

Bachelor’s Thesis in Computer Science
at Stockholm University, Sweden, 2019

Approximating Amino Acid
Replacement Rates Efficiently
through Weighted Data
Aggregation

Ruben Ridderström

Department of Mathematics
Stockholm University
SE-106 91 Stockholm, Sweden

Approximating Amino Acid
Replacement Rates Efficiently
through Weighted Data
Aggregation

Ruben Ridderström

Bachelor’s Thesis in Computer Science (15 ECTS credits)
Bachelor’s Programme in Computer Science
Stockholm University year 2019
Supervisor at the Department of Mathematics was Lars Arvestad
Examiner was Chun-Biu Li

Abstract

In trying to describe the evolutionary process involved in the cre-
ation of proteins with a common ancestry, Markov processes are
often used. These Markov processes describe evolution by muta-
tions of the amino acids, which are the building blocks of proteins.
Mathematically this process, given a set of proteins in the form of
multiple sequence alignments, is represented using a rate matrix Q.
The elements of Q signify the rate at which the amino acids mutate
among each other.

In this paper we will implement a program using the BW (Bayesian
weights)-method [3] which, given one or multiple sequence align-
ments, estimates the rate matrix Q. The program is tested and
shown to be working correctly. In addition a bootstrap extension
is implemented that resamples the proteins to produce a metric by
which the stability of the produced rate matrix can be evaluated.
Tests are done which indicate the extension works for this purpose.

The program is implemented in Python using NumPy with a test
suite to facilitate future use and modifications. It is released as open
source and can also be downloaded and installed from the Python
package index (PyPi).

Sammanfattning

Approximation av aminosyrors utbytesfrekvens
genom viktad aggregering av data

För att beskriva den evolutionära processen som ger upphov till
proteiner med gemensamt ursprung används ofta Markovprocessser.
Dessa Markovprocessser beskriver evolution via mutationer i aminosy-
rorna som är proteinernas byggstenar. Matematiskt beskrivs den
här processen, för en mängd givna proteiner i form av multilin-
jeringar, med en överg̊angsmatris Q. Elementen i Q anger med
vilken intensitet aminosyrorna ersätter varandra genom mutationer.

I det här projektet kommer vi implementera ett program med hjälp
av BW (Bayesian weights)-metoden [3] som, givet en eller flera
multipellinjeringar, uppskattar överg̊angsmatrisen Q. Programmet
utsätts för tester som visar p̊a att det fungerar korrekt. En utökning
med bootstrapping implementeras som resamplar multilinjeringarna
för att producera ett värde med hjälp av vilket stabiliteten av den
producerade överg̊angsmatrisen kan utvärderas. Tester utförs som
indikerar att implementationen fungerar.

Programmet är implementerat i Python med hjälp av NumPy. Tester
finns implementerade för att facilitera framtida användning och ut-
ökningar av programmet. Programmet finns tillgängligt under open
source och kan ocks̊a installeras fr̊an Python package index (PyPi).

Acknowledgements

I want to thank the supervisor Lars Arvestad, Senior Lecturer at
Stockholm University, for providing the thesis subject. And for the
guidance and help he provided during this project. I also want to
thank Chun-Biu Li for examining this project. As well as thank
Caroline Nordquist, educational counselor, for always being of great
assistance during my studies.

Contents

1 Introduction 1

2 Problem statement 3

2.1 Increasing usability and maintainability 3

2.2 Bootstrap extension 4

3 Markovian model of evolution 5

3.1 IID and Reversibility 5

3.2 Probability matrix and PAM-distance 6

3.3 The rate matrix and its mathematical properties . . . 6

4 BW method theory 8

4.1 Estimating eigenvectors 8

4.2 Estimating eigenvalues 9

5 Bootstrap theory 12

6 Correctness testing methodology 13

7 Results 16

7.1 Program implementation correctness 16

7.2 Bootstrap . 17

7.2.1 Result and reliability of bootstrap norm . . . 18

8 Conclusions 20

References 22

1 Introduction

Proteins are of great importance for organisms who use them for
many di↵erent functions. A single protein is made up of a sequence
of amino acids, di↵ering in length from 20 to 30 amino acids up
to several thousand. This sequence decides the protein’s three-
dimensional shape as well as its function. There exists 20 unique
amino acids e.g. alanine, isoleucine and histidine. They are en-
coded by the letters ‘ACDEFGHIKLMNOPQRSTUVWY’. Using
this encoding a protein can be encoded as a string.

