
 
 

 

 

 

 
 
 
 
 
 
Bachelor’s Thesis in Computer Science  
at Stockholm University, Sweden, 2020  

 

 
 
LHask: A Machine  
Learning DSL in Haskell  

 
Daniel Collin 



 
 

 

 

 

Department of Mathematics 
Stockholm University 
SE-106 91 Stockholm, Sweden 

 

 
 
LHask: A Machine  
Learning DSL in Haskell 

 
Daniel Collin  

 

Bachelor’s Thesis in Computer Science (15 ECTS credits) 
Single Subject Course  
Stockholm University year 2020 
Supervisor at the Department of Mathematics was Lars Arvestad 
Examiner was Erik Palmgren 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract

In this degree project report we describe and implement LHask, a domain-speci�c
language (DSL) for machine learning. The design of LHask is inspired by the idea
of compositional learning algorithms from the category Learn. Using the Acceler-
ate language LHask is capable of training models on both CPU and GPU. Utilizing
dependent types LHask has compile-time checking and deduction of array bounds.
Furthermore, LHask is compared to Google’s machine learning DSL TensorFlow by
evaluating identical models on the problem of classifying handwritten digits from
the MNIST database. LHask proves to be capable of expressing feed-forward neural
networks and achieve accuracy on the MNIST problem similar to that of TensorFlow.
Benchmarking shows that training LHask and TensorFlow on the MNIST data set take
similar amounts of time for the CPU, but also shows that LHask lags behind when it
comes to the GPU.

LHask: Ett domänspeci�kt språk för maskininlärning i
Haskell

Sammanfattning

I denna exjobbsrapport beskriver och implementerar vi LHask, ett domänspeci�kt språk
för maskininlärning i Haskell. LHasks design är inspirerad av den centrala tanken om
sammansättningsbara inlärningsalgoritmer från kategorin Learn. Genom att använda
Accelerate-språket kan LHask träna modeller både på CPU och GPU. Med hjälp av
beroende typer kan LHask vid kompilering härleda och kontrollera uppställningars
längd. För att veri�era implementationen så jämförs LHask med Googles TensorFlow
genom att träna identiska modeller i båda ramverken i att klassi�cera handskrivna
si�ror från databasenMNIST. Det visar sig att LHask kan uttrycka feed-forward neurala
nätverk och uppnå liknande trä�säkerhet som TensorFlow. Jämförelser visar att LHask
och TensorFlow behöver ungefär lika mycket tid för att träna MNIST på CPU, men
visar också att LHask är långsammare än TensorFlow på GPU.
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Chapter 1

Introduction

The last few years have seen machine learning being employed in many di�erent
tasks over the world. As the models that are being trained grow more complex,
there is demand for libraries and programming languages both to include domain-
speci�c constructs like activation functions and di�erentiable programs and general
programming capabilities like data preprocessing, I/O and control �ow. Moreover,
the resulting program needs to be able run on both CPUs and GPUs in order for the
machine learning computations to scale. This need has led to DSLs being developed
speci�cally for machine learning, one example being Google’s TensorFlow [19].

The compositional nature of machine learning as observed by Fong et al. [7] provides a
framework in which machine learning models can be understood as tuples of functions.
Similar notions are explored by Olah [18] in how di�erent machine learning constructs
can be formulated in functional programming.

While functional programming seldom is used for numeric computing, the Accelerate
language [1] equips Haskell with the ability to generate correct and performant numeric
code that can run on many di�erent targets.

We describe and implement the machine learning DSL LHask, written in Haskell and
Accelerate, and use it to classify handwritten digits from theModi�ed National Institute
of Standards and Technology (MNIST) database [14].

As we only cover the minimal amount of building blocks required to train on the
MNIST database using standard methods, LHask is in no way as fully developed in
terms of extent as an established DSL like TensorFlow.
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1.1 Limitations
Comparing performance in terms of speed between DSLs with runtimes separated
from the host language is no easy feat. We only provide rudimentary benchmarks by
measuring the mean of wall clock time it takes to run the respective applications using
the perf program from the Linux kernel. This does of course not only measure the
time it takes to train the models, but also the time it takes to initialize the runtimes.

When comparing the di�erent DSLs in terms of accuracy in training it is a bit simpler.
By ensuring that loss functions and accuracy are computed in the same way mathe-
matically we compare results after a certain amount of passes through the training
data. We expect that a correct implementation of LHask should yield similar results
to TensorFlow, modulo �oating point di�erences and quality of random numbers
generated for initial weights.

1.2 Code
The implementation described in Chapter 3 can be found at https://github.com/vonpost/
LHask.git with instructions for reproducing the training done in Chapter 4.
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Chapter 2

Theory

2.1 Neural networks
Formally speaking a neural network is a weighted digraph describing a function divided
into sub graphs known as layers. The �rst layer is the input layer, the last layer the
output layer and all layers between are known as hidden layers. The width or size of a
layer is the number of vertices in that layer.

As seen in Figure 2.1 each layer is represented by a vertical row of vertices, of which
none are connected to each other. If v0 is a vertex with incoming edges e1...em origi-
nating at vertices v1 . . . vn the value at v0 is given by output of a so called activation
function which has as its input the sum of all incoming edges’ weights multiplied by
the value of the vertex from which the edge originates. Often a bias term, a constant,
is added to each vertex’s value.

An activation function is normally a non-linear, di�erentiable function. This non-
linearity together with a single hidden layer allows for the neural network to ap-
proximate any function ful�lling certain constraints [10]. Some common activation
functions include:

tanh(x) =
ex � e�x
ex + e�x

sigmoid(x) =
1

1+ e�x

1 relu(x) =

8>><>>:
x x � 0
0 x < 0

1Recti�ed linear unit (ReLU) is not di�erentiable at x = 0, but this is not a problem in practice [9].
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We say that a neural network has a fully-connected layer if all vertices in one layer
are connected to all vertices in the subsequent layer. One can easily formulate a fully-
connected neural net in matrix form: f (x) = �(Wx + b) where f (x)j =

P
i wjixi + bj

and � is the activation function.

x1

x2

y

w1

w2

w3

w4

w5

w6

Figure 2.1: Fully-connected neural network representing the function f (x̄) = �2(W2�1(W1x̄ +
b1) + b2)

Neural networks are mainly used for approximating functions, the act of which we
will from here on call learning.

