

Introduction to Real Analysis

Lecture 7: Uniform convergence and continuity

Sofia Tirabassi tirabassi@math.su.se

Lecture Plan

Rudin Chapter 6

The problem

Suppose that we have a sequend of functions $\{f_n : E \to \mathbb{R}\}$ such that for every $x \in E$ the sequence $f_n(x)$ or the series $\sum_{n=0}^{\infty} f_n(x)$ is convergent. Then we can define two functions $f : E \to \mathbb{R}$ and $g : E \to \mathbb{R}$ in the following was

CC

$$f(x) = \lim_{n \to \infty} f_n(x) \qquad \text{if Hay exist}$$
$$g(x) = \sum_{n=0}^{\infty} f_n(x)$$

ZY

We say that the sequence (series) of functions $\{f_n\}$ $(\sum_{n=0}^{k} f_n)$ converges pointwise to f(g).

Secret desire

To compute limits, derivatives, integral of f and g using f_n .

The problem

Suppose that we have a sequend of functions $\{f_n : E \to \mathbb{R}\}$ such that for every $x \in E$ the sequence $f_n(x)$ or the series $\sum_{n=0}^{\infty} f_n(x)$ is convergent. Then we can define two functions $f : E \to \mathbb{R}$ and $g : E \to \mathbb{R}$ in the following was

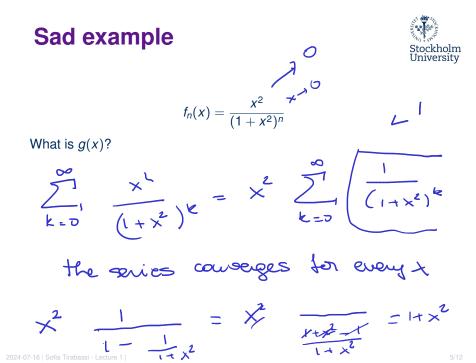
$$f(x) = \lim_{n \to \infty} f_n(x)$$
$$g(x) = \sum_{n=0}^{\infty} f_n(x)$$

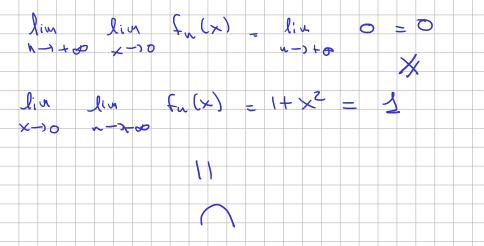
We say that the sequence (series) of functions $\{f_n\}$ $(\sum_{n=0}^k f_n)$ converges pointwise to f(g).

Secret desire

To compute limits, derivatives, integral of f and g using f_n . What we need is

$$\lim_{x \to t} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to t} f_n(x)$$



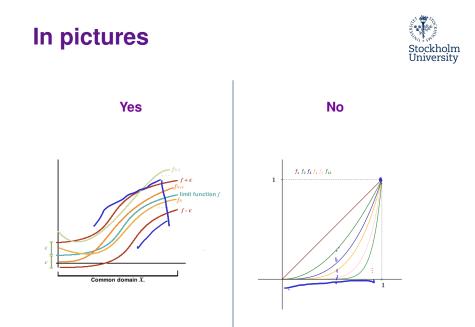


When can we have an dream

Uniform convergence

Definition

We say that a sequence of functions $\{f_n : E \to \mathbb{R}\}$ converges uniformly to a function $f : E \to \mathbb{R}$ if for every $\varepsilon > 0$ there is an integer $N(\varepsilon)$ such that, for every $n > N(\varepsilon)$ we have that $f_n \to f(x) = f(x) = 0$ for all $x \in E$. In this case we write $f_n \Rightarrow f$



2024-07-16 | Sofia Tirabassi - Lecture 1 |

Cauchy Criterion

A sequence of functions $\{f_n : E \to \mathbb{R}\}$ converges uniformly to a function $f : E \to \mathbb{R}$ iff, for every $\varepsilon > 0$ there is $N(\varepsilon) > 0$ such that

 $|f_n(x) - f_m(x)| < \varepsilon$

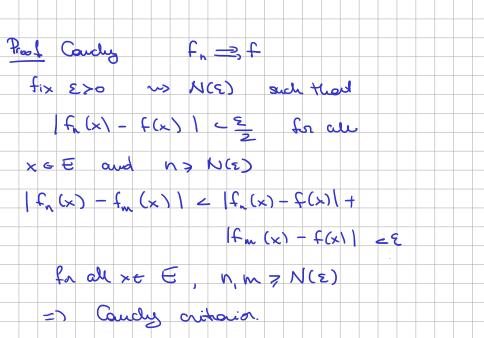
for alle $n, m > N(\varepsilon)$ and for every $x \in E$.

