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Lecture Plan

@ Sequences (Rudin 3.1-3.20)
@ Series (3.22-3.51)
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Convergent Sequences Stockholm

A sequence {pp} in a metric space X is said to be convergent if there
is p € X such that, for all e > 0 there is a N = N(e) € Z such that

d(pn, p) < €
forall n > N.

In this case we write

p= |lm p,, or p,—p
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Some properties Sk

Theorem
Let {pn} a sequence in a metric space (X, d).

@ we have that p, — p if, and only if, every neighbourhood of p
contains all but finitely many elements of the sequence.

@ The limit of a convergent sequence is unique
Q If {p,} is convergent, then it is bounded.

© Given E C X and p a limit point of E, then there exist a sequence
in E converging to p.
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Subsequences Sesinam

Let f: ZT — Z™T a strictly increasing function. Given a sequence
{pn}, the sequence {ps ()} is called subsequence of {pn}.

We usually denote f(k) by nk, and thus a subsequence is denoted by

{pnk}
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Let f: ZT — Z™T a strictly increasing function. Given a sequence
{pn}, the sequence {ps ()} is called subsequence of {pn}.
& 7(..'" /'
We usually denote f(k) by nk, and thus a subsequence is denoted by

{pnk}

Proposition

A sequence converges to p if, and only if, all its subsequences
converge to p.
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Sequences and compact sets Stockholm

Theorem

Let {pn} C {K} a compact set, then there is a subsequence {pp, }
converging to a point p € K. In particular every bounded sequence in
R" admits a convergent subsequence.

Proposition
Let {p,} a sequence in a metirc space X, then the set

E .= {x € X |there is p,, — X}

is closed.
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Cauchy sequence Sk

A sequence (pp) in a metric space (X, d) is called Cauchy if for every
e > 0, there exists an N € Z such that for all m, n > N, we have
d(Xm, Xn) < €.

Proposition
A convergent sequence is Cauchy

We say that a metric space (X, d) is complete if every Cauchy
sequence is convergent.
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@ Compact spaces are complete.
@ The space R” with the Euclidean metric is complete.
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Monotonic sequence %t;?félé}r‘é’f%?

In a metric space R, with the Euclidean metric, a sequence (py) is
said to be'monotonic if it satisfies one of the following conditions:

@ It is monotonically increasing, meaning that p,. 1 > p, for all

neZ,n>0.
@ It is monotonically decreasing, meaning that p, 1 < p, for all
neN, n>0.
X - \t( - N 7R

Proposition
A monotonic sequence is convergent if, and only if, it is bounded.
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Definition
In a metric space R, with the Euclidean metric, a sequence (p,) is
said to be monotonic if it satisfies one of the following conditions:
@ It is monotonically increasing, meaning that p,. 1 > p, for all
neZ,n>0.
@ It is monotonically decreasing, meaning that p, 1 < p, for all
neN, n>0.

Proposition
A monotonic sequence is convergent if, and only if, it is bounded.



Lim sup and lim inf

Let {p,} a sequence in R, and consider the (closed) set
E :={x € R | there is pp, — X},

We define
p* :=sup E =:limsup,_, . Pn
p. = inf E =:liminf,, ocppn

which are both element of the extended real line R.
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Lim sup and lim inf

Let {p,} a sequence in R, and consider the (closed) set
E :={x € R | there is pp, — X},
We define
p* :=sup E =:limsup,_, . Pn
p. = inf E =:liminf,, ocppn

which are both element of the extended real line R.

If one consider
sk =sup{pnn > K},
O\CL -
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we have that sy is an increasing sequence, so it has limit i in R, R, and we

have that s, — p*.
We have a similar characterization with for the lim inf.

Sc._-s \V& SLPV\ \\'\7‘/‘(:\ A



oA

Lim sup and lim inf Sk

Let {p,} a sequence in R, and consider the (closed) set

E :={x € R | there is pp, — X},

The lim sup p* Relongs to the extended real line and it is the only
element having the following two properties A
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@ if x > s*, then there is N € N such that s, < x for n > N.
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Let a, a sequence in C and consider
k
Sk = ag
n=0
This is a sequence in C, and if it converges we denote the limit by
\

ian—na;éo
n=0
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@ If |a,| < c,forn>>0and > c, converges, then " a,

converges. h =9
e If 3" a2 and Y b, converge, then 3" |anb,|, > (an + by)? and 3 2

converges. _ D STUL dees W coaves
@ If na, — a+# 0, then }_ a, diverges. " NGy =1 A — 140
@ (root test) Let o = lim sup {/|ay|, then we have the following

cases T Ty e esded o

@ if o < 1then Y a, converges
MR

@ ifo > 1then Y a, diverges

@ if o = 1 then test gives no answer. 5 o reedah\-so

@ (ratio test) Let o = limsup , then we have the following

cases
@ if o < 1then 3 a, converges
@ ifo > 1then Y a, diverges
@ if o = 1 then test gives no answer.

@ > a,converges iff " 2"a, converges.

an+1
an
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Let ¢, be a sequence in C and z € C, cpnsider the series
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This is called power series and its convergence depends of z
i

Let o = lim sup {/|cx|, then the series converges for every z such that
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Thank you for your attention!
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