

Introduction to Real Analysis

Lecture 4: Sequences and Series

Sofia Tirabassi tirabassi@math.su.se

Questions?

Lecture Plan

- Sequences (Rudin 3.1-3.20)
- Series (3.22-3.51)

Section 1 Sequences

Convergent Sequences

Definition

A sequence $\{p_n\}$ in a metric space X is said to be convergent if there is $p \in X$ such that, for all $\varepsilon > 0$ there is a $N = N(\varepsilon) \in \mathbb{Z}$ such that

 $d(p_n, p) < \varepsilon$

for all $n \geq N$.

In this case we write

$$
p=\lim_{n\to+\infty}p_n,\quad\text{or}\quad p_n\to p
$$

Some properties

Theorem

- Let $\{p_n\}$ a sequence in a metric space (X, d) .
	- \bullet we have that $p_n \to p$ if, and only if, every neighbourhood of p contains all but finitely many elements of the sequence.
	- 2 The limit of a convergent sequence is unique
	- \bullet If $\{p_n\}$ is convergent, then it is bounded.
	- ⁴ Given *E* ⊆ *X* and *p* a limit point of *E*, then there exist a sequence in *E* converging to *p*.

Subsequences

Let $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ a strictly increasing function. Given a sequence ${p_n}$, the sequence ${p_{f(k)}}$ is called subsequence of ${p_n}$.

We usually denote $f(k)$ by n_k , and thus a subsequence is denoted by ${p_{n_k}}$

Let $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ a strictly increasing function. Given a sequence $\{p_n\}$, the sequence $\{p_{f(k)}\}$ is called subsequence of $\{p_n\}$.

We usually denote $f(k)$ by n_k , and thus a subsequence is denoted by ${p_{n_k}}$

Proposition

A sequence converges to *p* if, and only if, all its subsequences converge to *p*.

NIE exercise to understand
limits Limits & subsequence

Ex
$$
Q_n = (-1)^h
$$
 has two convergence

 $Q_{2024-07-01|Sofia Tirabassi-Leture 1}$

Sequences and compact sets

Theorem

Let $\{p_n\} \subseteq \{K\}$ a compact set, then there is a subsequence $\{p_n\}$ converging to a point $p \in K$. In particular every bounded sequence in R*ⁿ* admits a convergent subsequence.

Proposition

Let $\{p_n\}$ a sequence in a metirc space X, then the set

$$
E:=\{x\in X\mid \text{there is }p_{n_k}\to x\}
$$

is closed.

Cauchy sequence

Defintion

A sequence (p_n) in a metric space (X, d) is called Cauchy if for every $\epsilon > 0$, there exists an $N \in \mathbb{Z}$ such that for all $m, n \ge N$, we have $d(x_m, x_n) < \epsilon$.

Proposition

A convergent sequence is Cauchy

We say that a metric space (*X*, *d*) is complete if every Cauchy sequence is convergent.

ä

Theorem

- **1** Compact spaces are complete.
- **2** The space \mathbb{R}^n with the Euclidean metric is complete.

Monotonic sequence

Definition

In a metric space \mathbb{R} , with the Euclidean metric, a sequence (p_n) is said to be monotonic if it satisfies one of the following conditions:

- **1** It is monotonically increasing, meaning that $p_{n+1} \geq p_n$ for all $n \in \mathbb{Z}, n \geq 0.$
- 2 It is monotonically decreasing, meaning that $p_{n+1} \leq p_n$ for all *n* ∈ N, *n* ≥ 0.
 \cdot × \cdot ∨ − ∀

 $x7.0$

Proposition

A monotonic sequence is convergent if, and only if, it is bounded.

de Mondon de la City par le 1907

Monotonic sequence

Definition

In a metric space $\mathbb R$, with the Euclidean metric, a sequence (p_n) is said to be monotonic if it satisfies one of the following conditions:

- \bullet It is monotonically increasing, meaning that $p_{n+1} \geq p_n$ for all $n \in \mathbb{Z}, n \geq 0.$
- **2** It is monotonically decreasing, meaning that $p_{n+1} \leq p_n$ for all $n \in \mathbb{N}$, $n > 0$.

Proposition

A monotonic sequence is convergent if, and only if, it is bounded.

Lim sup and lim inf

Let $\{p_n\}$ a sequence in $\mathbb R$, and consider the (closed) set

$$
E:=\{x\in\mathbb{R}\mid \text{there is } p_{n_k}\to x\},
$$

We define

 $p^* := \sup E =: \limsup_{n \to +\infty} p_n$ $p_* := \inf E =: \liminf_{n \to +\infty} p_n$

which are both element of the extended real line $\overline{\mathbb{R}}$.

Lim sup and lim inf

Let $\{p_n\}$ a sequence in R, and consider the (closed) set

$$
E:=\{x\in\mathbb{R}\mid \text{there is } p_{n_k}\to x\},
$$

We define

$$
p^* := \sup E =: \limsup_{n \to +\infty} p_n
$$

$$
p_* := \inf E =: \liminf_{n \to +\infty} p_n
$$

which are both element of the extended real line $\overline{\mathbb{R}}$. If one consider

$$
S_k = \sup\{p_n | n \geq k\}, \sum
$$

we have that s_k is an increasing sequence, so it has limit in $\overline{\mathbb{R}}$, and we have that $s_k \rightarrow p^*$. We have a similar characterization with for the lim inf.

$$
f^{*} = \int v \, \int v \, \int v \, \dot{v} \, \left(\int v \, \dot{v} \, \dot{v} \, \right) \, \dot{v}
$$

2024-07-01 | Sofia Tirabassi - Lecture 1 | 12/18

Lim sup and lim inf

Let $\{p_n\}$ a sequence in R, and consider the (closed) set

$$
E:=\{x\in\mathbb{R}\mid \text{there is } p_{n_k}\to x\},
$$

Theorem

D

The lim sup p^* belongs to the extended real line and it is the only element having the following two properties

$$
\bullet \; s^* \in E = \{ \; \star \; \mid \exists \; s_{\text{in}} \negthinspace \prec \negthinspace \star \; \vee
$$

2 if $x > s^*$, then there is $N \in \mathbb{N}$ such that $s_n < x$ for $n > N$.

$$
\frac{10000}{S^2} = +0
$$
\n
$$
\Rightarrow \quad \frac{1}{202}
$$
\n
$$
\Rightarrow \quad \frac{1}{200}
$$
\n<math display="block</math>

 $|S_n| \geqslant x$

S cant padvet that st

is a subsequence hunt for Sr.

Section 2 Series

Convergent series

Let a_n a sequence in \overline{a} and consider

$$
s_k := \sum_{n=0}^k a_n
$$

This is a sequence in C, and if it converges we denote the limit by

$$
\int\limits_{n=0}^{\infty}\overline{a_{n}}\rightarrow a\neq0
$$

Convregnce Criteria

Thank you for your attention!

