

Introduction to Real Analysis

Lecture 5: Continuous functions

Sofia Tirabassi

tirabassi@math.su.se

Lecture Plan

Rudin Chapter 4

- Limits of functions
- Series (3.22-3.51)

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces. Consider $E \subseteq X$, $f : E \to Y$ and $p \in E'$ we say that

 $\lim_{x\to p}f(x)=q$

if, for every $\varepsilon > 0$ there is a $\delta(\varepsilon, p) > 0$ such that $d_Y(f(x), q) < \varepsilon$ whenever $d_X(x, p) < \varepsilon$ because of ε and p.

We say that a function $f: X \to Y$ is continuous at $p \in X$ if if, for every $\varepsilon > 0$ there is a $\delta(\varepsilon, p) > 0$ such that $d_Y(f(x), f(p)) \not\in \delta$ whenever $d_X(x, p) < \epsilon$. The function f is said continuous if it is continuous at every $p \in X$. f(x) = f(p) f(x) = f(p)

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces. Consider $E \subseteq X$, $f : E \to Y$ and $p \in E'$ we say that

 $\lim_{x\to p}f(x)=q$

if, for every $\varepsilon > 0$ there is a $\delta(\varepsilon, p) > 0$ such that $d_Y(f(x), q) < \delta$ whenever $d_X(x, p) < \epsilon$

We say that a function $f : X \to Y$ is continuous at $p \in X$ if if, for every $\varepsilon > 0$ there is a $\delta(\varepsilon, p) > 0$ such that $d_Y(f(x), f(p)) < \delta$ whenever $d_X(x, p) < \epsilon$. The function f is said continuous if it is continuous at every $p \in X$.

Continuity

Remark

If *p* is not an isolated point of *X*, then *f* is continuous at *p* iff $\lim_{x\to p} f(x)$ exists in *Y* and it is equal to f(p). Every function is continuous at isolated points

Thus we have that

A function $f: X \to Y$ is continous iff for all $p_n \to p$ we have that $f(p_n) \to f(p)$.

Topological continuity

p> in X

Theorem

A function $f : X \to Y$ is continuos iff $f^{-1}(V)$ is open for every $V \subseteq Y$ open set.

L's open in Y. Proof => f continues

Would
$$f'(v)$$
 open in X
 $p \in f'(v)$ would $\exists r \ge 0$ such
 $fhot N_r(p) \subseteq f'(v)$

Topological continuity

Theorem

A function $f : X \to Y$ is continuos iff $f^{-1}(V)$ is open for every $V \subseteq Y$ open set.

Corollary

A function $f : X \to Y$ is continuos iff $f^{-1}(C)$ is open for every $C \subseteq Y$ closed set.

Continuity and Compactness

Theorem

Let $f : X \to Y$ a continuous function. If $K \subseteq X$ is compact, then f(K) is compact. In particular if $Y \simeq \mathbb{R}^n$ we have that f(K) is closed and bounded

Corollary

If $f : X \to \mathbb{R}$ is continuous and $K \subseteq X$ is compact, then f has a max and a min value on K.

Theorem

If $f: K \to Y$ is continous and bijective, then the inverse function $f^{-1^*}: Y \to K$ is continuos (we say that *f* is an omeomorphism).

COR

Uniform Continuity

Definition

We say that a function $f : X \to Y$ is uniformly continuous on X if for every $\varepsilon > 0$, there is a $\delta(\varepsilon) > 0$ such that $d_Y(f(x), f(y)) < \varepsilon$ for all xand y in X such that $d_X(x, y) < \delta$.

He S 15 uniform

Definition

We say that a function $f : X \to Y$ is uniformly continuous on X if for every $\varepsilon > 0$, there is a $\delta(\varepsilon) > 0$ such that $d_Y(f(x), f(y)) < \varepsilon$ for all xand y in X such that $d_X(x, y) < \delta$.

Uniform continuity and compactness Stockholm University

Theorem

Let *K* be a compact metric space. If $f : K \to Y$ is continuous then it is uniformly continuous.

I is continuos Fix E>0 $= \{(\gamma, \beta)\} \in [(\gamma, \beta)]$ Frall PEK $f\left(\mathcal{N}^{\mathcal{E}(4)}\left(b\right)\right) \in \mathcal{N}^{\mathcal{E}}(t(b))$ such that open casa for K (Nisco) (P) DEEK

Continuity and connectedness

Theorem

Let $f : X \to Y$ be a continuous function. If $E \subseteq X$ is connected then f(E) is connected.

Section 1 Discontinuities

What can go wrong?

What can go wrong?

Let $f : (a, b) \to Y$ a function and let p be a point such that f is not continuous at p. We set (if they exist)

$$f(p+) := \lim_{x \to p^+} f(x)$$
 $f(p-) := \lim_{x \to p^-} f(x)$

Definition

We say that *f* has a discontinuity of the first kind at *p* if f(p+) and f(p-) exist. Otherwise we say that it has a discontinuity of the second kind.

Discontinuities for monotone functions

What is a monotone function $f : (a, b) \rightarrow \mathbb{R}$?

Increasing $x < y = f(x) \leq f(x)$ olecosing $x < y = f(x) \geq f(y)$

Discontinuities for monotone functions f marotare f. (q,b) --> R

What is a monotone function $f: (a, b) \rightarrow \mathbb{R}^2$

Theorem

If $f: (a, b) \to \mathbb{R}$, then it has no discontinuities of the second kind.

Theorem

If $f : (a, b) \to \mathbb{R}$, then it has at most countably many discontinuity points.

Thank you for your attention!

