MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET
 Avg. Matematik

Examinator: Annmarie Luger

Facit solutions for the written exam in
Ordinary differential equations, May 23, 2024

OBS: This is a facit with comments!
As a solution at the exam it would not give full points as parts are missing!!!

1. Determine the solutions) of the differential equation

$$
x x^{\prime}=t\left(x^{2}+1\right)
$$

satisfying the initial condition:
(a) $x(0)=1$
(b) $x(0)=-1$
(c) $x(0)=0$.

Comment on your result with respect to the existence and uniqueness theorem!

$$
x x^{\prime}=t\left(x^{2}+1\right) \Leftrightarrow \frac{2 x \cdot x^{1}}{x^{2}+1}=2 t \Leftrightarrow \ln \left(x^{2}+1\right)=t^{2}+C
$$

$$
\Leftrightarrow x^{2}=D \cdot e^{t^{2}}-1 \quad \Leftrightarrow \quad x(t)= \pm \sqrt{D \cdot e^{t^{2}}}-1
$$

a) $x(0)=1 \Rightarrow x(t)=\sqrt{2 e^{t^{2}}-1}$
b) $x(0)=-1 \Rightarrow x(t) \Rightarrow \sqrt{t^{2}} \Rightarrow f(t, x)=\frac{t\left(x^{2}+1\right)}{x}$ is c^{1} as long $\left\{\begin{array}{l}\text { entydiga lonsningar, in } \\ \text { accordance with the existence } \\ \text { and uniqueness theorem, as } \\ f(t, x)=\frac{t\left(x^{2}+1\right)}{x} \text { is } c^{1} \text { as long } \\ \text { as } x \neq 0 \text {. }\end{array}\right.$

$$
D \in \mathbb{R}
$$

$\Rightarrow x(t)=-12 e^{t^{2}}-1$

$$
\longrightarrow
$$

the solutions are differentiable!

$$
\lim _{h \rightarrow 0 \pm} \frac{\sqrt{e^{h^{2}}-1}-0}{h-0}=\lim _{h \rightarrow 0 \pm} \frac{\sqrt{e^{h^{2}}-1}}{ \pm \sqrt{h^{2}}}=\lim _{h \rightarrow 0 \pm} \pm \sqrt{\frac{e^{h^{2}}-1}{h^{2}}= \pm 11010}=1
$$

So the solutions one $x+(t):=\left\{\begin{array}{cl}\sqrt{t^{t}-1} & t \geqslant 0 \\ -\sqrt{e^{+}-1} & t \leq 0 \text { and } x_{-}(t)=x_{t}(t)\end{array}\right.$
2. Is there an ordinary linear homogeneous second order differential equation with constant coefficients for which the functions $x_{1}(t)=\cos 2 t$ and $x_{2}(t)=t^{2} e^{-7 t}$ are solutions? If yes, give an example. If no, explain why!
No!
The first solution $x_{1}(t)=\cos 2 t$ is related to the characteristic values $\pm 2 i$, whenas the second Solution $x_{2}(t)=t^{2} e^{-7 t}$ is related to the characteristic value -7 with multiplicity at leas 13. Hence a linear homogenous ODE with consed. coefficients has order at least $2+3=5$.

Alternative: One might also try to find $a, b \in \mathbb{R}$ sud that x_{1} and x_{2} satisfy

$$
x^{\prime \prime}+a x^{\prime}+b x=0
$$

and see that this is not possible.
3. Use Laplace transform to solve the initial value problem

$$
\begin{aligned}
& \quad x^{\prime \prime}-2 x^{\prime}=-2 e^{2 t}, \text { with } x(0)=1, \quad x^{\prime}(0)=-1 . \\
& \text { With } X:=\mathcal{L}(x(t)) \text { we obtain } \\
& s^{2} X-s \times(0)-x^{\prime}(0)-2(s X-x(0))=-2 \underbrace{\mathcal{L}\left(e^{2 t}\right)} \\
& =X(s)=\frac{1}{s-2} \\
& \Rightarrow \\
& \Rightarrow x(t)=1-t \cdot e^{2 t}
\end{aligned}
$$

