

Bachelor’s Thesis in Computer Science
at Stockholm University, Sweden, 2018

Design and Implementation
of a Tool that Supports
Evolutionary Analysis of Exon
Borders

Sara Farahani

Department of Mathematics
Stockholm University
SE-106 91 Stockholm, Sweden

Design and Implementation
of a Tool that Supports
Evolutionary Analysis of Exon
Borders

Sara Farahani

Bachelor’s Thesis in Computer Science (15 ECTS credits)
Bachelor’s Programme in Computer Science
Stockholm University year 2018
Supervisor at the Department of Mathematics was Lars Arvestad
Examiner was Peter LeFanu Lumsdaine

Abstract

Today, nucleotide data of whole genomes has been sequenced and as-
sembled into databases that are available online. These records become
valuable when doing evolutionary studies, and includes biological data
such as genes, transcripts and exons. However, some information is not
provided in an user-friendly or easily accessible manner, which is the
case with exon borders.

The core of this project is to develop a tool that refines the coor-
dinates of exon borders and facilitate the access to them. The project
will also involve the management of additional biological data. Among
them are gene families, protein coding DNA sequences and transcripts.
The project resulted in a relational database in SQLite and three dif-
ferent modules written in Perl. The first script imports biological data
from the Ensembl databases using the Ensembl Perl API. The second
one imports gene family data from CSV files, and the third one ex-
ports exon coordinates together with other nucleotide data in FASTA
format.

Design och implementation av ett verktyg som stödjer
evolutionär analys av exongränser

Sammanfattning

Idag finns det tillg̊ang till stora mängder genetisk information där ar-
ters hela genom har sekvenserats och lagrats i databaser. Uppgifterna
finns tillgänglig online och kommer till stor nytta när man gör evo-
lutionära studier. Gener, transkript och exoner är exempel p̊a denna
typ av information. Det finns dock problem med vissa data som var-
ken är lätt̊atkomligt eller användbar. Detta är fallet vid lagringen av
exongränser.

Huvudsyftet med detta projekt är s̊aledes att förbättra
tillgängligheten p̊a exonkoordinater och förfina dess data. Projektet
involverar även hantering av annan biologisk information, bl.a. genfa-
miljer, proteinkodande DNA-sekvenser och transkript. Arbetet resul-
terade i en relationsdatabas i SQLite och tre olika moduler skrivna i
Perl. Den första modulen importerar data from Ensembls databaser
med hjälp av Ensembl Perl API. Den andra importerar genfamiljer
genom att läsa CSV-filer. Den tredje exporterar exonkoordinater till-
sammans med annan nukleotid data i FASTA format.

Acknowledgements

This is a Bachelor’s Thesis in Computer Science at Stockholm University.
The thesis was performed at the Department of Mathematics. My supervisor
was Lars Arvestad at Science for Life Laboratory/Dept. of Mathematics,
who also was the outsourcer of this project. I would like to thank him for
giving me this very educative opportunity and allowing me to have freedom
under responsibility. I would also like to thank Monica Bäfverfeldt who took
the time to review my report.

Contents

1 Introduction 1
1.1 The Underlying Biology . 1

1.1.1 Coding Sequence and Protein Sequence 1
1.1.2 Transcription and Exons 2
1.1.3 Gene Families and Gene Alignment 3

1.2 The Ensembl Project and BioMart 3
1.3 Problem and Purpose . 4
1.4 Limitations . 5

2 Design and Implementation 6
2.1 Developing a Nucleotide Database 6

2.1.1 The Database Schema 6
2.1.2 Implementing the Database Using SQLite 8

2.2 Database Interaction With Perl Scripts 8
2.2.1 Importing Nucleotide Data Using The Ensembl Perl

API . 9
2.2.1.1 Retrieving Translatable Transcripts 9
2.2.1.2 The Main Function 9
2.2.1.3 Insert Functions and Help Functions 10
2.2.1.4 Avoiding Duplicates in the Gene Table . . . 10
2.2.1.5 Constructing the Transcript Sequence 10
2.2.1.6 Converting the Exon Coordinates 11

2.2.2 Importing Gene Families by Reading a CSV File . . . 12
2.2.3 Exporting Exon Borders in FASTA Format 12

3 Results 13
3.1 Importing Nucleotide Data 13
3.2 Inserting Gene Family Data 14
3.3 Exporting Coordinates of Exon Borders 15

