

Introduction to Real Analysis

Lecture 6: The Riemann–Stieljes integral

Sofia Tirabassi tirabassi@math.su.se

Lecture Plan

Rudin Chapter 6

Definition

Given [a, b] a closed bounded interval, a partition of its is a finite set $\{x_0, \ldots, x_n\} \subset [a, b]$ such that

 $a = x_0 < x_1 < \cdots < x_n = b,$

Given a partition $P = \{x_0, \ldots, x_n\}$ we set

$$\Delta \chi = \chi_1 - \chi_0$$

Definition

A refinement of a partition *P* is another partition *P'* such that $P' \subseteq P$.

Definition

Given [a, b] a closed bounded interval, a partition of its is a finite set $\{x_0, \ldots, x_n\} \subset [a, b]$ such that

 $a = x_0 < x_1 < \cdots < x_n = b,$

Given a partition $P = \{x_0, \ldots x_n\}$ we set

 $\Delta x_i := x_i - x_{i-1}$

Definition

A refinement of a partition *P* is another partition *P'* such that $P' \subseteq P$.

Observe that given two partitions P_1 and P_2 , the partition $P^* = P_1 \cup P_2$ gives a common refinement.

Upper and lower sums

Let $f : [a, b] \to \mathbb{R}$ be a bounded function and $\alpha : [a, b] \to \mathbb{R}$ a monotonically increasing function.

Remark

Observe that, since both $\alpha(a)$ and $\alpha(b)$ are real numbers, we have that α is bounded.

Given *P* a partition of [*a*, *b*] we set $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$ and $M_i := \sup_{[x_{i-1}, x_i]} f \qquad m_i := \inf_{[x_{i-1}, x_i]} f$

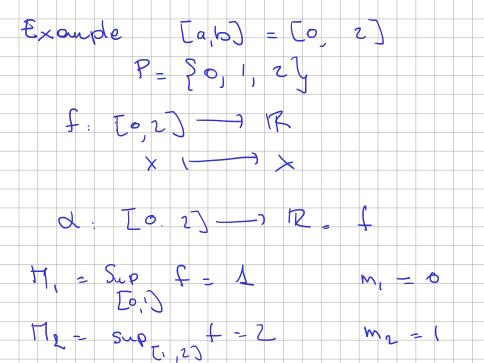
Stockholm

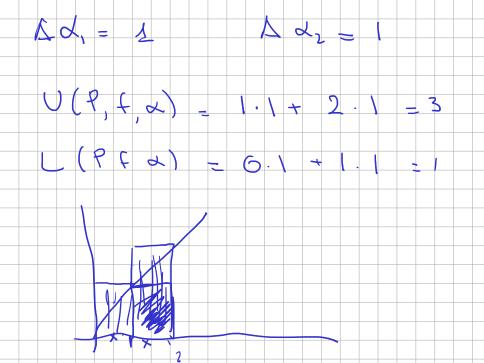
Theen we have

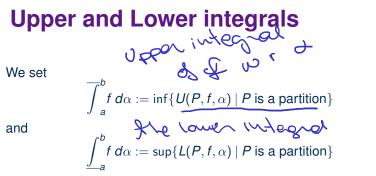
$$U(P, f, \alpha) := \sum_{i=1}^{n} M_{i} \dot{\Delta} \alpha_{i} \quad L(P, f, \alpha) := \sum_{i=1}^{n} m_{i} \cdot \Delta \alpha_{i}$$

$$V_{\text{per Sure Sure constrained}} \quad \text{to } P, f, \alpha_{5/15}$$

$$U(P, f, \alpha) := \sum_{i=1}^{n} m_{i} \cdot \Delta \alpha_{i}$$







If they both exists and are equal, we denote the common value by

$$\int_{a}^{b} f d\alpha$$
 The style value with instead with

ockholm

University

Upper and Lower integrals

We set

$$\overline{\int}_{a}^{b} f \, d\alpha := \inf \{ U(P, f, \alpha) \mid P \text{ is a partition} \}$$

and

$$\underbrace{\int_{a}^{b} f \, d\alpha}_{a} := \sup\{L(P, f, \alpha) \mid P \text{ is a partition}\}$$

If they both exists and are equal, we denote the common value by

and we say that *f* is Stieljes integrable on [a, b] with respect to α - we write

$$f \in \mathscr{R}(\alpha)$$

Note: if $\alpha(x) = x$, then this is the "usual" integral you have seen in previous analysis courses.