For our purposes we will be dealing with proteins with a common
ancestor in the form of a multialignment. A multialignment consists
of a given number of proteins sequences of equal length where the
related amino acid positions have been lined up. Each row of the
multialignment thus consists of one protein sequence. And each
column is the position on which a single amino acid have evolved.

A common area of interest when working with proteins that have a
common ancestor is the evolutionary process that gave rise to these
proteins. This is often described by a simple Markov process which
describes the evolution in terms of mutations in the amino acid po-
sitions of the protein. Such a process is represented mathematically
by a rate matrix Q. Each element in the rate matrix is the rate at
which a given amino acid mutates into another amino acid.

General models like the PAM (Point Accepted Mutation) [5] and
BLOSUM (BLOcks SUbstitution Matrix) [10] models have been de-
veloped for this purpose. They where created by observing the re-
placements of many homologous protein pairs and while they are
good choices for many purposes they have the drawback that they
cannot always fit the data as well as one might wish.

To get a model that better fits the data one can instead choose
to use data adapted rate matrices. We will do this by using the
BW-method presented in ‘E�cient Methods for Estimating Amino
Acid Replacement Rates’ [3]. We will implement a program utilizing

1

the BW-method which given a multialignment will produce a rate
matrix Q. This gives an easy way to create an adapted model for a
given multialignment to be used in any application in which it might
be needed.

2

2 Problem statement

In this project there will be two main focus points. Implementing
a program using the BW-method [3] with high usability and main-
tainability. And implementing an extension to the program using
bootstrapping.

2.1 Increasing usability and maintainability

The previous program had two parts. Reading and processing the in-
put was done in Perl while the computational part was implemented
in Octave. Although the previous implementation is functional the
code is somewhat complicated and hard to understand. This can be
attributed both to the fact that the codebase is distributed over two
separate program languages, but also due to the fact that Perl has
a hard to follow syntax.

As input the program takes multialignments in one of the three
multialignment text formats Fasta, Phylip or Stockholm. The func-
tionality of reading a text file of one of these formats can now be
found implemented in Python under the open source project BioPy-
thon [6]. By getting this functionality from an external package less
code has to be implemented and maintained.

The computational part of the program can be implemented in
Python using the NumPy library. This allows for the entire program
to be implemented in Python which makes the codebase easier to
understand and maintain.

In its current implementation any modifications to the code require
manual tests to verify that the interface and functionality of the
program is maintained. By adding a test suite these tests can be
automated which makes the program more stable in the face of fu-
ture changes.

3

2.2 Bootstrap extension

A bootstrap extension will also be implemented and evaluated. The
goal of this is to be able to give a metric for how stable the estimated
rate matrix is for a given multialignment.

4

3 Markovian model of evolution

The protein sequences we study all start out as a single protein in
a common ancestor. As part of evolution multiple copies of this
protein can start evolving independently of each other. This can for
example happen in a speciation event where a single species become
two di↵erent species. Our protein then becomes part of two di↵erent
species. This can keep on occuring until we end up with multiple
descendents of our protein in several separate species.

During this time all the proteins keep on evolving independently of
each other. To describe this we will assume a Markovian model of
evolution. One step in this evolution chain happens when an amino
acid in one position of our protein mutates to another amino acid.

3.1 IID and Reversibility

Mutations are assumed to be independent and identically distributed
(IID), meaning that the only thing a↵ecting the probability of what
will happen in a specific position, is the amino acid currently oc-
cupying that position. And that the probability an amino acid will
mutate into another, is the same at all times for all proteins.

In practice when a mutation occurs we cannot distinguish which
protein sequence mutated into which. Therefore the assumption of
reversibility is made. Reversibility says that A has the same odds of
mutating into B, as B has to mutate into A. With this assumption
we are able to make estimations as to how the proteins evolved,
without knowing the direction of evolution.

5

3.2 Probability matrix and PAM-distance

Mathematically we describe mutation probabilities with a 20 ⇥ 20
probability matrix P (t), such that

Pr{amino acid r ! amino acid c} = P (t)r,c (1)

Each position describes the probability that amino acid r, will mu-
tate into amino acid c, over time t.

The unit of t is PAM-distance. One PAM is defined as the amount
of time it takes on average for 1 mutation to occur per 100 amino
acids. Because the same position can mutate several times, one
PAM doesn’t necessarily correspond to one percent of the positions
having mutated.

