
Homework assignment 2 - Solutions

Abstract algebra

Erik Lindell

Question 1. (2 points)

Let G = {(
a b
0 a−1) ∶a, b ∈ R, a > 0} and let N = {(

1 b
0 1
) ∶ b ∈ R}.

i) Show that N ⊴ G and prove that G/N is isomorphic to R. (Hint: use that R>0 with multiplication
is isomorphic with R with addition.)

ii) Either find a non-trivial normal subgroup M ⊴ G that is properly contained in N , or show that
no such subgroup exists.

Solution.

i) To show that N is normal, let

B = (
1 c
0 1

) ∈ N, A = (
a b
0 a−1) ∈ G.

Note that

A−1 =
1

aa−1
(
a−1 −b
0 a

) = (
a−1 −b
0 a

) .

We thus ges that

ABA−1 = (
a b
0 a−1)(

1 c
0 1

)(
a−1 −b
0 a

) = (
a ac + b
0 a−1 )(

a−1 −b
0 a

) = (
1 −ab + a2c + ab
0 1

) = (
1 a2c
0 1

) ∈ N.

Thus N is normal. To prove that G/B ≅ R, we define a map

ϕ ∶ G→ R>0

by

ϕ((
a b
0 a−1)) = a.

We have

ϕ((
a b
0 a−1)(

c d
0 c−1)) = ϕ((

ac ad + bc−1

0 a−1c−1 )) = ac = ϕ((
a b
0 a−1))ϕ((

c d
0 c−1)) .

Thus ϕ is a group homomorphism. Since for any a ∈ R>0 we have for example

Aa = (
a 0
0 a−1) ∈ G
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and ϕ(Aa) = a, ϕ is surjective. Furthermore, A ∈ G is in the kernel of ϕ if and only if a = 1, in
which case also a−1 = 1, so

ker(ϕ) = {(
1 b
0 1
) ∣ b ∈ R} = N.

By the first isomorphism theorem, we get that

R>0 ≅ G/ker(ϕ) = G/N.

Since (R>0, ⋅) ≅ (R,+), we get
G/N ≅ R.

Remark. Note that by proving that N is the kernel of a homomorphism, we have proved
that it is a normal subgroup independently of the first part of the solution, where we proved
this directly.

ii) Suppose that M ⊴ G and M ⊆ N . If M is non-trivial, there exists some b ∈ R ∖ {0} such that

B = (
1 b
0 1
) ∈M.

Now let x ∈ R be arbitrary. Then there exists an a ∈ R>0 such that a2b = x or a2b = −x (choose
√
±x/b depending on the sign of x/b). In the first case, we get by normality and the calculation

in (a), that

(
a 0
0 a−1)(

1 b
0 1

)(
a−1 0
0 a

) = (
1 a2b
0 1

) = (
1 x
0 1

) ∈M.

In the second case, we get similarly that

(
1 −x
0 1

) ∈M.

Since M is a subgroup and thus closed under inverses, we get in either case that

(
1 x
0 1

) ∈M.

Thus every element of N is also in M , so since M ⊂ N , we get M = N . This proves that no
non-trivial subgroup M ⊴ G can be properly contained in N .

Question 2. (2 points)

Let Gi for i = 1,⋯, n be finite groups of relatively prime order. Show that Aut(G1 ×G2 ×⋯×Gn),
the group of automorphisms of G1 ×G2 × ⋯ ×Gn, is isomorphic to the direct product Aut(G1) ×

⋯ ×Aut(Gn).

Solution. Let us start by proving this for n = 2 and then use induction. We define a map

Φ ∶ Aut(G1) ×Aut(G2) → Aut(G1 ×G2)
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by
Φ(φ1, φ2)(g1, g2) = (φ1(g1), φ2(g2)),

for (g1, g2) ∈ G1×G2. To see that this well-defined, note that since φ1 and φ2 are homomorphisms,
we have

Φ(φ1, φ2) ((g1, g2) ⋅ (h1, h2)) = Φ(φ1, φ2)(g1h1, g2h2) =

= (φ1(g1h1), φ2(g2h2))

= (φ1(g1)φ(h1), φ2(g2)φ2(h2))

= (φ1(g1), φ2(g2)) ⋅ (φ1(h1), φ2(h2))

= (Φ(φ1, φ2)(g1, g2)) ⋅ (Φ(φ1, φ2)(h1, h2))

so Φ(φ1, φ2) ∶ G1×G2 → G1×G2 is a homomorphism. Furthermore, since φ1 and φ2 are invertible,
we have a homomorphism

Φ(φ−11 , φ−12 )

which is clearly inverse to Φ(φ1, φ2), proving that Φ(φ1, φ2) is indeed in Aut(G1 ×G2).