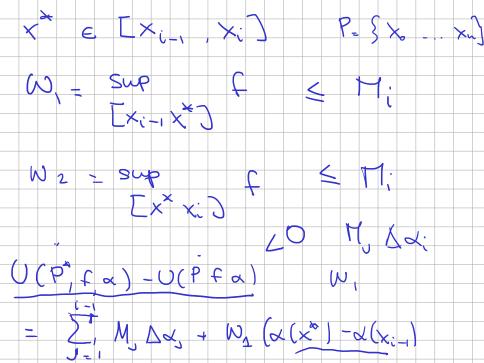
2024-07-08 | Sofia Tirabassi - Lecture 1 |

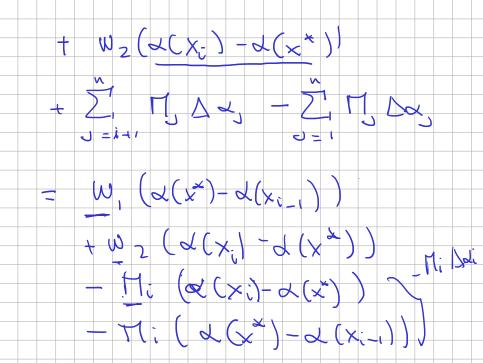
Questions

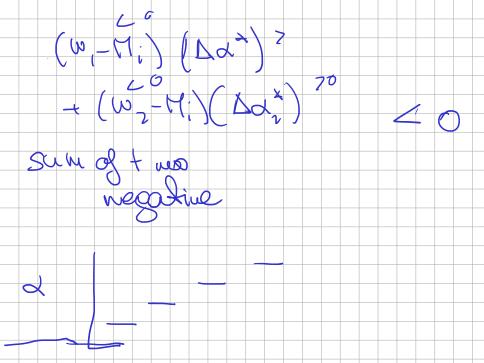
- Subject of
- When does it exist?
- How we compute it?

Theorem If P^* is a refinements of P we have that $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and $U(P, f, \alpha) > U(P^*, f, \alpha)$ Sketch of the proof (for U) By induction or IP-PI 200 ase P= Pulx*

2024-07-08 | Sofia Tirabassi - Lecture 1 |







Theorem

If P^* is a refinements of P we have that

 $L(P, f, \alpha) \leq L(P^*, f, \alpha)$

and

 $U(P, f, \alpha) \ge U(P^*, f, \alpha)$

Corollary

$$\int_{a}^{b} f \, d\alpha \leq \int_{a}^{b} f \, d\alpha$$

$$\int_{\alpha}^{b} f_{e} | \alpha - \int_{\alpha}^{b} f_{e} | \alpha = 0$$

2024-07-08 | Sofia Tirabassi - Lecture 1 |

Equivalent condition for the existence Now $f: [\alpha, b]$ bounded Theorem Let $f :\in \mathscr{R}(\alpha)$ iff, for every $\varepsilon > 0$ there is a partition P such that

×

$$\bigcup \quad \boldsymbol{\mathcal{L}} \quad \boldsymbol{\mathcal{U}}(\boldsymbol{\mathcal{P}},\boldsymbol{f},\alpha) - \boldsymbol{\mathcal{L}}(\boldsymbol{\mathcal{P}},\boldsymbol{f},\alpha) < \varepsilon$$

(1)

Consequences

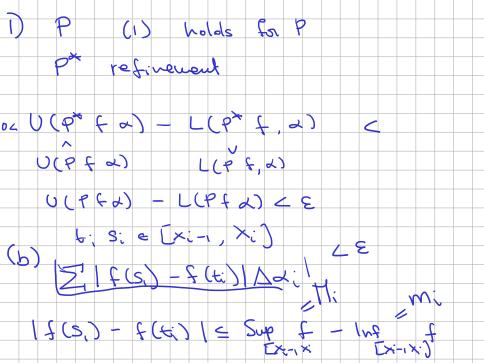
Theorem

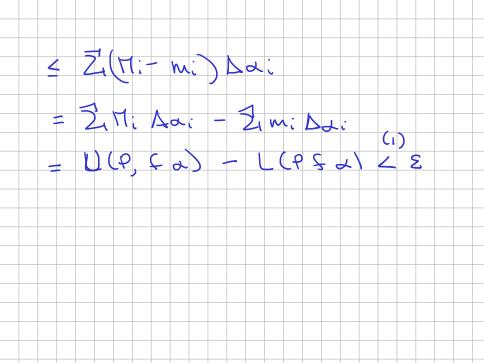
- If (1) holds for some ε and some partition P then it holds for every refinement of P.
- If (1) holds, $P = \{x_0, ..., x_n\}$, and s_i and t_i denote elements of $[x_{i-1}, x_i]$ then