Suppose that we have a function g : Rn ! Rm that we wish to approximate. The
output at the end of a chain of neural network layers f3 � f2 � f1 : Rn! Rm is in the
codomain g(x) by letting the �nal layer be a function f3 : Rk ! Rm that transforms the
output of the previous layers to be in that very codomain. Furthermore, the activation
function of f3 is often chosen such that it models the actual function we wish to
approximate.

For example, one activation function that is often used when trying to classify what
class the input belongs to among k di�erent classes is the softmax function [9]:

softmax : Rk ! Rk

softmax(x)j =
exj

Pk
i e

xi

After applying softmax to some vector x all of its components will be in the range
[0,1]. Furthermore, the sum of all the components will be 1which is why the output of
the softmax function can be interpreted as each component f (x)j being a probability
that the input belonged to the jth class.

2.2 Gradient descent
Gradient descent [9] is an optimization algorithm �nding a minimum of a di�erentiable
function by iteratively taking steps in the opposite direction of its gradient. From
calculus we know that by walking in the opposite direction of a function’s gradient
we should approach a local minimum.
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If f is a neural network, consisting of some layers composed together, we extend our
de�nition in Figure 2.1 to let the function be parametrized by its weights W such
that f : Rk ⇥Rn ! Rm. We then apply an optimizer which, given some training
example of input and output, gives us new weights W 0 2 Rk such that f (W 0 ,x) better
approximates g than f (W,x).

When training neural networks gradient descent is known as stochastic gradient descent
(SGD) [9]. This is because rather than approximating the gradient of the neural network
itself, we approximate the gradient of an error function between the output of a neural
network and the true output using samples from the true distribution. One pass over
the data set is usually referred to as an epoch.

If we de�ne a function h(W,x,y) that in some adequate way, depending on the function
we wish to approximate, measures how well f (W,x) approximates g(x) then SGD is
applied to the function f by taking an ✏-step, usually referred to as the learning rate,
in the opposite direction of the gradient of h with respect to W :

W 0 =W � ✏ ⇤ rWh(W,x,y)

When h(W,x,y) = e(f (W,x), y) the function e : Rn ⇥Rn! R is often referred to as
the error, cost or loss function. Common examples of such functions are:

• mean squared error :

mse(ŷ, y)i =
1
n

nX

i

(ŷi � yi )2

• cross-entropy:

ce(ŷ, y) = �
nX

i

yi ⇤ log(ŷi )

2.2.1 Batch training
When using SGD as the optimizer for a neural network one has to compute the gradient
sample by sample. This can be ine�cient for GPUs and other hardware with a high
level of parallelism.

One way to utilize parallelism when computing the gradient for SGD is by training on
batches [9] which consist of the entire data set. Instead of taking a vector as an input
the neural network now takes a matrix of vectors where either the columns or rows
are all considered as an individual sample.

The matrix notation used in 2.1 for one layer of a fully-connected neural network
when batch training becomes the equally succinct

XW +B

where X and B now are matrices andW is the weight matrix as before.
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When computing the loss of a batch one either calculates the sum or the average across
the batch. This can either be done inside the loss function, or when calculating the
gradient, as sum and average are unchanged under derivation. Taking the average has
the advantage that the loss function is comparable between batch sizes.

However, a high number of samples in a batch can lead to slower convergence [15].
Additionally, GPUs have fairly limited memory compared to the amount of RAM
available to a CPU which means that computing over the entire training set rarely is
feasible. In practice a compromise is often chosen where one trains over mini-batches,
splitting the data set into n into matrices consisting of m training examples. Often m
is chosen to be a power of 2 such as 32 or 64 which tends to improve performance on
GPUs. [9]

2.2.2 Backpropagation
Backpropagation is an algorithm for computing the gradient of an arbitrary composed
function given knowledge of the gradients of its composed parts. When training a
neural network model with SGD, or another similar optimizer which requires gradients,
backpropagation is often used [9].

The backpropagation algorithm is best understood by noticing a fundamental obser-
vation regarding the chain rule: suppose we have some function f (x) = y and some
function g(y) = z and we wish to compute dz/dx, the derivative of a composed func-
tion, the chain rule then tells us that the partial derivative with respect to x is given by
dz/dx = dz/dy · dy/dx. Hence, if we know an expression for dz/dy and dy/dx then
we know dz/dx.

If we construct our functions with building blocks of smaller functions that have
known derivatives, we can always compute the derivative of any composed function
we can come up with. Furthermore, since the composed functions share building
blocks we can reuse many of the expressions computed in the di�erent composed
parts. This allows us to avoid approximation of gradients as well as purely symbolic
derivation, both of which tend to be computationally expensive [9].

2.3 Learn
Suppose we have a learning algorithm that learns how to produce outputs of type B
given inputs of type A. Suppose further that we have another learning algorithm that
produces type C given inputs of type B, would it not be reasonable then to ask what
the composed learning algorithm that produces type C given inputs of type A looks
like? Compositionality tends to be the domain of category theory which in turn has a
tight-knit relationship to Haskell.
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Learn is a monoidal category where objects are sets and morphisms are tuples2 consist-
ing of the following components: a set called the parameter space P , an implementation
function I : P ⇥A! B, an update function U : P ⇥A⇥B! P and a request function
R : P ⇥A⇥B! A. [7]

As Learn is a category we must be able to compose morphisms. Composition of two
morphisms is de�ned by a series of compositional rules for each individual component
in the tuples.

The implementation function I is simply a function parametrized by some parameter
space P . Hence, its compositional rule is simply to apply the composed functions with
their respective parameters:

J � I(q,p,a) := J(q, I(p,a))

The update function, given some some training examples of input/output (a,b) 2 A⇥B
and some parameter p 2 P produces a new parameter p0 2 P , ideally such that I(p0 ,�)
is now closer than I(p,�) to the function it wishes to approximate. As such, the
composed update function has to produce parameters for both parts of the composed
morphism. The request function is used to produce an output example for the update
function of the innermost morphism:

UJ �UI (p,q,a, c) := (UI (p,a,RJ (q, I(p,a), c)),UJ (q, I(p,a), c))

For the request function itself, its compositional rule will propagate the request function
from outer-most composedmorphism to the request function of the innermost function:

RJ �RI (p,q,a, c) := RI (p,a,RJ (q, I(p,a), c))

Since Learn is amonoidal category it is also equippedwith a sort of vertical composition,
the tensor product. Like composition, tensoring is de�ned for each component of the
tensored tuples separately.