Next, let us prove that Φ is a homomorphism. For (g1, g2) ∈ G1 ×G2 we have

Φ((φ1, φ2) ○ (ψ1, ψ2))(g1, g2) = Φ(φ1 ○ ψ1, φ2 ○ ψ2)(g1, g2)

= ((φ1 ○ ψ1)(g1), (φ2 ○ ψ2)(g2))

= (φ1(ψ1(g1)), φ2(ψ2(g2)))

= Φ(φ1, φ2)(ψ1(g1), ψ2(g2))

= (Φ(φ1, φ2) ○Φ(ψ1, ψ2)) (g1, g2)

so
Φ((φ1, φ2) ○ (ψ1, ψ2)) = Φ(φ1, φ2) ○Φ(ψ1, ψ2),

and thus Φ is a homomorphism.

We want to prove that Φ is injective and surjective. For injectivity, note that if Φ(φ1, φ2) ∈ ker(Φ),
i.e. if

Φ(φ1, φ2) = IdG1×G2 ,

we have for any (g1, g2) ∈ G1 ×G2 that

(g1, g2) = Φ(φ1, φ2)(g1, g2) = (φ1(g1), φ2(g2)),

so φ1(g1) = g1 and φ2(g2) = g2, meaning that φ1 = IdG1 and φ2 = IdG2 and thus (φ1, φ2) is the
identity element in Aut(G1)×Aut(G2), meaning that ker(Φ) is trivial and thus that Φ is injective.

For surjectivity, let φ ∈ Aut(G1×G2). We want to show that φ = Φ(φ1, φ2) for some automorphisms
φ1 ∈ Aut(G1) and φ2 ∈ Aut(G2). If (g1,1) ∈ G1 ×G2 we have that ∣φ(g1,1)∣ = ∣(g1,1)∣ since φ is an
automorphism. Note that ∣(g1,1)∣ = ∣g1∣, so if φ(g1, g2) = (h1, h2), we have

∣g1∣ = ∣(h1, h2)∣ = lcm(∣h1∣, ∣h2∣).

This means in particular that ∣h2∣ divides ∣g1∣, which in turn divides ∣G1∣. But ∣h2∣ also divides ∣G2∣,
so since gcd(∣G1∣, ∣G2∣) = 1, we must have ∣h2∣ = 1 and thus h2 = 1. Summarizing, we have that

φ(g1,1) = (h1,1)
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for some h1 ∈ G1. If we let ι1 ∶ G1 → G1 ×G2 denote the homomorphism ι(g1) = (g1,1) and we let
π1 ∶ G1 ×G2 → G1 denote the homomorphism π1(g1, g2) = g1, we can thus define a homomorphism
φ1 ∶ G1 → G1 by

φ1 = π1 ○ φ ○ ι1.

This homomorphism has an inverse given by

π1 ○ φ
−1
○ ι1

so φ1 ∈ Aut(G1) and we have
φ(g1,1) = (φ1(g1),1).

Similarly, we obtain an automorphism φ2 ∈ Aut(G2) such that

φ(1, g2) = (1, φ2(g2)).

Thus

φ(g1, g2) = φ((g1,1) ⋅ (1, g2)) = φ(g1,1)φ(1, g2) = (φ1(g1),1) ⋅ (1, φ2(g2)) = (φ1(g1), φ2(g2)),

so φ = Φ(φ1, φ2) and Φ is surjective, finishing the proof.

Question 3. (2 points)

Let G be the group of rigid motions of R3 preserving the unit cube [0,1]3.

Find the order of the group G, by means of the orbit-stabilizer theorem.

Solution. Let X be the set of faces of the cube. Note that G acts on X via its action on the
cube. This action is transitive, since for any pair of faces, we can find a rigid motion which takes
the first face to the second. Furthermore, the stabilizer of a face x ∈ X is given by the identity
and the rotations by π/2, π and 3π/2 around the line through the center of the face and the center
of the cube. Thus the stabilizer is of order 4. Combining these facts, the orbit stabilizer theorem
tells us that

∣G∣ = ∣Gx∣∣Gx∣ = 6 ⋅ 4 = 24.