)
$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i < \varepsilon,$$

• If $f \in \mathscr{R}(\alpha)$, $P = \{x_0, \ldots, x_n\}$, $t_i \in [x_{i-1}, x_i]$ then

$$\left|\sum_{i=1}^n |f(t_i)| \Delta \alpha_i - \int_a^b f \, d\alpha\right| < \varepsilon,$$





Integrability

7

B

Theorem

If *f* is continuous on [a, b] then $f \in \mathscr{R}(\alpha)$.

Theorem

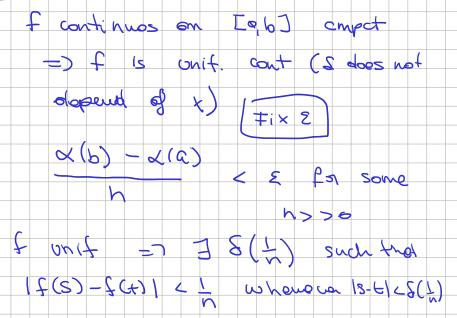
If *f* is monotonic on [*a*, *b*] and α is continuous then $f \in \mathscr{R}(\alpha)$.

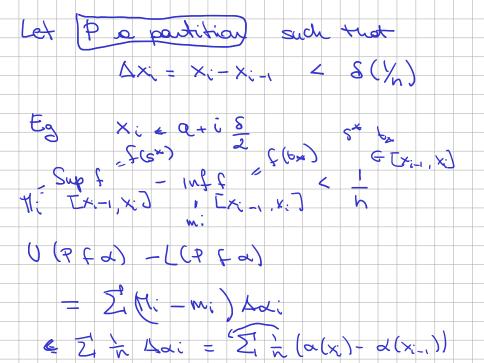
Theorem

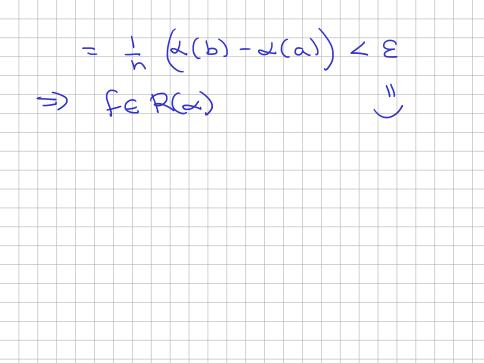
If *f* is bounded on [*a*, *b*], has finitely many discontinuity points and α is continuous at those points $f \in \mathscr{R}(\alpha)$.

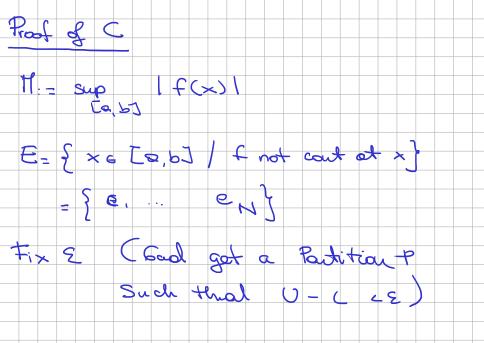
Theorem

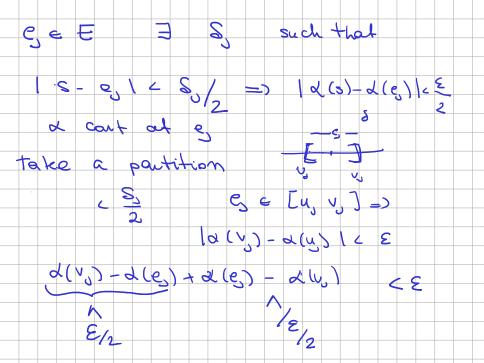
If $f \in \mathscr{R}(\alpha)$, $m \leq f(x) \leq M$ for all $x \in [a, b]$, and ϕ is continuous on [m, M] then the composition $\phi \circ f \in \mathscr{R}(\alpha)$

