Galois Theory (MMS8005) Wushi Goldring May 22, 2017

FINAL EXAM SOLUTIONS

Instructions: Justify your answers. You may use results from the homework sets and from class,
but make sure to carefully state such results. No calculators and no notes allowed.

Grading: This exam is worth 30 points. You need a score of 12.5/30 or higher to pass this exam.
More precisely, the following scale will be used:

A: [26.5,30], B: [23,26.5), C: [19.5,23), D: [16,19.5), E: [12.5,16), F: [0,12.5).

Problem 1. Let f(x) = 2% — 3 € Qlx].
(a) (1 point) Show that f is irreducible over Q.
(b) (2 points) Give an explicit description of a splitting field L for f.
(c) (1 point) Compute [L : Q)].
(d) (1 point) Show that L/Q is Galois.

Solution. (a) The polynomial f(x) is irreducible over Q because it satisfies Eisenstein’s criterion at
p=3.

(b) Let L be a splitting field of F'. Since f is irreducible and Q has characteristic zero, f is separable.
Let «, 8 be two distinct roots of f in L. Put ( = a/f. Then ( is a primitive 5th root of unity.

We claim L = Q(a, (). The above gives one inclusion: Q(c,¢) C L. On the other hand, (/a,
0 < j < 4 gives five distinct roots of f in Q(«, (). So f splits completely over Q(a, (). This gives the
reverse inclusion L C Q(«, ().

(c) In general, the degree of a composite is at most the product of the degrees of its constituents.
Thus [Q(a¢) : Q) < [Q(a) : QJ[Q(() : Q] = 5 -4 = 20. Since [Q(a) : Q] = 5 and [Q(C) : Q] = 4 are
relatively prime and both divide [L : Q], we have equality. Thus [L : Q] = 20

(d) The splitting field of a separable polynomial is Galois. We have seen that f is irreducible and
separable. Thus its splitting field L is Galois over Q. O
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Problem 2. Let f(z) = 2° — 3 € Q[z] and L be as in Problem 1.

(a) (3 points) Give generators and relations for Gal(L/Q).

(b) (2 points) Show that Gal(L/Q) is solvable.

(c¢) (1 point) Show that f is solvable by radicals.

(d) (1 point) Let o be a root of f in L. Is o constructible by straightedge and compass? Explain.

Solution. Let G = Gal(L/Q).
(a) Since « and ¢ generate L/Q, an automorphism of L/Q is determined by its action on « and (.
Since an automorphism must map a root of an irreducible polynomial in Q[z] to another root of the
same polynomial, every automorphism of L must have the form

1) {c = (% 1<k<4

a = Ja, 0<j<4

This collection gives at most 20 automorphisms. Since L/Q is Galois, the order of G equals the
degree of L/Q, which was seen to be 20. Thus every map in (1) must define an automorphism of L.

Define 0,7 € G by

a(¢) = ¢ T(()=¢
2) { ola) =« and { T(a) =af
and 7(¢) = ¢, 7(a) Then o has order 4 and 7 has order 5 in G. Let N = (7). Then N is a subgroup
of G of order 5.

We claim that NV is normal in G. This will be confirmed by direct computation below, but it also
follows from Sylow’s Theorem: In fact, N is a 5-Sylow subgroup of G and the number of 5-Sylow
subgroups in G is =1 (mod 5) and divides 4, hence equals 1.

Since N is normal in G, it remains only to compute the action of ¢ on N by conjugation. To
do this, it suffices to compute oro~! on the generators ¢, of L. One finds oro~({) = ¢ and
oro a) = o7(a) = d(af) = a¢?. Thus o70~! = 72. In sum, generators and relations for G are
given by

G=(o,7lot=7"=1,0107 = 17).

(b) Since N is cyclic, it is solvable. Since G/N has order 4, it is abelian, hence cyclic. If H is
any group and K is a normal subgroup of H, then H is solvable if and only if both K and H/K are
solvable. Applying this with H = G and K = N gives that G is solvable.

More or less equivalently, the filtration {1} C N C G satisfies the definition of solvability: each
group is normal in the next one and the quotients are all abelian.

(c) Solution 1: A separable polynomial is solvable by radicals if and only if its Galois group is
solvable. So f is solvable by radicals by (b).