Question 4. (2 points)

Let Γ = SL(2,Z). Let n ≥ 1 be an integer. The principal congruence subgroup of level n in Γ,
denoted Γ(n), is defined as follows

Γ(n) = {(
a b
c d

) ∈ SL(2,Z)∶a, d ≡ 1 mod n, and b, c ≡ 0 mod n} .

i) Show that Γ(n) is normal in SL(2,Z).

ii) Show that SL(2,Z)/Γ(n) is isomorphic to SL(2,Zn).
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Solution.

i) Let B ∈ Γ(n) and A ∈ SL(2,Z) and let us write

B = (
a b
c d

) , A = (
e f
g h

) .

Then

A−1 = (
e f
g h

)

−1
=

1

eh − fg
(
h −f
−g e

) = (
h −f
−g e

) ,

since A ∈ SL(2,Z), so det(A) = eh − fg = 1. We thus get

ABA−1 = (
e f
g h

)(
a b
c d

)(
h −f
−g e

)

= (
ae + cf be + fd
ag + hc bg + hd

)(
h −f
−g e

)

= (
h(ae + cf) − g(be + fd) −f(ae + cf) + e(be + fd)
h(ag + hc) − g(bg + hd) −f(ag + hc) + e(bg + hd)

)

Since a ≡ d ≡ 1 mod n, b ≡ c ≡ 0 mod n and eh − fg = 1, we get

h(ae + cf) − g(be + fd) ≡ he − gf ≡ 1 mod n,

−f(ae + cf) + e(be + fd) ≡ −ef + ef ≡ 0 mod n,

h(ag + hc) − g(bg + hd) ≡ gh − gh ≡ 0 mod n,

−f(ag + hc) + e(bg + hd) ≡ −fg + eh ≡ 1 mod n.

Thus ABA−1 ∈ Γ(n).

ii) We define a map
ϕ ∶ SL(2,Z) → SL(2,Zn)

by

ϕ((
a b
c d

)) = (
ā b̄
c̄ d̄

) ,

where we write x̄ for equivalence class in Zn of x ∈ Z. This is well defined since if ad−bc = 1 we
have ād̄ − b̄c̄ = ad − bc = 1̄. That it is a homomorphism follows since this equivalence relation
is compatible with all operations used in matrix multiplication. Specifically, we have

ϕ((
a b
c d

)(
e f
g h

)) = ϕ((
ae + bg af + bh
ce + dg cf + dh

))

= (
ae + bg af + bh

ce + dg cf + dh
)

= (
āē + b̄ḡ āf̄ + b̄h̄
c̄ē + d̄ḡ c̄f̄ + d̄h̄

)

= (
ā b̄
c̄ d̄

)(
ē f̄
ḡ h̄

)

= ϕ(
a b
c d

)ϕ(
e f
g h

) .
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We note that a matrix

A = (
a b
c d

)

is in the kernel of ϕ if and only if ā = d̄ = 1̄ and b̄ = c̄ = 0̄, which is precisely the definition of
when a matrix is in Γ(n). Thus ker(ϕ) = Γ(n).

It now follows by the first isomorphism theorem that SL(2,Z)/Γ(n) ≅ im(ϕ). However, proving
that ϕ is surjective is not trivial (it doesn’t follow immediately from the surjectivity of the
homomorphism Z → Zn) and actually quite difficult for general n. In the case where n = p is
a prime, the proof can be simplified somewhat:

Proof of surjectivity when n = p is prime. Suppose that

A = (
ā b̄
c̄ d̄

) ∈ SL(2,Zp).

The strategy will be to factor A as a product of matrices that are easy to prove lie in the
image of ϕ. Since ϕ is a homomorphism, this will prove that A is also in the image. To this
end, note that for any integer a, the matrices

(
1 a
0 1

) , (
1 0
a 1

) , (
0 1
−1 0

) , (
1 −1

1 − a a
) (1)

have determinant 1 and are thus in SL(2,Z). Reducing these matrices modulo p thus gives us
matrices in the image of ϕ.

