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For large N, we see that d;, = (1/N)(me2/4)V.

We conclude by an example of which Artin was very fond, Conmder

the equatlon f(X) — X + 1. The diseriminant A of a root of
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= 2869 = 19 - 151.

Each prime factor occurs to the first power.

Let « be aroot of f(X) and k = Q(a). Then « is integral over Z. Since
f(X) is irreducible mod 5, it is irreducible over Z (or Q) and k is of degree 5
over Q. The discriminant of Z{«] as a module over Z has no square factors.
Hence it must be equal to D{o;), because it differs from D(o;) by a square.
Hence Z{a] = o; by Proposition 10 of Chapter III, §3.

It is not difficult to show that the Galois group of the polynomial is the
full symmetric group. Hence the splitting field K has degree 120 over Q.

By the Minkowski theorem, every ideal class has an ideal b such that
Nb < 4 (using the value for the Minkowski constant in the table and
trivial estimates). Since IND is an integer, it is either 1, 2, or 3. If Nb = 1,
the only possibility is that b is a prime ideal p with Np = 2 or 3. This
would mean that the residue class field o;/p has degree 1 over Z/pZ and
hence that f has a root mod 2 or mod 3. This is impossible (direct compu-
tation), and hence the only possibility is that N6 = 1. But then b = (1)
and (oh miracle!) every ideal is principal. The ring of integers is a prin-
cipal ideal ring.

As Artin noticed, it can be shown that the splitting field K is unramified
over the extension Q(vA) = Q(+/18 - 151).

Artin’s example also gives an example of an unramified extension whose
Galois group is the icosahedral group. As he once pointed out, given any
(Galois extension K of a number field k, with group G, there exist infinitely
many finite extensions E of k such that K N E = k and KE 1s unramified
over E. To obtain such E, it suffices to construct an extension which
absorbs locally all the ramification of K (this puts a finite number of
conditions on £, which can be realized by the approximation theorem),
and one must insure that £ N K = k. To do this, one can for instance
use the existence of primes and density theorems proved in a later chapter.
We leave it as an exercise. i

As a final application of the Minkowski theorem, we shall prove:

Theorem 5. If kis a number field, denote by Nk and di the degree [k : Q)
and absolute value of the discriminant respectively. Then the quolient
Ni/log di is bounded for all k ¢ Q. Furthermore, there exists only a finite
number of fields k having a given value of the discriminant.

Proof. The first assertion follows from a trivial computation involving
the inequality of the Corollary to Theorem 4, and the standard estimate