4 Conclusion 17

5 Discussion 18

References 19

List of Figures

1 An illustration of RNA splicing. 2
2 A simple example of gene alignment. 3

3 Example output of a human transcript and its exon coordi-
nates on the chromosome. 4

4 An overview of the tool. The three arrows illustrates the data
exchange performed by the modules of this project. 6

5 The database schema . 7
6 Sample output from the species table. 13
7 Sample output from the gene table. 13
8 Sample output from the exon table, one armadillo transcript. 14
9 Sample output from the exon table, several Saccharomyces

cerevisiae transcripts. 14
10 Input of gene families in the CSV file where each row consti-

tutes a gene family. 15
11 Output from the family table. 15
12 Output from the gene family table. 15
13 Sample output from the FASTA file. 16

1 Introduction

Due to technical development, researchers have since the 1990s made major
progress in identifying genome sequences, i.e. genetic information, of sev-
eral species (Campbell, Reece, Urry, Cain, Wasserman, Minorsky & Jackson
2015, pp. 55, 287). In order to manage the large amount of data the field
of bioinformatics has emerged. Bioinformatics is “the application of compu-
tational methods to the storage and analysis of biological data” (Campbell
et al. 2015, p. 477). Nowadays we have access to important details, not
only to compare genomes of di↵erent species, but also to explore biological
processes, including evolution (Campbell et al. 2015, pp. 476–477).

Gene families, coding DNA sequences and exon borders are examples of
data that are of interest when investigating how species’ genetic inheritage
has changed over time. This type of data are available in today’s online
tools, yet the information about exon borders are not always provided in
an user-friendly manner. In order to facilitate evolutionary studies involving
exon borders and gene families, there is a need for a customized software.
Therefore, this project will focus on developing a tool that refines, stores and
exchanges this particular information together with other relevant sequence
data.

1.1 The Underlying Biology

The following subsections will give a brief introduction to the biological
aspects of this project. It will simplify the understanding throughout this
report regarding the problem and purpose, as well as the implementation.

1.1.1 Coding Sequence and Protein Sequence

Chromosomes are structures within cells that contains chains of DNA (de-
oxyribonucleic acid). The DNA strands comprise of nucleotides called ade-
nine (A), thymine (T), cytosine (C), and guanine (G) (Campbell et al. 2015,
pp. 53, 371). The nucleotides can form specific coding sequences, called
genes, that carries information about protein production (Campbell et al.
2015, pp. 54, 392). One single DNA molecule may include up to thousands
of genes (Campbell et al. 2015, p. 53).

Furthermore, a cell also contains proteins, which consist of one or sev-
eral polypeptides. Every polypeptide is a sequence uniquely built from 20
di↵erent amino acids such as Leucine (L) and Valine(V) (Campbell et al.
2015, pp. 125, 127–128). The number of proteins in the human body sums
up to tens of thousands, each with a distinct function that is essential to life
(Campbell et al. 2015, p. 125).

1

1.1.2 Transcription and Exons

RNA (Ribonucleic acid) is a molecule constructed by the same nucleotides as
DNA, except that thymine is replaced by uracil (U) (Campbell et al. 2015,
pp. 392, 394). RNA functions as “The bridge between DNA and protein
synthesis” (Campbell et al. 2015, p. 392).

One of the overall processes in the creation of proteins is called tran-
scription. During transcription in eukaryotic cells, information about the
protein-coding gene is “rewritten” from DNA to RNA, resulting in a pre-
mRNA strand (Campbell et al. 2015, p. 392). The coding segments of a gene,
however, are not continuous. There are non-coding sections called introns
that are located between other sections called exons, hence the pre-mRNA is
structured in a similar way. During RNA processing, the introns in the pre-
mRNA are cut away and the exons are then merged into a mRNA sequence,
a procedure called RNA splicing (Campbell et al. 2015, pp. 399–400). A
demonstration of the latter can be seen in Figure 1.

Later on, the exons are often translated into polypeptides. Still, some
regions of the exons are not protein coding, even though they are included
in the mRNA (Campbell et al. 2015, p. 399).

Figure 1: An illustration of RNA splicing.

It is also important to emphasize that a single gene can code for multiple
proteins, a possibility given by the existence of introns. Depending on which
polypeptide that is being produced, the exons can be defined by di↵erent
segments during RNA processing, a shift called alternative RNA splicing. As
a result, an organism’s number of distinct proteins it produces can exceed
the number of its genes (Campbell et al. 2015, p. 400).