4. (a) Determine a fundamental matrix for the homogeneous system

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
-1 & 3 \\
0 & 1
\end{array}\right) \vec{x}
$$

(b) Give the general solution of the inhomogeneous system

$$
\vec{x}^{\prime}=\left(\begin{array}{cc}
-1 & 3 \tag{Hp}\\
0 & 1
\end{array}\right) \vec{x}+\binom{0}{e^{2 t}} .
$$

a) There are several possibilities to salve the problem. we give here two alternatives.
$\underline{\text { Variant 1 }}: A=\left(\begin{array}{cc}-1 & 3 \\ 0 & 1\end{array}\right) \Rightarrow \lambda_{1}=-1 \quad \vec{v}_{1}=\binom{1}{0}$

$$
\lambda_{2}=1 \quad \vec{v}_{2}=\binom{3}{2}
$$

$$
\begin{aligned}
& T:=\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right) \Rightarrow A=T \cdot\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \cdot T^{-1} \\
& =) e^{t A}=T \cdot\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right) \cdot T^{-1}=\ldots=\left(\begin{array}{cc}
e^{-t} & \frac{3}{2}\left(e^{t}-e^{-t}\right) \\
0 & e^{t}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& e^{t} \cdot\binom{1}{0} \text { and } e^{t}\binom{3}{2} \text {. Hence } \\
& F(t):=\left(\begin{array}{cc}
e^{-t} & 3 e^{t} \\
0 & 2 e^{t}
\end{array}\right) \text { is a fundamental mani }
\end{aligned}
$$

b) Vaviant 1: $\vec{x}(t)=\vec{x}_{\mu}(t)+\vec{x}_{p}(t)$

Ausats för $\vec{x}_{p}(t)=e^{2 t} \cdot \vec{v} \Rightarrow \ldots \Rightarrow \vec{v}=(A-2 I)^{-1}\binom{0}{1}=\ldots=\binom{1}{1}$

$$
\Rightarrow \vec{x}(t)=c_{1} e^{-t}\binom{1}{0}+c_{2} e^{t}\binom{3}{2}+e^{2 t}\binom{1}{1}
$$

Variant 2: Use formula $\vec{x}(t)=F(t)\left(\vec{c}+\int_{0}^{t} F(\tau)^{-1} \vec{b}(\tau) d \tau\right)$
5. Consider the following boundary value problem (BVP)

$$
\begin{aligned}
& -x^{\prime \prime}=\lambda x \\
& x(0)=x^{\prime}(0) \\
& x(1)=x^{\prime}(1)
\end{aligned}
$$

(a) For which values of $\lambda \in \mathbb{R}$ does the BVP have a non-trivial solution? Determine also these solutions.
(b) Are there values of $\lambda \in \mathbb{C} \backslash \mathbb{R}$ for which the BVP has a non-trivial solution? Motivate your answer!
a) We distinguish 3 cases:

1) $\lambda<0 \Rightarrow \lambda=-\omega^{2} \quad$ with $\omega>0$.

$$
\left.\left.\begin{array}{rl}
x^{\prime \prime}-\omega^{2} x=0 \Rightarrow & x(t)
\end{array}\right) A e^{\omega t}+B \cdot e^{\omega t}\right] \text { ' } \quad \begin{aligned}
& \prime \\
& x^{\prime}(t)=\omega A e^{\omega t}-\omega B e^{-\omega t}
\end{aligned}
$$

boundary conditions give:

$$
\left.\begin{array}{l}
A+B=\omega A-\omega B \\
A e^{\omega}+B e^{-\omega}=\omega A e^{\omega}-\omega B e^{-\omega}
\end{array}\right\} \Leftrightarrow(1-\omega) A+(1+\omega) B=0
$$

there is a mon-trivial solution $(i \cdot l . \quad(A, B) \neq(0,0))$ if and only if

$$
\operatorname{dwt}\left(\begin{array}{cc}
1-w & 1+w \\
(1-w) e^{w} & (1+w) e^{-w}
\end{array}\right)=0
$$

$$
\text { this is }(1-\omega)(\underbrace{1+\omega)}_{>0} \underbrace{\left(e^{-w}-e^{w}\right)}_{\neq 0 \text { for } w \pm 0}=0
$$

$$
\text { Hence } w=1 . \quad \text { So } \quad \lambda=-1 \text { and } x(t)=e^{-t} \text {. }
$$

