathbf{F}_p .

Problem 5. Let $h(x) = x^{16} + x^{15} + \dots + x + 1 \in \mathbb{Z}[x]$.

- (a) (1 point) Suppose p is a prime, $p \equiv 1 \pmod{17}$. Show that h(x) splits completely in $\mathbf{F}_p[x]$.
- (b) (2 points) Suppose p is a prime, $p \equiv 2 \pmod{17}$. Show that h(x) factors in $\mathbf{F}_p[x]$ as a product of two irreducible polynomials, both of degree 8.
- (c) (2 points) Show that $x^3 + x + 1$ divides $x^{343} x$ in $\mathbf{F}_7[x]$. Note: Long division is highly discouraged in this problem.