The PAM-distance between two protein sequences A and B with a
common ancestor C is defined as the distance from C to A, plus the
distance from C to the B.

3.3 The rate matrix and its
mathematical properties

The Markov process is described by the rate matrix Q which is
closely connected to the probability matrix P (t).

The rate matrix Q is a 20⇥ 20 matrix where, with exception for the
diagonal, every element is positive and describes the rate at which
one amino acid mutates into another. The diagonal elements are
equal to the negative sum of the other elements of the row. Thereby
the row sums and also total sum of Q is zero.

The connection between the probability matrix P (t) and rate matrix
Q is given by the Kolmogorov forward equations [9]. We define P 0(t)
as the matrix we get if we take the derivative of every element of
P (t). The Kolmogorov forward equations are a system of di↵erential

6

equations that can be stated as

P 0(t) = P (t)Q (2)

which has the solution

P (t) = P (0)eQt. (3)

If no time has elapsed the probability that an amino acid will be
unchanged is 1. Therefore P (0) is equal to the identity matrix I.
And it follows that

P (t) = eQt (4)

where by defintion

eQt =
1X

n=0

Qn t
n

n!
. (5)

We thus have that the probability matrix P (t) relates to the rate
matrix Q through the matrix exponential

P (t) = eQt =
1X

n=0

Qn t
n

n!
. (6)

If Q has 20 eigenvalues, which will be assumed to be the case, we
can use eigendecomposition to factorize it as

Q = V ⇤V �1. (7)

Here V contain the eigenvectors ofQ in the columns. And ⇤ contains
the eigenvalues of Q on the diagonal. From this it can be shown that
P (t) and Q share eigenvectors independent of t. And also that if � is
an eigenvalue of Q, then e�t is an eigenvalue of P (t). If we have the
eigenvectors and eigenvalues of P (t) we are thereby able to calculate
Q.

7

4 BW method theory

The BW-method [3] is the main method of this text and will be
described in this section. It takes as input a multiple sequence
alignment of protein sequences with a shared ancestor. The pur-
pose of the method is to estimate the rate matrix Q which describe
the underlying Markov process giving rise to the protein sequences.

By using the eigendecomposition of Q the problem of estimating Q
can be broken down into the two separate problems of estimating
its eigenvectors and eigenvalues.

4.1 Estimating eigenvectors

For each of the protein sequence pairs we create a 20 ⇥ 20 count
matrix Ni for a total of k matrices N1, N2, . . . , Nk. Each element
(r, c) of Ni correspond to the number of positions in the protein
sequence pair which mutated from amino acid r into amino acid c.

The protein sequences of count matrix Ni has evolved from a com-
mon ancestral sequence for an unknown time ti. For this time ti
there exists a probability matrix P (ti). It can be shown that not
only does Q share eigenvectors with P (ti) independent of ti, but
Q also share eigenvectors with the sum of the probability matricesPk

i=1 P (ti).

By normalizing the rows of count matrix Ni we get a frequency ma-
trix Fi which approximates the associated probability matrix P (ti).
To use all of the available protein sequence pairs the frequency ma-
trices are summed and normalized.

S =
1

k

kX

i=1

Fi (8)

8

The resulting matrix S share eigenvectors with the probability ma-
trices P (ti) and the rate matrix Q. This gives us the sought after
eigenvectors of the rate matrix.

4.2 Estimating eigenvalues

Finding the eigenvalues of the rate matrix Q turns out to be a harder
problem. If the probability matrix P (t) and divergence time t was
known the eigenvalues could be calculated directly. Unfortunately
protein sequences are often not long enough to enable this to be done
with good accuracy. Instead an approach will be used in which eigen-
values are estimated by clustering protein sequence pairs weighted
for the probability of a given divergence.

First we choose a set of j divergence times ⌧j. The divergences
(5, 10, . . . , 400) where chosen. For each of these divergences we will
make an estimation of the probability matrix P (⌧j). Having prob-
ability matrices with known divergences will let us calculate the
eigenvalues of the associated rate matrix Q.

To start we will assign a weight to the probability that the protein
sequence pairs have a given divergence. Lets say we are interested
in finding out how likely it is that count matrix Ni coming from
protein sequence pair i has divergence ⌧ . Assuming we have a rate
matrix Q we can calculate this probability as

P(Ni|ti = ⌧, Q) =
Y

r,c

prc(⌧)
nrc (9)

with elements prc(t) from P (t) = eQt.

