- No use of textbook, notes, or calculators is allowed.
- Unless told otherwise, you may quote results that you learned during the class. When you do, state precisely the result that you are using.
- Be sure to justify your answers, and show clearly all steps of your solutions.
- 1. Let S_n denote the symmetric group on n letters, and \mathbb{Z}/n the cyclic group of order n. For each of the following statements, determine if it is true or false. Give a brief justification or a counterexample.
 - (a) (2 points) All subgroups of S_4 of order 8 are isomorphic to each other.
 - (b) (2 points) If two subgroups of S_4 are each isomorphic to $\mathbb{Z}/4$ then they are conjugate.
 - (c) (2 points) If two subgroups of S_4 are each isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$ then they are conjugate.
- 2. (4 points) How many abelian groups of order 500 are there, up to isomorphism? Describe each one of them explicitly, as a product of cyclic groups (There may be more than one way to formulate the answer. It is enough to give one description of each group).
- 3. (a) (2 points) Let Q be a normal p-subgroup of a finite group G. Prove that Q is contained in every p-Sylow subgroup of G.
 - (b) (3 points) Prove that a group of order 132 must have a normal *p*-Sylow subgroup for some prime p that divides 132.
- 4. (5 points) Let R be a commutative ring with unit. Let \mathbb{Z} denote the ring of integers. Suppose that there is a non-zero ring homomorphism $\phi: R \to \mathbb{Z}$. Prove that R has infinitely many maximal ideals.
- 5. (5 points) Let \mathbb{R} and \mathbb{C} be the fields of real and complex numbers respectively. Prove that there is an isomorphism of rings $\mathbb{R}[x]/(x^4-1) \cong \mathbb{R} \times \mathbb{R} \times \mathbb{C}$. Construct an explicit isomorphism.
- 6. (5 points) Let \mathbb{K}/\mathbb{F} be an algebraic field extension. Suppose that $\mathbb{F} \subset R \subset \mathbb{K}$, where R is a *subring* of K containing F. Prove that R is in fact a subfield of K.