

Introduction to Real Analysis

Lecture 4: Sequences and Series

Sofia Tirabassi tirabassi@math.su.se

Lecture Plan

- Sequences (Rudin 3.1-3.20)
- Series (3.22-3.51)

Section 1 Sequences

Convergent Sequences

Definition

A sequence $\{p_n\}$ in a metric space X is said to be convergent if there is $p \in X$ such that, for all $\varepsilon > 0$ there is a $N = N(\varepsilon) \in \mathbb{Z}$ such that

 $d(p_n, p) < \varepsilon$

for all $n \ge N$.

In this case we write

$$p = \lim_{n \to +\infty} p_n$$
, or $p_n \to p$

Some properties

Theorem

- Let $\{p_n\}$ a sequence in a metric space (X, d).
 - we have that $p_n \rightarrow p$ if, and only if, every neighbourhood of p contains all but finitely many elements of the sequence.
 - The limit of a convergent sequence is unique
 - If $\{p_n\}$ is convergent, then it is bounded.
 - Given $E \subseteq X$ and p a limit point of E, then there exist a sequence in E converging to p.

Subsequences

Let $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ a strictly increasing function. Given a sequence $\{p_n\}$, the sequence $\{p_{f(k)}\}$ is called subsequence of $\{p_n\}$.

We usually denote f(k) by n_k , and thus a subsequence is denoted by $\{p_{n_k}\}$

Let $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ a strictly increasing function. Given a sequence $\{p_n\}$, the sequence $\{p_{f(k)}\}$ is called subsequence of $\{p_n\}$.

We usually denote f(k) by n_k , and thus a subsequence is denoted by $\{p_{n_k}\}$

Proposition

A sequence converges to *p* if, and only if, all its subsequences converge to *p*.

Nice exercise to understand
limits & subsequence
$$a_n = (-1)^n$$
 has two connegent subse

Sequences and compact sets

Theorem

Let $\{p_n\} \subseteq \{K\}$ a compact set, then there is a subsequence $\{p_{n_k}\}$ converging to a point $p \in K$. In particular every bounded sequence in \mathbb{R}^n admits a convergent subsequence.

Proposition

Let $\{p_n\}$ a sequence in a metirc space *X*, then the set

$$E := \{x \in X \mid \text{there is } p_{n_k} \to x\}$$

is closed.

Defintion

A sequence (p_n) in a metric space (X, d) is called Cauchy if for every $\epsilon > 0$, there exists an $N \in \mathbb{Z}$ such that for all $m, n \ge N$, we have $d(x_m, x_n) < \epsilon$.

Proposition

A convergent sequence is Cauchy

We say that a metric space (X, d) is complete if every Cauchy sequence is convergent.

.

Theorem

- Compact spaces are complete.
- ② The space \mathbb{R}^n with the Euclidean metric is complete.

Monotonic sequence

Definition

In a metric space \mathbb{R} , with the Euclidean metric, a sequence (p_n) is said to be monotonic if it satisfies one of the following conditions:

• It is monotonically increasing, meaning that $p_{n+1} \ge p_n$ for all $n \in \mathbb{Z}, n \ge 0$.

It is monotonically decreasing, meaning that p_{n+1} ≤ p_n for all n ∈ N, n ≥ 0.

· X · V - Y ×700

Proposition

A monotonic sequence is convergent if, and only if, it is bounded.

Doundard =) coulegent subsequence Use reapon (city pr -> p. Source

Monotonic sequence

Definition

In a metric space \mathbb{R} , with the Euclidean metric, a sequence (p_n) is said to be monotonic if it satisfies one of the following conditions:

- It is monotonically increasing, meaning that p_{n+1} ≥ p_n for all n ∈ Z, n ≥ 0.
- ② It is monotonically decreasing, meaning that $p_{n+1} \le p_n$ for all *n* ∈ N, *n* ≥ 0.

Proposition

A monotonic sequence is convergent if, and only if, it is bounded.

Lim sup and lim inf

Let $\{p_n\}$ a sequence in \mathbb{R} , and consider the (closed) set

$$E := \{x \in \mathbb{R} \mid \text{there is } p_{n_k} \to x\},\$$

We define

 $p^* := \sup E =: \limsup_{n \to +\infty} p_n$ $p_* := \inf E =: \lim_{n \to +\infty} p_n$

which are both element of the extended real line $\overline{\mathbb{R}}$.

Lim sup and lim inf

Let $\{p_n\}$ a sequence in \mathbb{R} , and consider the (closed) set

$$E := \{x \in \mathbb{R} \mid \text{there is } p_{n_k} \to x\},\$$

We define

$$p^* := \sup E =: \limsup_{n \to +\infty} p_n$$

$$p_* := \inf E =: \liminf_{n \to +\infty} p_n$$

which are both element of the extended real line $\overline{\mathbb{R}}$. If one consider

$$s_k = \sup\{p_n \mid n \geq k\},$$

we have that s_k is an increasing sequence, so it has limit in \mathbb{R} , and we have that $s_k \to p^*$. We have a similar characterization with for the lim inf.

2024-07-01 | Sofia Tirabassi - Lecture 1 |

Lim sup and lim inf

Let $\{p_n\}$ a sequence in \mathbb{R} , and consider the (closed) set

$$E := \{x \in \mathbb{R} \mid \text{there is } p_{n_k} \to x\},\$$

Theorem

The lim sup p^* belongs to the extended real line and it is the only element having the following two properties π

$$s^* \in E = S \times (S_{n_k} \times)$$

2 if $x > s^*$, then there is $N \in \mathbb{N}$ such that $s_n < x$ for n > N.

Sn > X

- court padict that st

is a subsequence limit for Sn.

Section 2 Series

Convergent series

Let a_n a sequence in \mathbb{C} and consider

$$s_k := \sum_{n=0}^k a_{n}$$

This is a sequence in $\ensuremath{\mathbb{C}},$ and if it converges we denote the limit by

$$\int \sum_{n=0}^{\infty} a_n \to a \neq 0$$

Convregnce Criteria

+ @ • If $|a_n| \le c_n$ for n >> 0 and $\sum c_n$ converges, then $\sum a_n$ converges. h = 0• If $\sum a_n^2$ and $\sum b_n$ converge, then $\sum |a_n b_n|$, $\sum (a_n + b_n)^2$ and $\sum \frac{a_n}{n}$ • If $na_n \rightarrow a \neq 0$, then $\sum a_n$ diverges. • $\ln \alpha_n \rightarrow a \neq 0$, then $\sum a_n$ diverges. • $\ln \alpha_n \rightarrow a \neq 0$, then $\sum a_n$ diverges. • (root test) Let $\sigma = \limsup \sqrt[n]{|a_n|}$, then we have the following cases in not needed to **(1)** if $\sigma < 1$ then $\sum a_n$ converges converge 2 if $\sigma > 1$ then $\sum a_n$ diverges • (ratio test) Let $\sigma = \limsup \left| \frac{a_{n+1}}{a_n} \right|$, then we have the following cases • if $\sigma < 1$ then $\sum a_n$ converges 2 if $\sigma > 1$ then $\sum a_n$ diverges (a) if $\sigma = 1$ then test gives no answer. • $\sum a_n$ converges iff $\sum 2^n a_n$ converges.

 $| \mathcal{F} | < |$

Thank you for your attention!