Using this we assign the weight

wQ(Ni, ⌧) =
P(Ni|ti = ⌧, Q)

P(Ni|Q)
(10)

to count matrix Ni for divergence ⌧ .

9

Remember that Fi is the frequency matrix of Ni. And that Fi ap-
proximates P (ti) for the unknown divergence ti. By summing over
the frequency matrices weighted for the probability that they have
the given divergence ⌧ we can find an approximation, P̃ (⌧), of P (⌧).

P̃ (⌧) =

Pk
i=1 FiwQ(Ni, ⌧)Pk
i=1 wQ(Ni, ⌧)

(11)

The nominator weights each frequency matrix according to its prob-
ability to belong to divergence ⌧ . And the denominator scales the
matrix to a probability matrix.

We now have an approximated probability matrix P̃ (⌧) with a known
divergence ⌧ . This allows us solve for the eigenvalues of the rate ma-
trix Q. In this manner we get an approximated probability matrix
P̃ (⌧) for each divergence. Each with its own set of eigenvalues.

It is possible that the divergence ⌧ chosen fits the protein sequence
pairs in form of count matrices Ni very poorly. That is to say that
⌧ deviates a lot from the actual divergence time ti.

To account for the fact that some divergences might fit the data
better than others the eigenvalues are calculated using a weighted
least-square approach. The eigenvalues originating from P̃ (⌧j) are
assigned the weight

!Q(⌧j) =
kX

i=1

wQ(Ni, ⌧j) (12)

The approximated probability matrix for which the divergence is a
poor fit to the data will thus have a small impact on the calculated
eigenvalues, while those that match the data well give a larger con-
tribution. Having both the eigenvectors and eigenvalues of Q, Q
itself can be calculated.

For the first iteration the method requires an initial rate matrix.
For this purpose a simple Poission model proposed in ‘Bishop and
Friday’ [4] was used. The process is then iterated over with the newly
calculated rate matrix Q used for probability calculations. This is

10

repeated until the di↵erence between two successively calculated rate
matrices Q and Q0 is small as measured with the Frobenius norm
|Q � Q0|. At which point the method is finished and the resulting
rate matrix is returned.

11

5 Bootstrap theory

An extension to allow for confidence testing of a provided mulital-
ignment using bootstrapping was implemented. The extension uses
resampling of the multialignment to estimate how good the data is
by measuring the stability of the output.

First the provided multialignment is run through the program to
give an estimate of the rate matrix Q. The multialignment is then
resampled k times, where more resamplings gives a more reliable
result but in turn takes longer to compute. To do a resampling a new
empty multialignment is created. From the original multialignment
a random column is selected and copied to the new multialignment.
This is repeated until the new multialignment contains the same
number of columns as the original one. As no columns are removed
from the original one, the same column can appear several times in
the new one.

The resamplings are then used to calculate k new rate matrices Q0.
From this the mean di↵erence of all the matrices is calculated using
the Frobenius norm as

d =
1

k

X

i

|Q�Q0
i| (13)

To make d easier to work with it is multiplied by a factor of 10 000.
This value is the value returned from the bootstrap extension. And
it is the metric by which it will be evaluated. We will henceforth
refer to it simply as the bootstrap norm.

12

6 Correctness testing methodology

To verify that the implementation was working as intended it was
put through three test cases. There were two purposes to the tests.
The first was to verify that the program was working correctly by
checking that the estimated rate matrix was an estimation of the
actual rate matrix used to generate the multialignments. The second
was to check how the properties of the data used to generate the
mulitialignments e↵ected the performance of the program.

One of the properties that define the protein sequences of a multi-
alignment is the structure of the tree that gives rise to the multialign-
ment. For these tests the creation of every multialignment starts out
with a randomly generated protein sequence. From this sequence,
mutations are introduced and protein sequences are branched o↵ to
make the final multialignment.

The simplest possible tree is a fully balanced one where each branch
is equally long. A tree with these properties was manually con-
structed to be used as a test case. The number of leaf nodes was
arbitrarily chosen to be 32.

For the second test case an unbalanced tree was manually con-
structed. In an unbalanced tree di↵erent leaf nodes has di↵erent
amount of ancestor sequences. We chose to create this tree with
38 leaf nodes. This has the drawback of making the comparisons of
the unbalanced tree and the balanced tree less clear, but with the
benefit of the program being tested on more varied test cases.