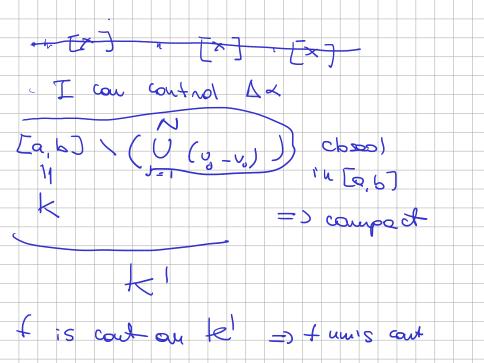


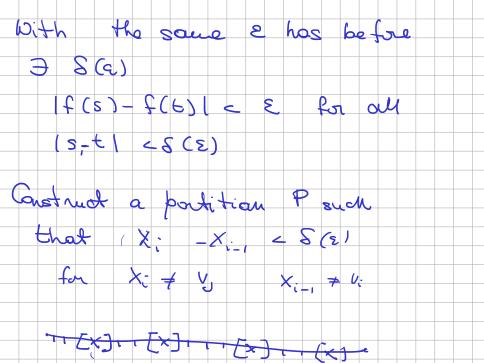


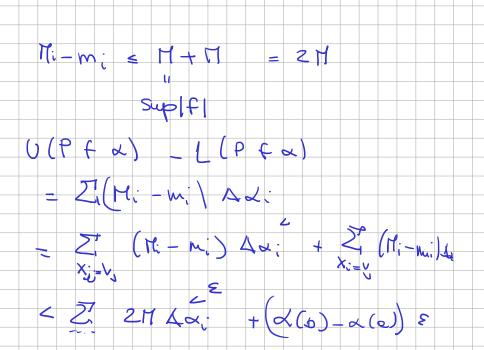


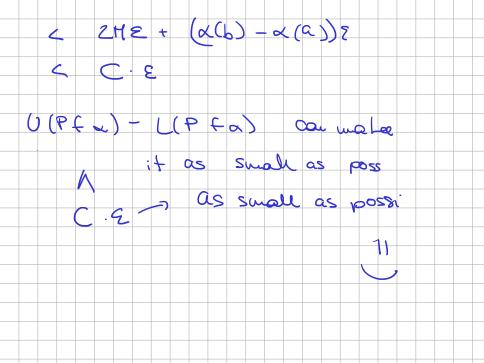




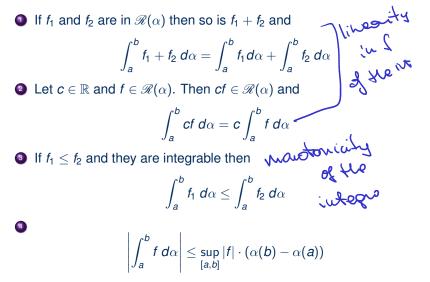








Properties



2024-07-08 | Sofia Tirabassi - Lecture 1

Properties II

Theorem

1

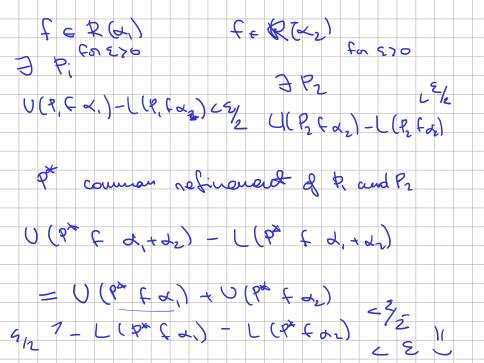
- If f and g are in $\mathscr{R}(\alpha)$ so is $f \cdot g$.
- 2 if |f| is in $\mathscr{R}(\alpha)$ so is f and

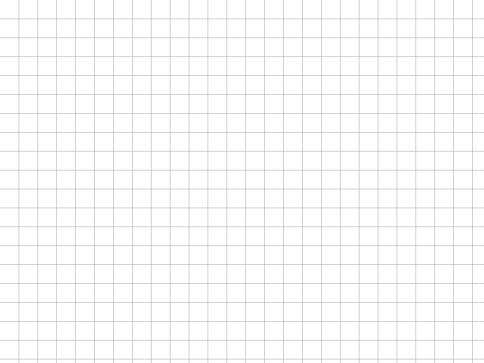
$$\left|\int_{a}^{b} f \, d\alpha\right| \leq \int_{a}^{b} |f| \, d\alpha$$

$$\int_{a}^{b} f \, d\mathbf{c} \cdot \alpha = \mathbf{c} \int_{a}^{b} f \, d\alpha$$