Theorem

A sequence of functions $\{f_n : E \to \mathbb{R}\}$ converging pointwise to $f : E \to \mathbb{R}$ converges uniformly (to *f*) iff,

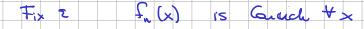
$$M_n := \sup_E |f_n(x) - f(x)| \to 0$$

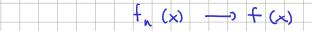
for all $n, m > N(\varepsilon)$ and for every $x \in E$.

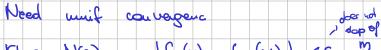


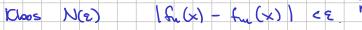
Carversely suppose that the Conclus

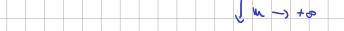
aiterion holds

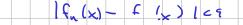


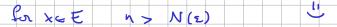












Theorem

Let $\{f_n : E \to \mathbb{R}\}$ a sequence of functions such that there is a sequence $\{M_n\}$ in \mathbb{R} satisfying

 $|f_n(x)| < M_n$

for all $x \in E$. If the series $\sum M_n$ converges, then the series of functions $\sum f_n(x)$ converges uniformly.

Uniform convergence and continuity

Theorem

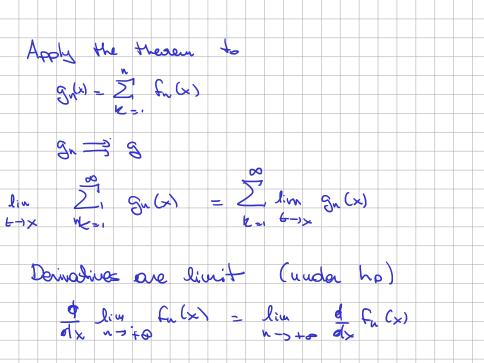
Let $\{f_n : E \to \mathbb{R}\}$ a sequence of function converging uniformly to a function $f : E \to \mathbb{R}$. Let $x \in E'$ and suppose that for every n $\lim_{t\to x} f_n(x)$ exists and s denoted by A_n . Then the sequence $\{A_n\}$ converges and $\lim_{x\to\infty} f_n(x) = \lim_{x\to\infty} f_n(x)$

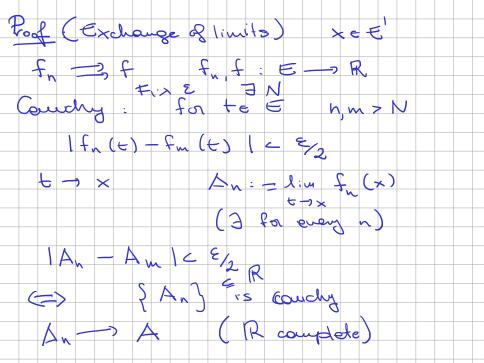
Corollary

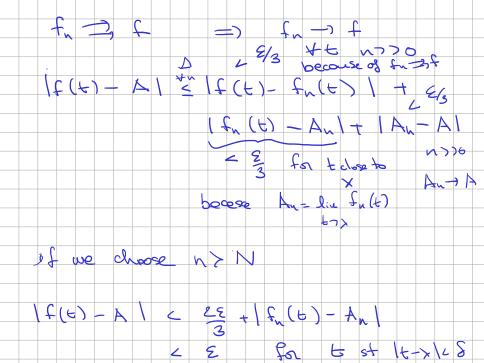
The uniform limit of a sequence of continuous function is continuous.