2

1.1.3 Gene Families and Gene Alignment

Gene duplication is a recurrent phenomenon in evolution that expands the
number of genes in species genomes. Today, it is possible to trace the du-
plications and divide related genes into gene families (Campbell et al. 2015,
p. 535). These genes are called homologous and are represented by DNA
sequences derived from the same molecule (Campbell et al. 2015, p. 527).

To evaluate homology among genes, the nucleotides in the DNA
molecules are first sequenced. Later, the sequences’ comparable segments
are aligned. By analysing their similarities and di↵erences it is determined
how closely or distantly the species are related to each other (Campbell
et al. 2015, p. 528). In practice however, there are tools performing these
comparisons together with clustering techniques (Sjöstrand 2013, p. 29). For
a graphical description of gene alignment, see Figure 2.

Figure 2: A simple example of gene alignment.

1.2 The Ensembl Project and BioMart

The Ensembl project1 began developing in 2000 with the primary ambition
to sequence the human genome (Birney et al. 2004, p. 925). Nowadays, the
system provides biological data from over 70 various species (Ayling et al.
2016, p. 1) and has become “a central hub of genomic information” (Aken
et al. 2016, p. D635). Ensembl comprise of a database and genome browser
that are regularly updated (Aken et al. 2016, pp. D635–D636). All Ensembl
data can be accessed either from a programmatic interface such as Perl API
or the web-based interface Ensembl BioMart (Ayling et al. 2016, p. 16). In
the Ensembl databases, every object is marked with an Ensembl stable ID
which is an unique combination of letters and numbers (Ensembl n.d.).

BioMart is a data mining tool where the user can access data based on
selected filters and/or attributes (Ensembl 2017c). The filters bounds the
query based on information from the user and the attributes regulates the
output (Ensembl 2017d). For example, the user might have a gene stable ID
and choose to retrieve its matching transcript sequences.

1www.ensembl.org

3

www.ensembl.org

1.3 Problem and Purpose

Ensembl is a big platform that provides huge volumes of data with varying
characteristics. However, some queries results in output that are di�cult to
conduct further analysis on. The outsourcer of this project performs align-
ments of coding DNA sequences to define gene families, and is particularly
interested in exon borders. This data can be retrieved by using BioMart, but
is not optimally generated from an user-friendly perspective. The problems
are listed below together with an example output from BioMart2 in Figure
3.

Figure 3: Example output of a human transcript and its exon coordinates on

the chromosome.

• The exon start and end regions are represented by coordinates on the
chromosome and not limited to the specific transcript that is being
observed.

• The coordinates are not retrieved in sequence order of the exons.

• The start and end regions are listed separately, making it hard to
receive a coherent overview.

• The transcript sequence represents the connected exon after RNA
splicing. Hence, the exon borders can not be retrieved here either.

The main purpose of this project is to facilitate the procedure of ex-
tracting information about exon borders and make the data more usable.
As mentioned in section 1.2, it is possible to access the nucleotide data
from the Ensembl databases through Perl scripts. Hence, one solution to
the output problem described above is to create a tool together with a local
database which stores and provides the exon data in a requested way. Since
this project is related to evolutionary research, it is also within the scope to
manage other biological information and to enable the data to interact with
other tools traditionally used in evolutionary studies.

2
Note that transcripts are represented by DNA nucleotides in Ensembl.

4

1.4 Limitations

The project will only include an implemented solution that is exclusively
compatible with the Ensembl databases. The local database will be a rela-
tional database implemented in SQLite. It will only manage the following
biological data: species, genes, transcripts, exons, gene families and proteins.

The tool will import the greater part of the nucleotide information to the
database by using Ensembl Perl API. It will also handle comma-separated
values (CSV) files in text format as input, containing gene families defined
by the user. Finally, the tool will write text files in FASTA format including
exon borders and nucleotide data from selected families.

The source code will be uploaded on www.github.com. A graphical user
interface will not be implemented as the command line will be used to in-
teract with the system.

5

www.github.com

2 Design and Implementation

Figure 4 shows an overview of the di↵erent components involved in this
project. During the development, three scripts and one database was imple-
mented. The right bin symbolises all of the Ensembl databases where the
script import_from_ensembl extracts nucleotide data from, and inserts it
to the local database. The insert_gene_families script reads a CSV file
provided by the user and stores the records in the local database as well. The
functionality of the third script, write_gene_families, is to export gene
family data including exon borders in FASTA format. The following subsec-
tions will present a more detailed description of the implementation of each
part. All source codes can be found at www.github.com/SaraFarahani/

exon_borders_tool.