The last test case was generated on a manually constructed tree with
only 8 leaf nodes to see how that program worked and evaluate how
it performed on trees of di↵erent sizes. The amount of leaf nodes
was arbitrarily chosen. All the trees used to generate the test data
can be seen in Figure 1.

To create multialignments from the trees a reference matrix Q had
to be used. We chose to use the JTT [2] model. The JTT matrix

13

was created by estimating from large databases of protein sequences.
For our purposes of testing the program any number of well known
rate matrices or even a randomly generated one could have been
used. The JTT matrix was chosen as its a well known and widely
used rate matrix.

To generate data the open source program Seq-Gen [1] which simu-
lates evolution was used. Seq-Gen takes as input the chosen gener-
ative model JTT and a tree. A random start sequence is then gen-
erated using the equilibrium distribution of the given model which
is used to create a multialignment.

For each tree 100 multialignments were generated for protein se-
quence lengths between 400 and 10 000 amino acids.

When a multialignment contains too little data in the form of not
enough amino acid positions it is unable to make an estimation of
the rate matrix Q. It instead exits early with an error message. The
minimum length of 400 amino acids was chosen after initial testing
seemed to indicate that it was near the lower limit for which the
program was reliable able to finish for all trees.

The program was then run on the multialignments. The estimated
rate matrix Q0 was used with the JTT [2] rate matrix Q to calculate
|Q � Q0| for each resampling. The mean and standard deviation of
these norms were calculated. To make the values easier to work with
they were multiplied by a factor 10 000.

14

Balanced tree

Unbalanced tree

Small tree

Figure 1: Trees used to generate test data. The root node to the far left

represents the ancestral protein sequence. This is the protein sequence

from which mutations occur to generate the leaf nodes. Each split in the

tree indicates a protein sequence being duplicated into two child sequences.

The leaf nodes to the far right each represent one protein sequence. The

branch length here depicted as horizontal distance is not to scale.

15

7 Results

The data produced from the tests allowed for the program to be
evaluated with respect to correctness of both the implementation
of the rate matrix approximation as well as the reliability of the
bootstrap norm.

7.1 Program implementation correctness

The result of the correctness testing can be seen in Figure 2. The
left graph shows the mean of the calculated norms and the right the
standard deviation. In all cases the program converges as would be
expected for a working implementation.

The mean and standard deviation is similar for the balanced and un-
balanced tree. The unbalanced tree has more nodes with 38 nodes
versus 32 nodes for the balanced tree. This results in the multi-
alignments of the unbalanced tree having more protein sequences.
Despite this the program gives a better rate matrix estimation for
the balanced tree and with a lower standard deviation for the pro-
duced rate matrices.

In contrast the method performs significantly worse for the small
tree, with the mean di↵erence norm for the longest sequence length
being twice as high as the balanced tree. As the smaller tree has
less data in its multialignment this is a reasonable result.

The standard deviation graph show a correlation similar to that of
the means, with longer sequence lengths having a lower standard
deviation, and the balanced tree performing best followed by the
unbalanced and small tree.

16

Figure 2: Mean and standard deviation of the norm |Q � Q0| of 100

multialignments. Here Q is the actual rate matrix used to generate the

multialignments. And Q0
is the rate matrix estimation of the program.

In all cases the program converges with increasing sequence length.

7.2 Bootstrap

When using bootstrapping it is always preferable to use as many
resamplings as possible to get a reliable and meaningful result. The
constraints are limitations in computational power and time. There-
fore a compromise has to be done between better results and longer
computations.

A test was done to try and evaluate how the number of resamplings
a↵ects the result of the program. To save on computational time
the test was only done on a single multialignment. A random multi-
alignment chosen from the shortest sequences for the small tree was
chosen. By using the multialignment consisting of the least amount
of data, and thereby in some sense the worst multialignment, the
hope is that the result might better reflect a worst-case scenario of
the stability.

17

The multialignment was repeatedly resampled and the bootstrap
norm was calculated and stored. The relative standard deviation of
all the bootstrap norms was calculated every time a new value was
added. When the relative standard deviation changed less then 1
for the last ten values added the final relative standard deviation was
stored.

The test was performed with 10, 20, 40, 80, 160 and 320 resamplings.
As can be seen in Figure 3, over 160 resamplings gave a relative
standard deviation under 2 %. It was decided 200 resamplings gave
an acceptable compromise between stability and calculation time.

Figure 3: Relative standard deviation of the bootstrap norm for a

single multialignment generated from the small tree. Results are for

10, 20, . . . , 320 resamplings. Despite only having six datapoints due to

heavy computational demands the pattern of decreasing relative standard

deviation with increased resampling is clear.