1. (P ⌦Q) := (P ⇥Q)

2. (I ⌦ J)(p,q,a,b) := (I(p,a), J(q,b))

3. (UI ⌦UJ )(p,q,a,b, c,d) := (UI (p,a,b),UJ (q,c,d))

4. (RI ⌦RJ )(p,q,a,b, c,d) := (RI (p,a,b),RJ (q,c,d))

The two component morphisms of a tensored morphism in Learn are independent
from each other, as can be seen in the implementation, update and request function
rules for tensoring: to compute one component in their output tuple no knowledge of
the other morphism is needed.

2In order to satisfy certain laws of monoidal categories they are actually equivalence classes of tuples.
However, for the sake of brevity, we will refer to them as tuples.
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We illustrate the parallel nature of tensoring, and the sequential nature of composition,
with string diagrams in Figure 2.2 and Figure 2.3, which describe the �ow of input and
output in morphisms of monoidal categories.

X f g Z

Figure 2.2: String diagram illustrating the morphism g � f : X! Z .

X f Y

Y g Z

Figure 2.3: String diagram illustrating the morphism f ⌦ g : X ⌦Y ! Y ⌦Z .

Since g in Figure 2.2 depends on the output of f , the composed morphism g � f can be
thought of as “�rst f , then g”. In contrast, g in Figure 2.3 is independent of f , hence
the morphism f ⌦ g can be thought of “both f and g”.

Learn is general enough to encompass any learning algorithm from some set A to
some set B. We can de�ne speci�c morphisms in Learn that have SGD as their update
function. There is a functor that, given some learning rate ✏ and error function
e : R! R, takes a parametrized and di�erentiable function I : Rn ⇥Rm! RK to a
morphism in Learn:

UI (p,a,b) := p � ✏rpEI (p,a,b)

EI (p,a,b) :=
X

k

e(Ik(p,a), bk)

RI (p,a,b) := fa(raEI (p,a,b))

fa(x)i :=
⇣@e
@x

(ai ,�)
⌘�1

(x)i

Note that the update function is indeed SGD as described in 2.2.
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2.4 Accelerate Language
The Accelerate language [1, 4, 16, 17] is a DSL in Haskell for computing parallel array
operations. Evaluating a Haskell program written in Accelerate de�nes an expression
which in turn gets evaluated by the Accelerate runtime with the assigned back-end.
By generating intermediate code for the Low Level Virtual Machine (LLVM) compiler
framework Accelerate can retain Haskell’s functional nature while targeting specialized
hardware such as GPUs and multi-core CPUs.

Operating over Accelerate arrays is done with familiar functions such as map, fold
and zipWith. Furthermore, the accelerate-blas package exports Basic Linear Algebra
Subprograms (BLAS) [3, 5] bindings for e�cient matrix multiplications and other
linear algebra operations.

An Accelerate array Array sh e is an array parametrized by a shape sh and e, the
type of its elements. A computation Acc a is a computation with a given Accelerate
back-end which results in a value of type a.

Notably missing from the set of allowable types in an Accelerate array is an array itself,
this means that Accelerate does not allow nested arrays: each parallel computation
itself is sequential and cannot further dispatch other parallel computations.

Composing di�erent functions into a pipeline of operations is a common pattern in
functional programming. However, naively implemented this can create intermediate
data structures. Accelerate will instead attempt to combine operations that work over
entire arrays. Suppose we have the following expression:

map (+ 2) (map (+ 3) (arr :: Acc (Array sh e)))

The map function is a collective operation in Accelerate that applies its argument
function to each element in the array in parallel. When Accelerate during runtime con-
structs an Accelerate expression it will notice that we are computing two expressions
for each element, and optimize into something like:

map (\x -> x+2+3) arr

In this way, Accelerate can compute \x -> x+2+3 for each element in parallel, with
only one traversal of the array. This is what is known as array-fusion [16]. However,
Accelerate will only attempt to fuse operations which dispatch parallel work on the
elements. Consider instead the following expression:

map (+ 2) (fold (+) 0 (arr :: Acc (Array sh e)))

Since the input of map is the resulting array computed by fold, and fold requires all the
elements in the array to compute its result, Accelerate will not fuse these operations
into a single pass over the array.

One peculiarity of utilizing the Accelerate language is the fact that code is being
written in a meta-programming fashion. As such, we have to be careful to not blow
up the expression that Accelerate generates. One example of this is how one naively
might circumvent the fact that Accelerate does not allow nested arrays:
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foldl' (++)

(acc1 :: Acc (Vector Float))

(xs :: [Acc (Vector Float)])

This expression would evaluate to an Accelerate expression which concatenates all
arrays in the list. Accelerate will attempt to optimize the expression with array fusion,
however since the expression grows in size with a magnitude relative to the length of
the list xs so does the optimization time. Hence, it is not desirable to try to avoid the
limitation in this way.

The more Accelerate-friendly way to apply an Accelerate function multiple times is by
using the higher order function run1 :: (Acc a -> Acc b) -> (a -> b). This function
tells Accelerate that the function can be compiled for the target code immediately,
since the only thing that will change is the arguments and not the actual function
body.

In order to use run1 the function it is applied to needs to be from, and to, a single
Accelerate computation. This can easily be remedied by putting multiple arguments
inside a tuple, and then curry the function after applying run1. In the example above
we could use curry $ run1 $ \(a,b) -> a ++ b as the folding function.

2.5 Backprop
Backprop [13] is a library written in Haskell in order to facilitate backpropagation
of arbitrary di�erentiable Haskell functions. Any function that operates over types
which are instances of Backprop can be rewritten as a backpropagatable function. For
a type to be an instance of Backprop it needs to de�ne the following methods:

class Backprop a where

zero :: a -> a

one :: a -> a

add :: a -> a -> a

The method add is to be thought of as adding together contributions of gradients. For
scalar values, they are added with ordinary addition. When the values being added are
containers, such as arrays or lists, they are added element-wise.

The zero method sends a value to its “zero” in the sense that when added to a gradient
it does not change that gradient. For instance, an array gets sent to an array of the
same shape consisting of only zeroes.

Similarly, one sends a value to its “one”, such that the gradient of the function id a = a

is one. For an array this translates to sending the array to an array of the same shape
consisting of only ones.