Solution 2: if K/F is a finite separable extension and a € K, then « is solvable by radicals starting
from F if there is a filtration of K by subfields F; such that each successive extension Fjyi/F; is
obtained by adding to F; a root of 2™ — a for some a € F;. The roots of 2° — 3 are all obtained in this
way in one step, where n = 5 and a = 3. So we also see directly that f is solvable by radicals.

Using the reverse direction of "A separable polynomial is solvable by radicals if and only if its Galois
group is solvable" we obtain a new solution to (b).

(d) If an algebraic number is constructible by straightedge and compass, its degree must be a power
of 2. Since the degree of the roots of f is 5, the roots of f are not constructible by straightedge and
compass.

O
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Problem 3. Let (7 be a primitive Tth root of unity in a field of characteristic zero.

(a) (1 point) Show that Q((7)/Q is Galois.

(b) (2 points) Give an explicit description of Gal(Q((7)/Q)
(¢) (2 points) Let o = (7 + (2 + (3. Find ma ().

(d) (2 points) Let v = (7 + ¢ 1. Find my q(z).

(e) (1 point) Find m¢, q(1)()-

Proof. (a) By definition of "primitive" every 7th root of unity is a power of (7. Therefore Q((7) is a
splitting field of the separable polynomial 27 — 1 over Q; hence Q(¢7)/Q is Galois.

(b) One has a canonical isomorphism between (Z/7)* and Gal(Q(¢7)/Q): Given a € (Z/7)* define
oq : Q(¢7) = Q(¢7) by 04(¢7) = ¢¥. Since the Tth cyclotomic polynomial ®7(x) is irreducible and (7, (¥
are both roots of it, there exists an isomorphism Q(¢7) ~ Q(¢¢) mapping (7 to ¢¢. But Q(¢%) = Q(¢r)
so this isomorphism is ¢,. Thus o, is an automorphism. On the other hand, every automorphism is
determined by its action on the primitive element (7, so we see that a — o, defines an isomorphism
as claimed.

(c) The element « is the sum of the (¢ as a ranges over the squares in F>'. Therefore Q(«) is the
fixed field of the index 2 subgroup (F7)% = {1,2,4} of F5. Thus the degree of a over Q is 2 and the
other root of its minimal polynomial is 3 := (7 + (3 + (%; this is the sum of the non-square powers of

(7. Thus
Mme,q(z) = (x — a)(z — B) =2 — (¢ + Bz + of3

The sum a + B is (7 + - - + (¢ = —1 since ®7(z) = 25 + - + 2 + 1. As for the product, we find
aB=3+CG+---+E&=3-1=2,
i.e., 3 terms are equal to 1 and every term different from 1 appears once when we expand as a sum of
powers of (7. Therefore mq q(z) = 22 +x—2.
(d) Similar to (c), one has that Q(v) is the fixed field of the index 3 subgroup {1,—1} of F* (it
is the subgroup of cubes). So the other roots of m, q(z) will be § = (2 + (-2 and € = (3 + (72,

One computes the values of the three elementary symmetric functions in v, d,e: As before, the sum
¥+ 6+ € =—1. When we expand v + e + d¢, no term is equal to 1. Since we have 4 - 3 = 12

terms total, the expression must be 2((7 + -+ -+ (%) = —2, since we know the value is rational and that
C7,...CY is a basis for Q(¢7)/Q.
Finally, the product yde =2+ (7 +...+¢¢ =2—1 =1 (and we don’t even have to multiply out the

terms since we know the number of non-1 terms must be divisible by 6; since it is not 0 it must be 6).
Thus m, q(z) = 2% + 2% — 22 — 1.
(e) The polynomial
(=)@ —G) == (G +F)r+1
has coefficients in Q(v). To conclude it is the minimal polynomial, it suffices to show that {; does
not belong to Q(v). By checking which o, fix v, we find that Gal(Q(¢7)/Q(y) = {o1,0-1}. So
Q) : Q)] =2. -
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Problem 4.

(a) (2 points) Construct a Galois extension of Q with Galois group Z/4Z x Z/AZ x Z /2Z.

(b) (1 point) Let g(x) = 23 —2x+4 € Q[x]. What subgroup of S3 is isomorphic to Gal(g)? Explain.