Figure 4: An overview of the tool. The three arrows illustrates the data ex-

change performed by the modules of this project.

2.1 Developing a Nucleotide Database

A relational database was developed to meet the outsourcer’s need to store
large amounts of data. The database structure is based on biological as-
pects, described in section 1.1, and Ensembl’s own database schema3 . After
completing the structure, the database was implemented in SQLite. The fol-
lowing sections specifies the approach to these processes. Additionally, for
further reading on the database concepts mentioned below, see Harrington
(2016).

2.1.1 The Database Schema

As seen in Figure 5, the database schema consists of eight tables, their at-
tributes, and the relationships among the tables. The underscored attributes

3www.ensembl.org/info/docs/api/core/core_schema.html

6

www.github.com/SaraFarahani/exon_borders_tool
www.github.com/SaraFarahani/exon_borders_tool
www.ensembl.org/info/docs/api/core/core_schema.html

are the primary keys of each table. The arrows linking the tables either rep-
resent one-to-one or one-to-many relationships. They also clarify the foreign
key constraint that are used to connect two tables to each other. In the
one-to-many relationships it is the ”many” that holds the ”one” key, for
the other relationship this was chosen at random. In cases where a many-
to-many relationship exists, an additional table has been added. It consists
only of the two foreign keys from the tables sharing the relationship, e.g.
gene_family.

Figure 5: The database schema

The normalization degree of the database structure has been analysed
up to Boyce-Codd normal form (BCNF). The reasoning in this context are
based on definitions that can be found in Harrington (2016).

• The first normal form is reached since each attribute in this database
is limited to having only one value in every row.

• The second normal form is also meet. All of the non-key attributes are
functionally dependent on the entire primary key.

• The requirements for third normal form regarding transitive depen-
dencies are also satisfied. In this database, the transitive dependencies
is recognized by seeing the unique stable ids as second determinants.
In this case however, transitivity is allowed since these stable ids are
candidate keys.

7

• Every determinant is a candidate key, hence the database is in BCNF.

2.1.2 Implementing the Database Using SQLite

The outsourcer of this project requested that the relational database man-
agement system should be SQLite. It is a broadly used SQL database engine
that comes with many advantages in terms of user-friendliness. SQLite does
not require a separate server to operate on and its code is in the public
domain. SQLite is said to be a very reliable system and has a maximum
database size of 140 terabytes (SQLite n.d.).

The database was developed in SQLite version 3.18.0. The tables were
created using regular SQL queries. Besides from implementing primary keys,
the queries also regulates other constraints, such as unique, not null and
referential integrity to foreign keys. An example query is shown below:

1 CREATE TABLE gene (gene id i n t e g e r PRIMARY KEY NOT NULL,

s p e c i e s i d i n t e g e r NOT NULL, g e n e s t a b l e i d varchar (255)

UNIQUE NOT NULL, FOREIGN KEY(s p e c i e s i d) r e f e r e n c e s s p e c i e s

(s p e c i e s i d)) ;

Furthermore, the attribute values species_name and *_stable_id4 were
set to unique to avoid duplicates. An exception is the exon_stable_id,
which is allowed to occur more than once (for an explanation of why,
see last part of section 2.2.1). The only column that allows null entries
is description in the family table. Furthermore, the constraint ”on delete
cascade” has been applied to the gene_family table, meaning that if the user
manually deletes a family, the corresponding records in the gene_family ta-
ble will also be deleted.

2.2 Database Interaction With Perl Scripts

The first step after developing the database was to import records from
the Ensembl genome databases. It is recommended to use the Ensembl Perl
API if large volumes of records are to be extracted from their databases
(Ensembl 2017a). Hence, the import script was written in Perl, which also
is compatible with SQLite. By convenience the same language was used to
develop the other two components of the tool.

All of the scripts use the Perl module DBI to connect with the local
database and perform data exchange. While making entries to the database
all primary keys are automatically generated. The subsequent sections pro-
vide a detailed description of the three self-contained programmes that was
created in this project, explaining both how and why they were built.