Suppose then that we have instance Backprop A and instance Backprop B, and fur-
thermore that we wish to rewrite a function f :: A -> B as a backpropagatable func-
tion. Then the resulting type signature of the backpropagatable variant of f will be
f' :: (Reifies z W) => BVar z A -> BVar z B. The constraint Reifies z W can be

10



seen as saying that any BVar z a is part of the same backpropagation algorithm and
thus any common expressions between these can be shared.

We can evaluate the original function with the higher order function:

evalBP :: (BVar z a -> BVar z b) -> a -> b

This function returns the original function f. More importantly, we can ask a function
of its gradient with:

gradBP :: (BVar z a -> BVar z b) -> a -> a

Given f' this function will return the gradient of f'.

Writing a function f' :: (Reifies z W) => BVar z A -> BVar z B requires us to only
write our function in terms of BVar, essentially restricting our building blocks to
functions which are already di�erentiable.

We can also give an explicit de�nition for a speci�c function by lifting it into the
BVar context with the liftOp function. This requires us to formulate a scaled gradient,
something reminiscent of the request function from the category Learn. Recall that
backpropagation works by computing dz/dx = dz/dy · dy/dx, the scaled gradient is
then the function that given dz/dy computes dz/dx. For scalar ✓ = dy/dx this is quite
trivial, of course, since then dz/dx equals dz/dy ·✓.
For more complicated functions de�ning the scaled gradient often includes transform-
ing dz/dy to be of the same type as dy/dx, and then combining them with a suitable
operation. If f is an isomorphism it can also be made backpropagatable by specifying
its inverse using:

isoVar :: (a -> b) -> (b -> a) -> (BVar z a) -> (BVar z b)

2.6 Dependent types in Haskell
Simply speaking dependent types are types that depend on values. Unlike some func-
tional languages, like Idris [11] and Agda [2], Haskell does not have �rst-class depen-
dent types. It is however possible to achieve dependent types in Haskell by means of
type families [6].

Type families are type-level functions, which allow for a sort of dependent types. One
such type family for which the Glasgow Haskell Compiler (GHC) has built-in support is
the KnownNat type family which is used as a constraint for a function to say that some
type-level natural number, a type of kind Nat, is known at compile-time.

For example, suppose that we have a dependently typed list which is indexed by its
length:

newtype DList (n :: Nat) a = DList [a]

It is dependent, because the type of the list depends on the length of the list. As such,
DLists of di�erent lengths are di�erent types.
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We can create a function for constructing a three element DList. Since we know that
the list cannot have any other length than 3, we can at compile-time specify the length
to GHC:

lengthThree :: a -> a -> a -> DList 3 a

lengthThree a1 a2 a3 = DList [a1,a2,a3]

lengthThree 1 2 3 :: DList 3 Integer

GHC supports basic arithmetic expressions for Nat with type-families that put con-
straints in the type signature of functions involving natural number types. For example,
we can de�ne concatenation of two DLists:

concatD :: DList n [a] -> DList m [a] -> DList (n+m) [a]

concatD (DList xs) (DList xs') = DList (xs ++ xs')

concatD (lengthThree 1 2 3) (lengthThree 2 3 4) :: DList 6 Integer

Natural number types can also be re�ected down to values with the function

natVal :: forall n proxy. KnownNat n => proxy n -> Integer

which takes some proxy carrying the type n and re�ects the type of the proxy down to
an Integer with value n. This way we can, for instance, compute the length as a value
at of two DLists:

addLengths :: (KnownNat n,

KnownNat m)

=> DList n [a]

-> DList m [b]

-> Integer

addLengths DList _ Dlist _ = (natVal (undefined :: n))

+ (natVal (undefined :: m))

The fact that we use undefined, which causes the GHC runtime to throw an exception
when evaluated, is of no importance. The only thing that matters for natVal is the
type of undefined, which we have set to be n. GHC will then convert n into its runtime
representation as a value, which is n.

Note that, in contrast to concatD, we have to specify the constraint KnownNat for the
function addLengths. This is because in order to compute the combined length of the
two lists as values from their type-level indexing, we must know at compile-time what
their respective lengths are.
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Chapter 3

Implementation of LHask

Many of our design choices in LHask draw heavily from A Purely Functional Typed
Approach to Trainable Models [12], in which the author describes how to compose
machine learning models using the dependently-typed linear algebra package hmatrix-
static as its linear algebra back-end and backprop for backpropagation. However, one
of the big di�erences from LHask is the fact that hmatrix-static computes values using
the GHC runtime, whereas LHask uses the Accelerate runtime allowing computations
to be run on GPUs.

In LHask we try to capture the compositional nature described in the category Learn,
but for design reasons we use the backprop library for backpropagation which then
replaces the request and update functions.

In A Purely Functional Typed Approach to Trainable Models we have the type:

type Model p a b = forall z. (Reifies z W)

=> BVar z p

-> BVar z a

-> BVar z b

This type actually mirrors that of the morphisms in the category Learn. In LHask we
will call them learners and de�ne them as:

type Learn p a b = forall z. (Reifies z W)

=> BVar z p

-> BVar z a

-> BVar z b

There is an advantage in decoupling the update and request functions from the actual
morphism, namely that the morphisms from Learn are now function types rather than
tuples, allowing us to use the well-developed language support in Haskell for ordinary
functions.
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Since any function f :: BVar z p -> BVar z a -> BVar z a implicitly implements
backpropagation by simply having arguments of the type BVar, the only thing that is
not immediately available in comparison to a morphism in Learn is the update function.
We can recover the update function with gradBP and gradBP2, the ability to ask any
model of its gradient, and device our own update function:

update :: LearningRate

-> ErrorFunction

-> Learn p a b

-> p

-> a

-> b

-> p

update rate e i p a b = p - rate*gradient

where gradient = (gradBP $ \p -> e (i p $ auto a) (auto b))

This is essentially the update from the category Learn achieved by asking the gradient
of some error function e applied to output of some implementation function i, given
some input and output examples (a,b). Naturally, we could extend this example to
implement a variety of di�erent optimizers other than SGD by simply describing their
functions in a similar manner.

3.1 Statically known bounds
We build dependently typed Accelerate arrays by packing them in the following
newtypes:

newtype Dim (n :: Nat) t = Dim t

newtype R n = Dim n (Acc (Vector Float))

newtype L m n = Dim m (Dim n (Acc (Matrix Float)))

newtype SR n = Dim n (Vector Float))

newtype SL m n = Dim m (Dim n (Matrix Float)))

A newtype is mathematically isomorphic to the type it wraps. As such GHC erases
any distinction between a newtype and that which it wraps during compilation, and
hence newtypes carry no performance overhead during runtime.

