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Definition

Let (X, dx) and (Y, dy) be metric spaces. Consieder E C X,
f: E— Yandp e E' we say that

lim f(x) =q

X—p

if, for every £ > 0 there is a §(e, p) > 0 such that dy(f(x),q) < &
whenever dx(x, p) <& Ly degnds oy © ol @

We say that a function f : X — Y is continuous at p € X if if, for every
e > 0thereis a d(e, p) > 0 such that dy(f(x), f(p)) K § whenever
dx(x,p) < e. The function f is said continuous if it is continuous at

every p € X. 6)04\ _? G W\k
A Qb&\ CCed. %X

X =R



&,

Limits ok
Stockholm
University

Definition
Let (X, dx) and (Y, dy) be metric spaces. Consieder E C X,
f: E— Yandp e E' we say that

L ) = ¢

if, for every € > 0 there is a (e, p) > 0 such that dy(f(x),q) < o
whenever dx(x,p) < e

We say that a function f : X — Y is continuous at p € X if if, for every
e > 0thereis a (e, p) > 0 such that dy(f(x), f(p)) < § whenever
dx(x,p) < e. The function f is said continuous if it is continuous at
every p € X.



\
X s Gy
R s

m iks oo,

S 1
SR
X i y
T \C‘: - |
‘Y\ ? x ;’\- (=] “\\
: P R
‘ §35
X’\, : “
\ l\ * P\ L i ¢ | 1 t (6
SeanEEmuEE Qﬁ
Z <E,\<?‘/&\L‘L;\Q\,Q
%,},Qz‘”\



& s,

& Q
= s}
iy

Continuity Stockholm

University

If pis not an isolated point of X, then f is continuous at p iff
limy_,p f(X) exists in Y and it is equal to f(p).
—» Every function is continuous at isolated points

Thus we have that

A function f : X — Y is continous iff for all p, — p we have that
f(pn) — f(P).
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A function f : X — Y is continuos iff f~1( V) is open for every V C Y
open set.
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Theorem

A function f : X — Y is continuos iff f=1( V) is open for every V C Y
open set.

Corollary

A function f : X — Y is continuos iff f~1(C) is open for every C C Y
closed set.
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Continuity and Compactness S

Theorem

Let f: X — Y a continuous function. If K C X is compact, then f(K)
is compact. In particular if Y ~ R"” we have that f(K) is closed and
bounded

Corollary

If f: X — R is continuous and K C X is compact, then f has a max
and a min value on K.

If f: K — Y is continous and bijective, then the inverse funciton
f~": Y — K is continuos (we say that f is an omeomorphism).
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We say that a function f : X — Y is uniformly continuous on X if for
every € > 0, there is a §(¢) > 0 such that dy(f(x),f(y)) < € for all x
and y in X such that dx(x, y) < ¢.
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We say that a function f : X — Y is uniformly continuous on X if for
every € > 0, there is a §(¢) > 0 such that dy(f(x),f(y)) < € for all x
and y in X such that dx(x, y) < ¢.
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Uniformly continuous function Non-uniformly continuous function
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Let K be a compact metric space. If f : K — Y is continuous then it is
uniformly continuous.
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Theorem

Let f : X — Y be a continuous function. If E C X is connected then
f(E) is connected.
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What can go wrong? %%é‘z?gﬁt‘;l
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What can go wrong? %ié%%};;’%%;l

Let f: (a,b) — Y afunction and let p be a point such that f is not
continuous at p. We set (if they exist)

f(p+) = Xirz+ f(x) f(p—) := lim f(x)

X—p~

Definition

We say that f has a discontinuity of the first kind at p if f(p+) and
f(p—) exist. Otherwise we say that it has a discontinuity of the second
kind.
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What is a monotone function f : (a, b) — R?
Increos g X <9 =y F9<b(y)
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If f: (a, b) — R, then it has no discontinuities of the second kind.

If f: (a, b) — R, then it has at most countably many discontinuity
points.
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Thank you for your attention!
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