In the first step of our proof, we will reduce to the case where A is a diagonal matrix. Note
that since A is invertible, we have that either ā ≠ 0̄ or b̄ ≠ 0̄. We can assume, without loss
of generality, that ā ≠ 0̄, since in the case where b̄ ≠ 0 we can instead consider the matrix
obtained as follows:

(
ā b̄
c̄ d̄

)(
0̄ 1̄
−1̄ 0̄

) = (
−b̄ ā
−d̄ c̄

) .

The assumption that ā ≠ 0 allows us to perform Gaussian elimination on A. More specifically,
since p is a prime it follows that ā has a multiplicative inverse in Zp, so the following matrix
product is well-defined1:

(
1̄ 0̄
−ā−1c̄ 1̄

)(
ā b̄
c̄ d̄

) = (
ā b̄
0̄ −ā−1b̄c̄ + d̄) .

Note that since ā(−ā−1b̄c̄ + d̄) = ād̄ − c̄d̄ = 1̄ by assumption, we have that −ā−1b̄c̄ + d̄ = a−1 ≠ 0̄.
We thus have the following well defined matrix product:

(
1̄ −āb̄
0̄ 1̄

)(
ā b̄
0̄ ā−1) = (

ā 0̄
0̄ ā−1) .

If we let

U = (
1̄ 0̄
−ā−1c̄ 1̄

) , V = (
1̄ −āb̄
0̄ 1̄

) ,

1Note that the reason we can do Gaussian elimination is because p being a prime implies that Zn is a field.
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we note that U,V ∈ SL(2,Zp) and also that U,V are both in the image of ϕ, since any matrices
of the form

(
1̄ 0̄
ᾱ 1̄

) , (
1̄ ᾱ
0̄ 1̄

)

are in the image of ϕ. This means that we can write

A = U−1V −1 (
ā 0̄
0̄ ā−1) ,

with the two first matrices in the product being in the image of ϕ. If we can prove that any
diagonal matrix in SL(2,Zp) is in the image of ϕ, we are thus finished. This follows by the
factorization

(
1̄ −1̄

1 − ā−1 ā−1)(
1̄ 0̄

1̄ − ā 1̄
)(

1̄ ā−1

0̄ 1̄
) = (

ā −1̄
0 a−1)(

1̄ ā−1

0̄ 1̄
) = (

ā 0
0̄ ā−1) .

Remark 1. A similar strategy for the proof works in the case where n is not prime, but more
work has to be done to get around the fact that nonzero elements in Zn don’t necessarily
have multiplicative inverses in this case, so Gaussian elimination has to be replaced by an
alternative method.

Remark 2. Note that as in the solution to Question 1, proving that Γ(n) is the kernel of a
homomorphism proves that it is a normal subgroup, independently of the direct proof in (i).

Question 5. (2 points)

Let n ≥ 1 and consider the subgroups

µn = {z ∈ C ∣ zn = 1},

S1
= {z ∈ C ∣ ∣z∣ = 1},

of C×. Show that S1 ≅ C×/(µnR>0), where µnR>0 is the product of the subgroups.

Solution. Let us define a map ϕ ∶ C× → S1 by

ϕ(z) = (
z

∣z∣
)

n

.

This is a homomorphism, since

ϕ(z1z2) = (
z1z2
∣z1z2∣

)

n

= (
z1z2
∣z1∣∣z2∣

)

n

= (
z1z

∣z1∣
)

n

(
z2
∣z2∣
)

n

= ϕ(z1)ϕ(z2).

If w ∈ S1, i.e. ∣w∣ = 1, we also have ∣w1/n∣ = ∣w∣1/n = 1 and thus

ϕ(w1/n
) = (w1/n

)
n
= w,

so ϕ is surjective.
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Finally, we will show that the kernel is µnR>0. The elements of µn are of the form e2πik/n, for
k an integer, so this means that z ∈ µnR>0 if and only if z = re2πik/n for r ∈ R>0 and any integer k.
Thus

ϕ(z) = e2πikn/n = e2πik = 1,

so z ∈ ker(ϕ). Conversely, any complex number z can be written as reiθ for some r ∈ R>0 and
θ ∈ [0,2π), so if z ∈ ker(ϕ) we have

1 = ϕ (reiθ) = eiθn.

This means that θn = 2πk, for some integer k, or in other words θ = 2πk/n, so

z = re2πik/n ∈ µnR>0.

Thus ker(ϕ) = µnR>0, so it follows by the first isomorphism theorem that S1 ≅ C×/(µnR>0).
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