We de�ne a layer of dimension for each dimension of the array and then �nally pack
it inside a newtype to give concrete type information. So a vector will be packed in a
single Dim whereas a matrix will packed inside a twice nested Dim.

Each dimension is parametrized by n :: Nat, a type-level natural number. A vector of
length 1 and one of length 2 are in LHask of types SR 1 and SR 2, and hence they are
di�erent types. This way we can make sure during compile-time that no operations
are being done with mismatching shapes.

14



Furthermore, we de�ne Num, Fractional and similar arithmetic instances for our de-
pendently typed Accelerate computations allowing us to compute expressions such
as:

exp (1 :: R 1) * (2 :: R 1) :: R 1

log (1 + 2 * 3) :: R 1

All the arithmetic functions have to be de�ned component-wise since, for example,
the signature of multiplication is Num a => a -> a -> a. Because of this, vector and
matrix multiplication does not align with the arithmetic type classes.

We de�ne some type classes to handle conversion between runtime bound-checked
Accelerate computations and arrays and our dependently typed versions to quickly be
able to go between them:

class Packable a where

type Unpack a

pack :: Unpack a -> a

unpack :: a -> Unpack a

class (Packable a,

Packable (Run a),

Arrays (Unpack (Run a)),

Unpack a ~ Acc (Unpack (Run a)))

=> Runable a where

type Run a = result | result -> a

run :: a -> Run a

use :: Run a -> a

instance Packable (R n) where

type Unpack (R n) = Acc (Vector Float)

instance Runable (R n) where

type Run (R n) = SR n

Note that the Unpack type family is not injective since, for instance, (R n) will be taken
to an Acc (Vector a) but since the compile-time information regarding the length of
the vector is lost it is not clear what the other direction would be. This is the intended
behavior, since non-dependently typed Accelerate arrays are considered unsafe in
comparison to the dependently typed ones and lack the su�cient type information
required to determine what the resulting type should be. It is up to the user to guarantee
that the unsafe operation of packing an Accelerate computation is done correctly.

The Run type family on the other hand is injective since if we run it we get a dependently
typed vector. In practice, this means that the compiler can always deduce the type of
Run a, but if Pack a is not clear from the context then we have to annotate manually
what the type should be:

run (R 1) :: SR 1

use (SR 1) :: R 1

15



unpack (R 1) :: Acc (Vector a)

unpack (R 2) :: Acc (Vector a)

pack (Acc (Vector a)) :: ?

We also de�ne the category Learn’s tensor product of objects for our dependently
typed Accelerate computations:

newtype a ⌦ b = Tpl (Acc (Unpack (Run a), Unpack (Run b)))

The tuple type might have a curious de�nition, and indeed if we were to quite literally
implement the tensor product of Learn, which is Cartesian product for objects, the
natural choice would be ordinary tuples. However, (Acc a, Acc b) is not a single
Accelerate computation and as such we cannot use run1. If we instead have tensor to
mean the unpacked types being tupled in the output of an Accelerate computation
then we retain the ability to use run1 on nested tensors.

Using the GHC extension

{-# LANGUAGE PatternSynonyms #-}

we can de�ne patterns for projecting and pattern matching on the respective com-
ponents of a tensor. We do this both for an ordinary tensor and a tensor inside a
BVar:

pattern (:::) :: (Runable a,

Runable b)

=> a

-> b

-> a ⌦ b

pattern (:*:) :: BVar z a

-> BVar z b

-> BVar z (a ⌦ b)

3.2 Learning in LHask
To do training in LHask we will need a few more tools. First of all, we need some way
of gluing together di�erent learners. We can implement composition of learners as it
is described in Section 2.3 with a higher-order function:

(~>) :: Learn p a b

-> Learn q b c

-> Learn (p ⌦ q) a c

(~>) i j (p:*:q) = j q . i p
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Since the composed learner is again a learner it is backpropagatable. We can also
tensor morphisms, as in the category Learn, with the combinator:

(⌦) :: (Learn p a c)

-> (Learn q b d)

-> (Learn (p ⌦ q) (a ⌦ b) (c ⌦ d))

(⌦) i j (p:*:q) (a:*:b) = (i p a):*:(j q b)

However, tensoring in LHask is not quite as useful as composition. Since functions
in Accelerate, like map and fold, already operate over entire arrays it is often more
convenient to de�ne a learner for a single array of some length, than to tensor individual
operations up to that length.

Recall the fully-connected neural network on batches described in Section 2.2.1. To
recreate such a network in LHask we will �rst need backpropagatable matrix multipli-
cation. The Accelerate library accelerate-blas exports BLAS matrix multiplication as
the function:

(<>) :: (Num a)

=> Acc (Matrix a)

-> Acc (Matrix a)

-> Acc (Matrix a)

This function is implemented either using some implementation of BLAS when the
target is a CPU, or using NVIDIA’s cuBLAS library when the target is a NVIDIA GPU.

We can de�ne a backpropagatable, compile-time bound-checked variant of the matrix
multiplication in LHask:

import Data.Array.Accelerate.Numeric.LinearAlgebra as N

(<>) :: (KnownNat m, KnownNat n, KnownNat k, Reifies z W)

=> BVar z (L m n)

-> BVar z (L n k)

-> BVar z (L m k)

(<>) = liftOp2 . op2 $ \(unpack -> m1)

(unpack -> m2) -> (pack $ m1 N.<> m2,

\(unpack -> d)

-> (pack $ d N.<> (transpose m2),

pack $ (transpose m1) N.<> d)

)

The actual function de�nition is clear: suppose that we know the dimensions n,k and
m then we know that the output will be a matrix of type L m k. When it comes to
scaled gradient we are guided by Haskell’s type system and our dependent arrays:
we know from the de�nition of BVar that the type of the scaled gradient function has
to be (L m k) -> (L m n, L m k). We can achieve this function type by multiplying
the incoming gradient D with the transpose of the matrix from the opposite tuple
component such that scaled(X,Y ) = (DYT ,XTD). This is exactly the backpropagated
value of matrix multiplication [8].
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We can then de�ne one layer of a fully-connected neural network as a function, which
given an activation function returns a learner:

fullyConnectedL :: (KnownNat n, KnownNat m, KnownNat k, Reifies z W)

=> (BVar z (L m k) -> BVar z (L m k))

-> Learn ((L n k) ⌦ (L m k)) (L m n) (L m k)

fullyConnectedL act (w :*: b) x =

act $ (x <> w)+b

A fully-connected neural network, considered as a learner in LHask, is simply a
parametrized di�erentiable function of type:

Learn ((L n k) ⌦ (L m k)) (L m n) (L m k)

Its parameter type (L n k) ⌦ (L m k) is a tensor consisting of two components: a
weight matrix of type L n k and a bias matrix L m k.