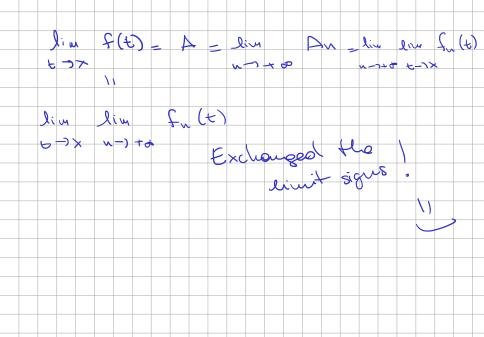
$$p \in E \quad f(x) = N(E) \qquad \sum_{\substack{l \in J_{3} \\ l \neq l \neq l}} N(E) \qquad \sum_{\substack{l \neq l \neq l \neq l}} \frac{|s-p|}{|f(s) - f(p)|} \leq |f(s) - f_{x}(s)| + |f_{x}(s) - f_{x}(p)| \qquad \sum_{\substack{l \neq l \neq l \neq l}} \frac{|s-p|}{|f(s)|} \leq \frac{|f(s)|}{|f(s)|} + |f_{x}(p) - f(p)| < \frac{|f(s)|}{|f(s)|} + \frac{|f(s)|}{|f(s)|} \leq \frac{|f(s)|}{|f(s)|} + \frac{|f(s)|}{|f(s)$$

2024-07-16 | Sofia Tirabassi - Lecture 1 |

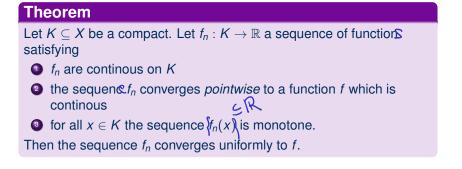


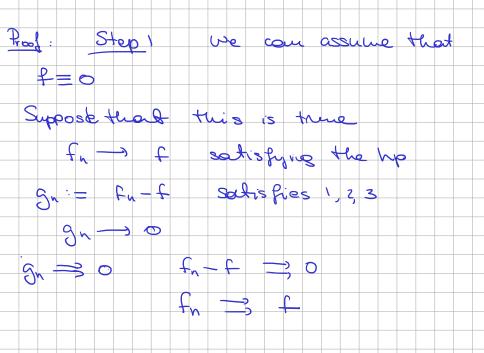


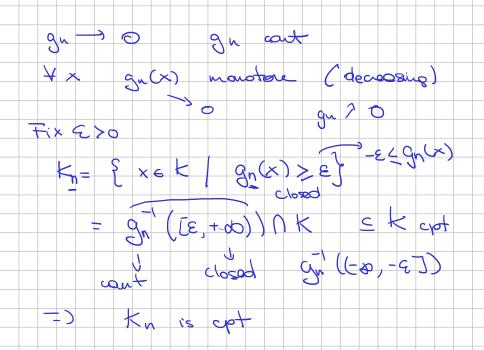


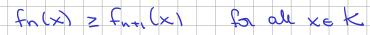


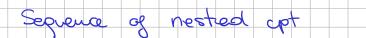
Uniform convergences on compact sets

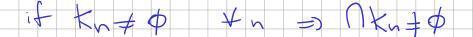


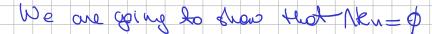


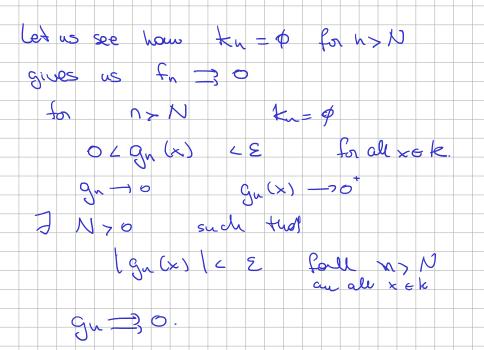


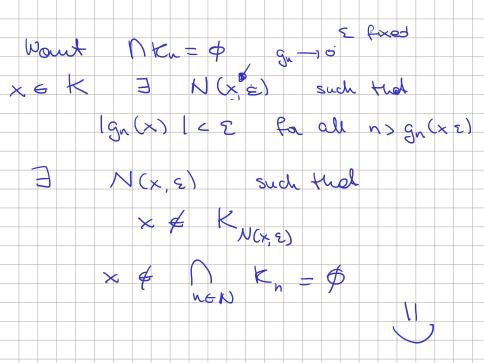












A metric space of functions

•

 $\mathscr{C}(X) := \{f : X \to \mathbb{C} \text{ continuous and bounded } \}$ let $\|f\| = \sup_{X} |f(X)|$ and $d(f,g) = \|f - g\|$

Theorem

0

We have that $(\mathscr{C}(X), d)$ is a complete metric space.

Thank you for your attention!