7.2.1 Result and reliability of bootstrap norm

After settling on using 200 resamplings the bootstrap method was
tested on one random multialignment for each length of each tree.

18

The result can be seen in Figure 4. With only one multialignment
used for each datapoint the produced graphs are uneven. The un-
balanced tree even has an increase in bootstrap norm between the
last two datapoints. Despite this the overall pattern of decreasing
norm for the more balanced trees and long sequences is clear.

In an attempt to verify whether the bootstrap norm would give a
reliable result not only for one multialignment but in general more
bootstrap norms were produced and their standard deviation calcu-
lated. Due to the heavy computational demands this was only done
on 4 sequence lengths for each tree with the bootstrap norm be-
ing calculated for 100 multialignments using 200 resamplings. The
graph shows that the standard deviation follows the same pattern
as the bootstrap norm as would be expected if the bootstrap norm
decreases with increasing data.

Figure 4: The left Figure shows the bootstrap norm of a single multi-

alignment for each tree and sequence length. The right Figure shows the

standard deviation of 100 multialignments for each tree and four di↵erent

sequence lengths. In both cases 200 resamplings were used.

19

8 Conclusions

In this project the BW-method was implemented. It was tested for
correctness by generating multialignments with known properties to
allow for comparisons between the produced results and the desired
results. These tests were used as a basis for a test suite which aims
at facilitating further use and development of the software in the
future.

In addition the program was given a functionality extension using
bootstrapping. This aims to produce a metric that can be used
to judge how stable the output of the BW-method is for a given
multialignment. A lower bootstrap norm would indicate a more
stable output.

It was shown that multialignments consisting of more amino acid
positions did produce more stable output and that this correlated
with a lower bootstrap norm. It was also shown that the multi-
alignments from more balanced trees produced more stable output,
which also correlated with a lower bootstrap norm. More research,
including more computational time, would have to be done to fully
verify the implementation and its results.

The program was implemented with the goal of being easy to main-
tain and extend in the future. To achieve this the program was im-
plemented in modules such as the interface, input handling, boot-
strap and estimation module. By having clearly defined modules
with high cohesion and well defined interfaces the coupling of the
program is reduced. Making future changes less likely to have unin-
tended side e↵ects while also making it easier to add on new func-
tionality to the existing codebase.

The test suite was implemented with unit- and integration tests. By
using unit tests the interface of individual modules can automatically
be tested for correctness to verify that changes in the code maintains
the integrity of the module interface.

20

Integration tests allow for the same kind of automated verification
of the functionality of the entire program.

The program in its entirety and its source is available on GitHub [7].
It is also possible to install the program directly through the PyPi [8]
database.

21

References

[1] Rambaut A and Grass N C. Seq-Gen: an application for the
Monte Carlo simulation of DNA sequence evolution along phy-
logenetic trees. Bioinformatics, 13(3):235–238, 1997.

[2] Jones D T, Taylor W R, and Thornton J M. The rapid genera-
tion of mutation data matrices from protein sequences. Bioin-
formatics, 8(3):275–282, 1992.

[3] Arvestad L. E�cient methods for estimating amino acid re-
placement rates. Journal of Molecular Evolution, 62(6):663–
673, 2006.

[4] Bishop M J and Friday AE. Evolutionary trees from nucleic acid
and protein sequences. Proc. R. Soc. Lond. B, 226(1244):271–
302, 1985.

[5] Dayho↵MO. A model of evolutionary change in proteins. Atlas
of Protein Sequence and Structure, 5:89–99, 1972.

[6] Cock P J. A., Antao T, Chang J T., Chapman B A., Cox C J.,
Dalke A, Friedberg I, Hamelryck T, Kau↵ F, Wilczynski B, and
de Hoon M J. L. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinfor-
matics, 25(11):1422–1423, 2009.

[7] Ridderström R. Modelestimator. https://github.com/
RubenRidderstrom/modelestimator-v2, 2018.

[8] Ridderström R. Modelestimator. https://pypi.org/
project/modelestimator-v2/, 2018.

[9] Sheldon M Ross. Introduction to probability models, page 393.
Academic press, 2014.

[10] Heniko↵ S and Heniko↵ J G. Amino acid substitution matrices
from protein blocks. Proceedings of the National Academy of
Sciences, 89(22):10915–10919, 1992.

22