Formulating the neural network layer as a function, and combiningmultiple layers with
the composition combinator ~>, allows us to easily de�ne a three-layer fully-connected
neural network:

nnet = fullyConnectedL act1 ~>

fullyConnectedL act2 ~>

fullyConnectedL act3

In order to train this neural network we can use run1 to create a function trainOnce

which, given a set of parameters to the neural network and a training example, returns a
new parameter from the Accelerate expression generated by the SGD update-function:

trainOnce = curry $ run1 $ \(p:::(a:::b)) -> update rate errorF nnet p a b

We can then train the network by folding over an entire data set, using trainOnce as
the folding function:

trainedParameters = foldl nnet

initialParameter

(trainingData :: [(Input, Output)])

However, we do not have to restrict ourselves to using foldl to train the neural
network. Instead, we could use the state monad and encode the weight as a state and
use any traversable structure for the data set:

trainedParameters = do

put initialParameter

parameters <- forM trainingData $\sample -> do

p <- get

let p' = trainOnce p sample

put p'

return p'

return $ last parameters
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As such, training the neural network does not require a detailed training procedure
speci�c to LHask. We can utilize the state monad, fold or use any other way of
accumulating a state in Haskell. This highlights that LHask is well-integrated with the
Haskell language: other than actually manipulating the underlying Accelerate arrays,
which requires specialized operations, LHask is able to take advantage of common
Haskell idioms and abstractions.
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Chapter 4

Comparing LHask
with TensorFlow

The neural network trained in this section was a fully-connected layers with hidden
layer size 512 and with output activation function softmax. Learning rate was set to a
constant 0.01.

The MNIST database contains 60,000 training examples, where one training example
consists of a 28⇥ 28 picture of a handwritten digit and a label classifying the picture
as a certain digit.

The loss function that was used was batched cross-entropy, with loss averaged across
each batch:

� 1
m

mX

j

nX

i

correct ⇤ log(predicted)

Cross-entropy is implemented in LHask as:

crossEntropyL :: forall m n z. (KnownNat m, KnownNat n, Reifies z W)

=> BVar z (L m n) -> BVar z (L m n) -> BVar z (R 1)

crossEntropyL x y = (/ m) . negate . sumAllL $ y * (log $ mapB (clipBy 1e-7) x)

where m = fromInteger $ natVal (Proxy @m)

Equivalently for TensorFlow it is implemented as 1:

...

epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)

output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)

return -math_ops.reduce_sum(target * math_ops.log(output), axis)

To avoid numerical instability the predicted array has its components clipped to make
sure that the resulting logarithm is neither too small nor too big.
1https://github.com/tensor�ow/tensor�ow/blob/r1.13/tensor�ow/python/keras/backend.py
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The neural network itself is de�ned in LHask as:

nnet = fullyConnectedL (mapB relu) ~> fullyConnected @512 softMaxL

The TensorFlow code used can be found in Appendix A.

Initial weights for both TensorFlow and LHask were sampled from a uniform distribu-
tion. The training data was not shu�ed between epochs in order to keep comparisons
fair as LHask does not yet have the capability to shu�e data sets.

For measuring the accuracy the following formula was used:

number of correct predictions
number of possible predictions

All benchmarks were run using an Intel i5 6500 CPU and a NVIDIA GTX 1080 GPU
with single-precision �oating-points for calculations.

4.1 Accuracy
The graphs displayed in Figures 4.1 to 4.6 were trained for 10 epochs and all show
similar results for LHask and TensorFlow across all batch sizes.

The largest di�erence can be seen in the loss function on batch size 32 in Figure 4.1
and Figure 4.4 where the loss is slightly higher for TensorFlow compared to LHask. For
batch sizes 64 and 128 the graphs of TensorFlow and LHask are practically identical.
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Figure 4.1: CPU training on MNIST with LHask and TensorFlow with batch size 32 trained.

Figure 4.2: CPU training on MNIST with LHask and TensorFlow with batch size 64 trained.
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Figure 4.3: CPU training on MNIST with LHask and TensorFlow with batch size 128 trained.

Figure 4.4: GPU training on MNIST with LHask and TensorFlow with batch size 32.
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Figure 4.5: GPU training on MNIST with LHask and TensorFlow with batch size 64.

Figure 4.6: GPU training on MNIST with LHask and TensorFlow with batch size 128.
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4.2 Performance
Figure 4.7, 4.8 and 4.9 display the mean time spent by TensorFlow and LHask after
training the neural network from scratch on the MNIST database. The mean time was
averaged over 10 runs.

Additional pro�ling data for the GPU can be found in Appendix B provided byNVIDIA’s
pro�ling tool nvprof. The raw time data used for Figures 4.7 to 4.9 put into tables can
be found in Appendix C.

Figures 4.8 and 4.9 show that TensorFlow with GPU was by far the fastest, with second
place belonging to TensorFlow with CPU in all but batch size 128.

Interestingly in Figure 4.7, which di�ers from the other graphs quite much, TensorFlow
with GPU was the slowest for batch size 128 and the fastest for batch size 32. Instead
in Figure 4.7 LHask with CPU was the fastest, and LHask with GPU the second fastest,
for batch sizes 64 and 128.

Figure 4.7: TensorFlow and LHask running time (seconds) when training MNIST for 1 epoch.
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Figure 4.8: TensorFlow and LHask running time (seconds) when training MNIST for 5 epochs.

Figure 4.9: TensorFlow and LHask running time (seconds) when training MNIST for 10 epochs.
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Chapter 5

Discussion

The fact that LHask achieved almost identical loss and accuracy as that of TensorFlow
for all three batch sizes indicates that LHask is capable of learning MNIST with the
given model to the same degree as TensorFlow can. Furthermore, since nothing in the
implementation is speci�c to MNIST as a data set, it is reasonable to expect this result
to extend to other data sets than MNIST.