 $\int_{a}^{b} f d(\alpha_{1} + \alpha_{2}) = \int_{a}^{b} f d\alpha_{1} + \int_{a}^{b} f d\alpha_{2}$

2 Let c ∈ ℝ





Calculations

The unit step function is the function $I : \mathbb{R} \to [0, 1]$ defined by

$$I(x) = \begin{cases} 0 & \text{if } x \le 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Theorem

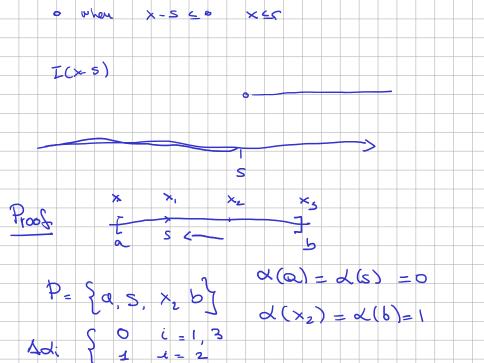
Let $s \in [a, b]$ and set $\alpha(x) = l(x - s)$. If *f* is continuous we have that

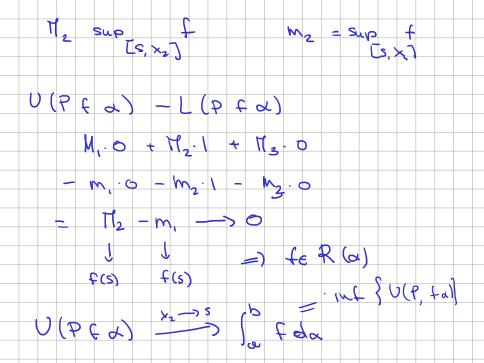
$$\int_{a}^{b} f \, d\alpha = f(s)$$

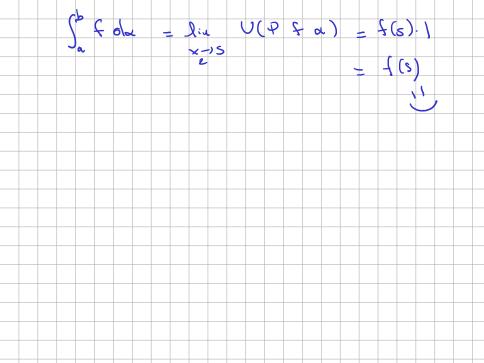
Corollary

Let $\{s_k\} \in (a, b)$ and set $\alpha(x) = \sum_{k=1}^{\infty} c_k I(x - s_k)$ for some sequence $\{c_k\}$ in \mathbb{R} such that $\sum_{k=1}^{\infty} c_k$ is convergent. Then

$$\int_{a}^{b} f \, d\alpha = \sum_{k=1}^{n} c_k f(s_k)$$





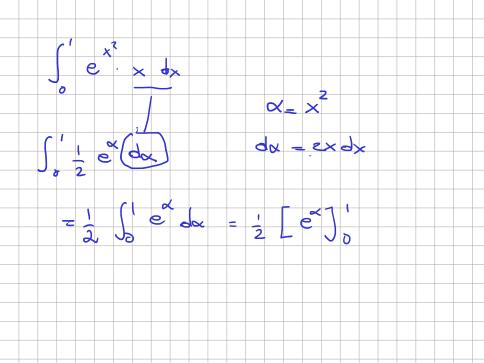


Further Computations

Theorem

Assume that α is strictly increasing and that α' is in $\mathscr{R}(id)$. Suppose that *f* is bounded. Then $f \in \mathscr{R}(\alpha)$ iff $f\alpha' \in \mathscr{R}(id)$ and we have

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$



Further Computations

Theorem

Assume that α is strictly increasing and that α' is in $\mathscr{R}(id)$. Suppose that *f* is bounded. Then $f \in \mathscr{R}(\alpha)$ iff $f\alpha' \in \mathscr{R}(id)$ and we have

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$

Thank you for your attention!