(¢) (2 points) Now view g(x) as a polynomial in Q(i)[z], where i is a square root of —1. What
subgroup of Ss is isomorphic to Gal(g) in this case?

Proof. (a) We pick two primes 5, 13 congruent to 1 modulo 4 and the prime 3 congruent to 1 modulo 2.
We will construct our extension as a subfield of Q({x) where N =3-5-13 = 195 and ( is a primitive
Nth root of unity. We seek a subgroup H of Gal(Q({x)/Q) such that the fixed field Q(¢x)¥ will have
desired properties. Since Gal(Q(({n)/Q) = (Z/N)* is abelian, all of its subgroups are normal. By the
fundamental correspondence of Galois theory, the fixed field Q({y)" is Galois over Q and its Galois
group is (Z/N)*/H. By the Chinese remainder theorem,

(Z/N)* = (Z/3)% x (Z/5)" x (Z/13)* = Z/2 x Z/4 x Z/12.

So we want H to be a subgroup of order 3 of (Z/N)* such that the quotient is Z/4 x Z/4 x Z/2.
Let Hp be the unique subgroup of (Z/13)* of order 3 (equivalently index 4; it is the subgroup of
4th powers). Let H be the subgroup of (Z/N)* where the (Z/3)* and (Z/5)* components are equal
to 1 and where we require the component in (Z/13)* to belong in Hy. Then H = Hy = Z/3 and
(Z/N)*/H = Z/4 x Z/4 x Z/2. Note that (Z/13)*/Hy has order 4 and is cyclic as every quotient of
a cyclic group is cyclic.

(b) Dangerous curve ahead: Polynomials which may appear to be irreducible for some reason may
be reducible unless proven otherwise!

Applying the Rational Root Test, we find that —2 is a root. Factoring gives g(z) = (z+2)(z2—22+2).
The quadratic factor is irreducible over Q because its discriminant is 22 —4 -2 = —4 is not a square in
Q. Therefore the Galois group of G is cyclic of order 2; it is the transposition of the two roots of the
quadratic factor (which fixes the root —2 as it must).

(¢) In Q(i), the discriminant is a square: —4 = (2i)2. So the Galois group is trivial over Q(i). O
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Problem 5. Let h(z) = 22 + 2!l + ... + 2+ 1 € Z[z].
(a) (1 point) Suppose p is a prime, p =1 (mod 13). Show that h(z) splits completely in F,lx].
(b) (2 points) Suppose p is a prime, p =2 (mod 13). Show that h(x) is irreducible in F,[x].
(c) (2 points) Show that x3 — x + 2 divides ©'% — x in Fslx]. Note: Long division is highly
discouraged in this problem.

Proof. One has h(z) = ®13(x) and parts (a), (b) are special cases of the factorization of the cyclotomic
polynomial ®y(x) modulo a prime which doesn’t divide N.

(a) If p=1 (mod 13), then 2'3 — 1 divides 2P~! — 1, so h(z) divides 2P~! — 1. Since the latter splits
completely over F,, (having all nonzero elements of F), as roots, each with multiplicity one), so does
its factor h(z).

(b) Since 2(13-1)/2 = 26 and 2(13-1)/3 = 924 are not 1 mod 13, one has that 2 generates F5. Assume
h(x) has an irreducible factor q(z) of degree d. Then a root « of g(x) generates Fa. But every root of
2'3 — 1is a 13th root of unity, hence a power of the primitive root . Therefore '3 — 1 splits in Fa.

So every root of '3 — 1 is also a root of 27" — z. Since 213 — 1 is separable over F,,, we conclude that
213 — 1 divides 27”1 — 1. Hence 13 divides p? — 1. So 2¢ = pd =1 (mod 13) since p = 2 (mod 13).
Since 2 is a generator mod 13, one has d = 12 (as 12|d and d < 12).

(¢) The polynomial 3 — 2+ 2 has no root in F5. Since its degree is < 3, we conclude it is irreducible

over F5. The polynomial 2% — 2 = 2125 _ g factors over F'5 as the product of all irreducible polynomials

in F5[z] of degree 1 or 3 (each with multiplicity one, though this extra detail is not required for the

problem). Hence 2% — 2 + 2 divides 225 — z.
(I