Since training was only done with a single model, we cannot generalize and say
that LHask is capable of learning to the same level as TensorFlow for any machine
learning model. LHask as described in Section 3 cannot express more complicated
machine learning models than fully-connected neural networks. If LHask in the future
implements more complicated models it would warrant further testing. That being
said, the results do indicate that backpropagation and SGD work as intended.

Looking at the benchmarks, TensorFlow is quicker than LHask in almost every bench-
mark other than a few batch sizes when running a single training pass. This could
imply that while TensorFlow is faster, LHask is quicker at initializing its runtime
system. Indeed, the entries in Table C.1 reinforce this notion as the LHask entries are
the fastest in relation to TensorFlow when the number of epochs is low.

As for why the GPU implementation of LHask is much slower than that of TensorFlow,
and often slower than the CPU implementation of LHask, we can look to pro�ling. In
the detailed pro�ling output in Section B.1, we can see on line 2 that LHask spends
a majority of the GPU time copying arrays from the GPU to the CPU. The pro�ling
output of TensorFlow in Section B.2 looks more sound in this regard: as indicated by
line 11, only a small amount of time is spent copying arrays from the GPU to the CPU.
Since the only array that has to be copied between batches is the two-element array
containing the loss and accuracy, optimizing the amount of memory transfers could
could prove to be low-hanging fruit for improving LHask’s performance on the GPU.
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5.1 Conclusion
We have seen in Section 3 that LHask is fully capable of expressing basic models such
as fully-connected neural networks. Furthermore, we have in Section 4 veri�ed that
such models are capable of learning at a similar rate to TensorFlow.

LHask still needs some optimization before it can compete with TensorFlow in terms
of performance, but it has no problem arriving at the same loss and accuracy as
TensorFlow after processing the same amount of samples from the data set. Pro�ling
output suggests that redundant data transfers might be a major area to target in
optimizing LHask.
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Appendix A

TensorFlow code

Adapted from the TensorFlow beginner example for training MNIST 1.

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

y_train, y_test =

tf.keras.utils.to_categorical(y_train, 10), tf.keras.utils.to_categorical(y_test, 10)

y_train.shape, y_test.shape

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(512, activation=tf.nn.relu,

kernel_initializer='RandomUniform', bias_initializer='RandomUniform'),

tf.keras.layers.Dense(10, activation=tf.nn.softmax,

kernel_initializer='RandomUniform', bias_initializer='RandomUniform')

])

model.compile(optimizer='sgd',

loss='categorical_crossentropy',

metrics=[tf.keras.metrics.categorical_accuracy])

hist = model.fit(x_train, y_train, epochs=5, batch_size=64, shuffle=False)

1https://www.tensor�ow.org/tutorials
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Appendix B

nvprof output

The pro�ling data in Sections B.1 and B.2 is output from nvprof 1 applied to GPU
training of MNIST with batch size 64 for 5 epochs. DtoH means device-to-host. Some
lines are shortened and marked with [...].

B.1 LHask
1 Type Time(%) Time Calls Avg Min Max Name

2 GPU activities: 67.88% 2.73350s 57004 47.952us 960ns 697.04us [CUDA memcpy DtoH]

3 14.14% 569.38ms 108535 5.2460us 800ns 24.097us generate

4 4.04% 162.73ms 9682 16.807us 12.737us 20.321us sgemm_32x32x32_NN_vec

5 3.00% 120.92ms 35610 3.3950us 832ns 557.96us [CUDA memcpy HtoD]

6 2.78% 111.94ms 19208 5.8270us 2.5920us 12.769us fold

7 2.61% 105.23ms 9682 10.868us 7.3930us 12.513us sgemm_32x32x32_NN

8 2.49% 100.38ms 4685 21.424us 20.417us 22.401us maxwell_sgemm_128x64_nt

9 0.95% 38.205ms 4685 8.1540us 7.6480us 12.736us sgemm_32x32x32_TN

10 0.93% 37.294ms 9682 3.8510us 2.3040us 11.616us foldAllS

11 0.92% 37.198ms 4685 7.9390us 7.6800us 10.592us sgemm_32x32x32_NT

12 0.25% 10.239ms 4689 2.1830us 1.2160us 10.849us map

13 API calls: 35.21% 4.15423s 57004 72.876us 10.396us 38.329ms cuMemcpyDtoHAsync

14 13.19% 1.55661s 2100029 741ns 393ns 964.46us cuStreamQuery

15 12.56% 1.48182s 1056856 1.4020us 178ns 5.3122ms cuEventDestroy

16 11.12% 1.31227s 142114 9.2330us 6.7960us 382.41us cuLaunchKernel

17 8.60% 1.01471s 1318573 769ns 379ns 400.07us cuEventQuery

18 4.56% 538.08ms 1058362 508ns 182ns 393.53us cuEventCreate

19 3.93% 463.23ms 1058362 437ns 245ns 1.4308ms cuEventRecord

20 3.55% 418.94ms 33419 12.535us 9.6980us 356.90us cudaLaunchKernel

21 2.51% 295.68ms 35609 8.3030us 4.7320us 339.90us cuMemcpyHtoDAsync

22 2.37% 279.72ms 1 279.72ms 279.72ms 279.72ms cudaFree

23 1.17% 137.82ms 1 137.82ms 137.82ms 137.82ms cuCtxCreate

1https://developer.nvidia.com/cuda-toolkit
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24 0.64% 75.602ms 3300 22.909us 1.7120us 2.1020ms cuMemAlloc