4
The asterix stands for gene, transcript, exon etc.

8

2.2.1 Importing Nucleotide Data Using The Ensembl Perl

API

Ensembl has stored their records in a publicly-accessible MySQL server.
Data is retrieved by using the Ensembl Perl API, which enables records to
be accessed without knowing the database schema (Ensembl 2017a). The
Perl API is object oriented and includes a vast amount of classes, object
adaptors and methods. Ensembl has provided a brief introduction of how
to use some of them5. This was used to familiarize with the syntax. Dur-
ing the development relevant methods was found by the means of the API
documentation6. The names of the methods from the Ensembl Perl API are
self-explanatory, consequently there will be no detailed description of them
here. The remaining part of this section will address the coding part of this
module.

2.2.1.1 Retrieving Translatable Transcripts

As described in the API tutorial, the registry module is imported in order
to connect with the Ensembl databases. By using the registry, an object
adapter and a fetch method, all transcripts for a chosen species is retrieved
from the core database (Ensembl 2017b). The fetch_all() method results
in a list reference and the content is dereferenced into an array. Since only
the protein coding transcripts are of interest, the non-coding transcripts are
sorted out.

1 use Bio : : EnsEMBL : : Reg i s t ry ;

2 my $t r an s c r i p t adap t o r = $ r e g i s t r y�>get adaptor ($ spec i e s , ’

Core ’ , ’ Transc r ipt ’) ;

3 my $ t r a n s c l o n e s r e f = $t ran s c r i p t adapto r�> f e t c h a l l (’ c l one ’) ;

4 my @transc lones = @{ $ t r a n s c l o n e s r e f } ;
5

6 my @t r an s l a t e a b l e t r a n s c r i p t s =() ;

7 whi le (my $ t r a n s c r i p t = s h i f t @transc lones) {
8 my $ t r a n s l a t e ab l e = $t r an s c r i p t�>t r a n s l a t e a b l e s e q () ;

9 i f ($ t r a n s l a t e ab l e ne ’ ’) {
10 push (@t r an s l a t e ab l e t r an s c r i p t s , $ t r a n s c r i p t) ;

11 }
12 }

2.2.1.2 The Main Function

The array with translatable transcripts is sent to the subroutine main().
This function manages the systematics of all entries to the local database.
Every table in the database has its own subroutine, these are called by the

5www.ensembl.org/info/docs/api/core/core_tutorial.html0
6www.ensembl.org/info/docs/Doxygen/core_api/index.html

9

www.ensembl.org/info/docs/api/core/core_tutorial.html0
www.ensembl.org/info/docs/Doxygen/core_api/index.html

main function. It also ensures that correct input values are included in each
call.

2.2.1.3 Insert Functions and Help Functions

The majority of the code consists of insert functions and get functions (help
functions). The insert functions (one for each table) handle the entries to
the local database. These subroutines always receives a transcript object
as input. The transcript object is used to retrieve nucleotide data from the
Ensembl databases, e.g. a species name or a gene stable id. Depending on the
structure of the table, some insert functions have additional input values.
These are foreign keys that has been returned from the other insert functions
and passed forward by the main function. Furthermore, the code contains
several help functions. Each of them has a specific assignment retrieval, e.g.
to fetch a gene id or a transcript sequence.

Moving on the technical parts of the database entries, the subsequent
three sections will describe the most importing aspects of the code. For the
complete code, see www.github.com/SaraFarahani/exon_borders_tool/.

2.2.1.4 Avoiding Duplicates in the Gene Table

To manage the gene table, it is required to retrieve the gene_stable_id

of each transcript. Since a gene can have several transcripts, the same
gene_stable_id might appear more than once. If the SQL query tries to
insert an already existing stable id, the programme will break because du-
plicates are not allowed in the gene table. To avoid this, all insertions to
the gene table begins with ”INSERT OR IGNORE”. The statement ensures
that the entry is performed only if the gene_stable_id does not already
exist.

2.2.1.5 Constructing the Transcript Sequence

In the transcript table, a transcript sequence is constituted by its
corresponding exons. The sequence is formed by the help function
get_transcript_seq(). The subroutine retrieves a list of ordered exon ref-
erences and dereference it into an array. A while-loop iterates through the
array where the exon’s sequence is fetched and pushed into another array.
This array is later joined in itself, forming the complete transcript sequence.