2)

$$
\begin{aligned}
\lambda & =0 \Rightarrow x^{\prime \prime}=0 \Rightarrow x(t)=A+B t \\
& \Rightarrow A=B \text { and } A+B=B \Rightarrow A=B=0
\end{aligned}
$$

3) $\lambda>0 \Rightarrow \lambda=\omega^{2}$ with $\omega>0$

$$
\begin{aligned}
& x^{\prime \prime}+\omega^{2} x=0 \Rightarrow x(t)=A \cos \omega t+B \sin \omega t \\
& x^{\prime}(t)=-\omega A \sin \omega t+\omega B \cos \omega t \\
& \Rightarrow A=\omega B \text { and } A \cos \omega+B \sin \omega t=-\omega A \sin \omega t+\omega B \cos \omega t \\
& \Rightarrow B(\underbrace{\left.1+\omega^{2}\right)}_{>0} \sin \omega t=0
\end{aligned}
$$

There exists a nontrivial solution if and only if sins $=0$. This is $\omega=k \pi \quad k=1,2, \ldots$.
So $\lambda_{k}=(k \pi)^{2}$ and $x_{k}(t)=k \pi \cos k \pi t+\sin k \pi t$.
Answer: The real eigenvalues are $\lambda_{0}=-1$ and $\lambda_{u}=(k \pi)^{2}$ for $k=1,2, \ldots$ with corresponding eigenfunction $x_{0}(t)=e^{t}$ and $x_{u}(t)=k \pi \cos k \pi t+\sin k \pi t$.
b) the Bound any value problem is symmetric and hence the eigmnalues real.
6. Consider the system

$$
\begin{aligned}
& \dot{x}=-y+x \cos \left(x^{2}+y^{2}\right) \\
& \dot{y}=x+y \cos \left(x^{2}+y^{2}\right) .
\end{aligned}
$$

Find all equilibrium points (i.e. stationary points). Sketch the phase portrait and describe it also briefly by word. What can be said about the stability of the equilibrium points)?
It might be helpful to use polar coordinates!
equilibrium points:

$$
\left.\begin{array}{rl}
-y+x \cos \left(x^{2}+y^{2}\right)=0 & \cdot-y \\
x+y \cos \left(x^{2}+y^{2}\right)=0 & \cdot x
\end{array}\right]+
$$

$(0,0)$ is only equilibrium
Linearization:

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \operatorname{trace} A=2>0 & \Rightarrow(0,0) \text { unstable } \\
\text { (alternative: } \lambda_{1,2}=1 \pm i & \Rightarrow \operatorname{Re} \lambda_{1,2}>0 \\
& \Rightarrow(0,0) \text { unstable) }
\end{aligned}
$$

polar coordinates: $x=r \cos \varphi$

$$
y=r \sin \varphi
$$

$$
\left.\begin{array}{rl}
\Rightarrow \dot{x} & =\dot{r} \cos \varphi-r \dot{\varphi} \sin \varphi
\end{array}\right)=-r \sin \varphi+r \cos \varphi \cdot \cos r^{2}+\operatorname{y}=\dot{r} \sin \varphi+r \dot{\varphi} \cos \varphi=r \cos \varphi+r \sin \varphi \cdot \cos r^{2}
$$

$$
\Rightarrow \dot{r}=r \cos r^{2}
$$

$$
\dot{\varphi}=1
$$

$$
\dot{r}=0 \Leftrightarrow \quad r=\sqrt{\frac{2 k+1}{2} \pi} \quad k=0,1,2, \ldots
$$

periodic orbits (eney secondsteble)
inbetween spirals, positive orientated; \dot{r} changes sign
Sketch by hand only qualitative picture."