10

www.github.com/SaraFarahani/exon_borders_tool/

1 sub g e t t r a n s c r i p t s e q {
2 my $ t r an s c r i p t = s h i f t ;

3 my $exon s r e f=$ t r an s c r i p t�>g e t a l l Exon s () ;

4 my @exons array = @{ $ exon s r e f } ;
5 my @tran s c r i p t a r r ay= () ;

6 whi le (my $exon r e f = s h i f t @exons array) {
7 my $exon seq = $exon re f�>seq ()�>seq () ;

8 push (@transc r ip t a r ray , $exon seq)

9 }
10 my $ t r a n s c r i p t s e q = j o i n (”” , @t ran s c r i p t a r r ay) ;

11 re turn $ t r a n s c r i p t s e q ;

12 }

2.2.1.6 Converting the Exon Coordinates

As mentioned in section 1.3, the exon borders are represented by coordi-
nates on the chromosome. The goal is to convert them into transcript coor-
dinates. The exons occur in order when they are retrieved from the Ensembl
databases. This means that by determining the length of each exon, it is pos-
sible to transform the chromosome coordinates to transcript coordinates.

In the first exon of every transcript, the attribute values exon_start is
set to 1 and exon_end is set to the sequence length+1. In the process for
the remaining exons, the subroutine get_coordinates() uses another help
function to fetch the last inserted exon_id before assigning the start and
end positions as follows:

1 sub g e t c o o rd i n a t e s {
2 my $exon = s h i f t ;

3 my $prev ious exon end = ge t l a s t e x on end () ;

4 my $new exon star t = ($prev ious exon end+1) ;

5 my $o l d exon s t a r t = $exon�>s e q r e g i o n s t a r t () ;

6 my $old exon end = $exon�>s eq r eg i on end () ;

7 my $new exon end = $new exon star t + ($old exon end�
$o l d exon s t a r t) ;

8 my @coordinates = ($new exon start , $new exon end) ;

9 re turn @coordinates ;

10 }

Similar to the relationship between transcripts and genes, an exon can
be included in several transcripts. In contrast to the earlier situation, the
exon table allows duplicates of exon_stable_ids. The reason for this is that
even though an exon always has the same chromosome coordinates, it might
not be assigned with the same transcripts coordinates. Here is an example:

• In one transcript, exon A is followed by exon C. In another transcript,
exon B is also followed by exon C.

• The chromosome sequence regions are A: 1–5, B: 1–10, C: 15–20.

11

• The script will then set the transcript start and end positions to A,C:
1–5, 6–11 and B,C: 1–10,11–16.

It is now clear that an exon’s transcript coordinates partially depends
on the sequence region of the former one, and that the same exon might
be given di↵erent transcript coordinates. Still, the transcript regions are
in the same scale as in the chromosome but has been shifted to be-
come more coherent. The duplicates will not cause any problems since the
transcript_exon table keeps track of the exon_ids together with its cor-
responding transcript_ids.

2.2.2 Importing Gene Families by Reading a CSV File

Another function requested by the outsourcer was the possibility to store
records about gene families. As the outsourcer uses standard tools to per-
form gene alignments, new family definitions are formed. This information
is summarized in a CSV file. In this case, the file contains rows of comma-
separated gene ids, where each line represents one gene family. In order to
assemble data from di↵erent gene alignments, another script was written in
Perl.

As the user starts the script, the programme will ask the user to enter
family stable ids and family descriptions to the new families. The subroutine
check_arrays() will ensure that the number of family stable ids and family
descriptions matches the number of families in the CSV file. For each row in
the file, the function insert_family() performs entries to the family table
and call the insert_gene_family() function. The latter inserts records to
the gene_family table by iterating through the row of gene ids.

2.2.3 Exporting Exon Borders in FASTA Format

Apart from storing records of biological data, the outsourcer is also inter-
ested in using the data in other contexts. As described in section 1.3, the
core of this project is to generate exon borders in a more accessible and use-
ful manner. More specifically, it was requested that the tool would produce
a text file containing nucleotide data in FASTA format. FASTA format is a
certain syntax used to transform biological data into a text-based format.
Mainly, it begins with the symbol ”>” followed by one descriptive line and
ends with lines of sequence data (University of Michigan n.d.).

To retrieve records from the database in FASTA format, a third module
was created. When starting the program, the user enters an optional number
of family stable ids which corresponds to the gene families that should be
included in the output file. The module contains a main() function which
builds the FASTA formatted text file by calling a number of help functions.
The help functions provide the main() function with requested records from
the database.

12

3 Results

The following sections will demonstrate the outcome from running the dif-
ferent scripts. Example data of input and output, as well as records from the
local database will be presented. The execution times will also be included.

3.1 Importing Nucleotide Data

The script, import_from_ensembl, that imports records from the Ensembl
databases has been run for several species. Figure 6 and 7 show selected
database output from the species and gene tables. In this case the species
were first armadillo and later Saccharomyces cerevisiae.

Figure 6: Sample output from the species table.

Figure 7: Sample output from the gene table.

The output from the exon table seen below shows how the exon borders
are displayed in the database. Figure 8 illustrates the exon coordinates for
one armadillo transcript (the transcript constitutes of several exons). Fig-
ure 9 visualizes the exon coordinates for several Saccharomyces cerevisiae

transcripts (each transcript constitutes of one exon only).
To ensure that the data was stored correctly, randomly chosen records

were manually traced among the tables and compared to the records in
BioMart and Ensembl’s data display7. No deviations were found.

7http://www.ensembl.org/info/website/gallery.html

13

http://www.ensembl.org/info/website/gallery.html

Figure 8: Sample output from the exon table, one armadillo transcript.

Figure 9: Sample output from the exon table, several Saccharomyces cere-

visiae transcripts.

Table 1 summarizes the approximate execution times of the script with
the two species. The total execution time was 22 and 2 hours for armadillo

and Saccharomyces cerevisiae respectively.

Table 1: Execution times for the two test species.

Species
Retrieve all
transcripts

Sort out non-
translatable
transcripts

Retrieve and
insert specific
data

Number of
transcripts/
exons

armadillo 200 s 2 h 20 h 26551/243387
Saccharomyces

cerevisiae
12 s 0.5 h 1.5 h 6692/7050

3.2 Inserting Gene Family Data

Before running the module import_gene_families, a CSV file was created.
The file contained arbitrary selected gene stable ids that were divided into
three families shown in Figure 10.

14

When running the script, family stable ids and descriptions was entered.
The programme inserted the records to the family and gene_family table
seen in Figure 11 and 12. Note that the same gene can be included in several
families depending on what the family definition is.

Figure 10: Input of gene families in the CSV file where each row constitutes

a gene family.

Figure 11: Output from the family table.

Figure 12: Output from the gene family table.

The execution time for the three families was 1 second. Another test case
was performed with an input file including ten families, each containing ten
gene ids. The time result was 11 seconds. The check_arrays() call took less
than 1 second and insert_family() together with insert_gene_family

took about 10 seconds.

3.3 Exporting Coordinates of Exon Borders

In the last module, the three gene families from the former script
were chosen. The FASTA formatted text file includes family_stable_id,
gene_stable_id, exon_start, exon_end and transcript_seq. In Figure
13 the descriptive lines actually corresponds to one row in the text file. Also
notice that the last part of the sequences has been cut away.

15

Arbitrary parts from the output file were reviewed by using the database
records as reference. The execution time was less 1 second. The result for
retrieving data from 10 di↵erent families, each containing 10 genes, was 1
second.

Figure 13: Sample output from the FASTA file.

16

4 Conclusion

Given the results above, the outsourcer’s needs in this context has been met.
The completed tool imports, stores and exports the requested information.
The main purpose of this project was to facilitate the access to exon borders.
This project has provided one possible solution to improve data display and
data availability.

The script that interacts with the Ensembl databases retrieves the nu-
cleotide data and modifies the exon coordinates before entering the informa-
tion to the local database. As demonstrated in the example outputs above,
the records are stored in a well-structured and easily accessible manner.
This also applies to the result from the insert script which manages gene
families. The greatest progress is noticed in the examples from the FASTA
formatted file. Compared to the output from BioMart, the exon coordinates
are now based on the transcript sequence, in subsequent order and easier to
interpret.

However, there exist a concern regarding the execution time in the nu-
cleotide import script. It is very time consuming in some cases. As presented
in Table 1, the total time was 22 respectively 2 hours. The table reveals that
the process of retrieving specific data from the Ensembl databases and per-
form entries to the database stand for the larger part of the execution time.

17

5 Discussion

When working through this project, the input and output was provided
by the outsourcer and the focus has been on finding methods to manage
them. However, managing the data seems to be time consuming. Table 1
shows that the execution time can vary a lot among di↵erent species. In
these two cases, there also exist a great di↵erence in their genomes. The
armadillo has more genes than the Saccharomyces cerevisiae. Additionally,
the armadillo has more transcripts constituting of several exons compared
to the Saccharomyces cerevisiae. To put this into programme perspective,
the genes consist of one or several transcripts which in turn are built by one
or several exons. The code involves iterations through all of these transcripts
and exons, as well as repeated database exchange using every single one of
the objects.

It has not been investigated whether a programme with another approach
would be less time consuming, or if the problem depends on the machine or
the SQLite file system. This could be evaluated in future research. However,
time e�ciency was not a requirement from the outsourcer. The imports from
Ensembl databases are one time procedures that will result in stored data
that is valuable, both in this context and in future developments.

18

References

Aken, B. L., Achuthan, P., Akanni, W., Amode, M. R., Bernsdor↵, F., Bhai,
J., Billis, K., Carvalho-Silva, D., Cummins, C., Clapham, P. et al. (2016),
‘Ensembl 2017’, Nucleic Acids Research 45, D635–D642.

Ayling, S., Aken, B. L., Barrell, D., Clarke, L., Curwen, V., Fairley, S., Banet,
J. F., Billis, K., Girón, C. G., Hourlier, T. et al. (2016), ‘The Ensembl
Gene Annotation System’, Database 2016(baw093), 1–19.

Birney, E., Andrews, T. D., Bevan, P., Caccamo, M., Chen, Y., Clarke, L.,
Coates, G., Cu↵, J., Curwen, V., Cutts, T. et al. (2004), ‘An overview of
Ensembl’, Genome research 14(5), 925–928.

Campbell, N. A., Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A.,
Minorsky, P. V. & Jackson, R. B. (2015), Biology: A Global Approach,
Harlow: Pearson Education Limited.

Ensembl (2017a), ‘Accessing Ensembl Data’, https://www.ensembl.org/
info/data/index.html. Accessed: 31 Oct 2017.

Ensembl (2017b), ‘Ensembl Core Api Tutorial’, http://www.ensembl.org/
info/docs/api/core/core_tutorial.html. Accessed: 31 Oct 2017.

Ensembl (2017c), ‘Extracting data with biomart’, http://www.ensembl.
org/info/data/biomart/index.html. Accessed: 15 Oct 2017.

Ensembl (2017d), ‘How to use biomart’, http://www.ensembl.org/info/
data/biomart/how_to_use_biomart.html. Accessed: 15 Oct 2017.

Ensembl (n.d.), ‘I have an Ensembl Id, what can i tell about it from the ID?’,
http://www.ensembl.org/Help/Faq?id=488. Accessed:15 Oct 2017.

Harrington, J. L. (2016), Relational database design and implementation,
Cambridge: Morgan Kaufmann.

Sjöstrand, J. (2013), Reconciling Gene Family Evolution And Species Evolu-

tion, PhD thesis, Stockholm: Dept.of Numerical Analysis and Computer
Science, Stockholm University.

SQLite (n.d.), ‘About sqlite’, https://www.sqlite.org/about.html. Ac-
cessed: 31 Oct 2017.

University of Michigan (n.d.), ‘What is FASTA format?’, https://

zhanglab.ccmb.med.umich.edu/FASTA/. Accessed: 31 Oct 2017.

19

https://www.ensembl.org/info/data/index.html
https://www.ensembl.org/info/data/index.html
http://www.ensembl.org/info/docs/api/core/core_tutorial.html
http://www.ensembl.org/info/docs/api/core/core_tutorial.html
http://www.ensembl.org/info/data/biomart/index.html
http://www.ensembl.org/info/data/biomart/index.html
http://www.ensembl.org/info/data/biomart/how_to_use_biomart.html
http://www.ensembl.org/info/data/biomart/how_to_use_biomart.html
http://www.ensembl.org/Help/Faq?id=488
https://www.sqlite.org/about.html
https://zhanglab.ccmb.med.umich.edu/FASTA/
https://zhanglab.ccmb.med.umich.edu/FASTA/

	Introduction
	The Underlying Biology
	Coding Sequence and Protein Sequence
	Transcription and Exons
	Gene Families and Gene Alignment

	The Ensembl Project and BioMart
	Problem and Purpose
	Limitations

	Design and Implementation
	Developing a Nucleotide Database
	The Database Schema
	Implementing the Database Using SQLite

	Database Interaction With Perl Scripts
	Importing Nucleotide Data Using The Ensembl Perl API
	Retrieving Translatable Transcripts
	The Main Function
	Insert Functions and Help Functions
	Avoiding Duplicates in the Gene Table
	Constructing the Transcript Sequence
	Converting the Exon Coordinates

	Importing Gene Families by Reading a CSV File
	Exporting Exon Borders in FASTA Format

	Results
	Importing Nucleotide Data
	Inserting Gene Family Data
	Exporting Coordinates of Exon Borders

	Conclusion
	Discussion
	References