25 0.22% 26.541ms 45131 588ns 283ns 352.68us cuStreamWaitEvent

26 0.12% 14.339ms 28430 504ns 167ns 351.84us cuCtxPushCurrent

27 0.10% 11.997ms 28431 421ns 219ns 17.612us cuCtxPopCurrent

28 0.07% 7.8654ms 33419 235ns 161ns 14.482us cudaGetLastError

29 0.03% 3.6751ms 185 19.865us 928ns 1.0583ms cuStreamCreate

30 0.02% 2.6122ms 21 124.39us 54.424us 336.64us cuModuleLoadDataEx

31 0.01% 860.32us 146 5.8920us 106ns 244.03us cuDeviceGetAttribute

32 0.01% 770.22us 2 385.11us 297.85us 472.37us cuDeviceTotalMem

33 0.00% 158.51us 148 1.0710us 847ns 3.2540us cuEventSynchronize

34 0.00% 87.709us 2 43.854us 40.887us 46.822us cuDeviceGetName

35 0.00% 55.543us 1 55.543us 55.543us 55.543us cuModuleUnload

36 0.00% 24.059us 155 155ns 124ns 364ns cuFuncGetAttribute

37 0.00% 23.255us 3 7.7510us 3.7600us 12.142us cudaMalloc

38 0.00% 10.447us 31 337ns 139ns 702ns cuModuleGetFunction

39 0.00% 9.6060us 1 9.6060us 9.6060us 9.6060us cudaMemcpy

40 0.00% 7.0910us 16 443ns 355ns 1.2900us cudaEventCreateWithFlags

41 0.00% 4.7640us 1 4.7640us 4.7640us 4.7640us cuDeviceGetPCIBusId

42 0.00% 3.4970us 11 317ns 214ns 812ns cudaDeviceGetAttribute

43 0.00% 2.0380us 4 509ns 202ns 1.1620us cuDeviceGetCount

44 0.00% 1.2160us 3 405ns 240ns 735ns cuDeviceGet

45 0.00% 1.1680us 1 1.1680us 1.1680us 1.1680us cuInit

46 0.00% 1.1150us 1 1.1150us 1.1150us 1.1150us cudaGetDevice

47 0.00% 652ns 1 652ns 652ns 652ns cuCtxSetCacheConfig

48 0.00% 363ns 1 363ns 363ns 363ns cuDriverGetVersion

B.2 TensorFlow
1 Type Time(%) Time Calls Avg Min Max Name

2 GPU activities: 23.38% 374.68ms 28178 13.296us 832ns 590.81us [CUDA memcpy HtoD]

3 8.44% 135.22ms 42210 3.2030us 992ns 26.210us _ZN5Eigen8internal15Eigen [...]

4 6.51% 104.36ms 18760 5.5620us 1.1520us 18.561us _ZN5Eigen8internal15Eigen [...]

5 5.96% 95.525ms 18760 5.0910us 1.1520us 16.640us _ZN5Eigen8internal15Eigen [...]

6 5.77% 92.533ms 4690 19.729us 15.521us 21.281us maxwell_sgemm_128x64_nt

7 5.41% 86.695ms 4690 18.485us 14.401us 19.937us sgemm_32x32x32_NN_vec

8 3.68% 58.970ms 18760 3.1430us 2.0800us 13.153us _ZN5Eigen8internal15Eigen [...]

9 3.48% 55.834ms 4690 11.904us 11.425us 13.633us sgemm_32x32x32_NN

10 2.66% 42.588ms 37520 1.1350us 960ns 13.057us _ZN5Eigen8internal15Eigen [...]

11 2.59% 41.497ms 28150 1.4740us 928ns 39.874us [CUDA memcpy DtoH]

12 2.34% 37.424ms 4690 7.9790us 7.6800us 11.905us sgemm_32x32x32_NT

13 2.18% 34.958ms 9380 3.7260us 2.0480us 24.481us _ZN5Eigen8internal15Eigen [...]

14 2.18% 34.904ms 4690 7.4420us 7.2320us 8.0000us sgemm_32x32x32_TN

15 2.04% 32.684ms 9380 3.4840us 3.1680us 13.537us _ZN10tensorflow95 [...]

16 1.79% 28.637ms 4690 6.1050us 1.3440us 38.242us _ZN5Eigen8internal15Eigen [...]

17 1.53% 24.562ms 18760 1.3090us 992ns 13.569us _ZN10tensorflow7functor15 [...]

18 1.41% 22.598ms 9380 2.4090us 1.3760us 11.393us _ZN5Eigen8internal15Eigen [...]

19 1.32% 21.132ms 14070 1.5010us 1.1520us 12.896us _ZN10tensorflow7functor17 [...]

20 1.25% 20.042ms 14070 1.4240us 1.1840us 12.641us _ZN5Eigen8internal15Eigen [...]

21 1.10% 17.682ms 4690 3.7700us 3.5520us 8.6400us _ZN10tensorflow7functor30 [...]
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22 1.09% 17.391ms 14070 1.2360us 1.0880us 12.737us _ZN5Eigen8internal15Eigen [...]

23 1.05% 16.767ms 14070 1.1910us 992ns 12.832us _ZN5Eigen8internal15Eigen [...]

24 1.03% 16.445ms 9380 1.7530us 1.1210us 11.328us _ZN10tensorflow14BiasNHWC [...]

25 0.86% 13.836ms 4690 2.9500us 2.8480us 10.912us _ZN5Eigen8internal15Eigen [...]

26 0.81% 13.023ms 9380 1.3880us 1.0880us 13.473us _ZN5Eigen8internal15Eigen [...]

27 0.80% 12.813ms 9380 1.3650us 1.1520us 11.297us _ZN5Eigen8internal15Eigen [...]

28 0.75% 11.942ms 4686 2.5480us 2.4000us 12.768us _ZN10tensorflow7functor18 [...]

29 0.66% 10.567ms 4690 2.2530us 2.1440us 12.192us _ZN5Eigen8internal15Eigen [...]

30 0.57% 9.1643ms 4690 1.9540us 1.8880us 12.481us _ZN10tensorflow88_GLOBAL [...]

31 0.57% 9.0707ms 4690 1.9340us 1.8560us 11.232us _ZN5Eigen8internal15Eigen [...]

32 0.56% 8.9482ms 4690 1.9070us 1.8560us 12.576us _ZN10tensorflow7functor15 [...]

33 0.55% 8.7854ms 9381 936ns 864ns 9.5360us [CUDA memset]

34 0.54% 8.5776ms 4690 1.8280us 1.7280us 13.601us _ZN10tensorflow7functor15 [...]

35 0.53% 8.5278ms 4690 1.8180us 1.5680us 12.928us _ZN5Eigen8internal15Eigen [...]

36 0.52% 8.3466ms 4690 1.7790us 1.6640us 12.737us _ZN5Eigen8internal15Eigen [...]

37 0.47% 7.5324ms 4690 1.6060us 1.3760us 8.1920us _ZN5Eigen8internal15Eigen [...]

38 0.45% 7.1840ms 4694 1.5300us 1.1520us 11.264us _ZN5Eigen8internal15Eigen [...]

39 0.45% 7.1443ms 4690 1.5230us 1.4080us 12.929us _ZN5Eigen8internal15Eigen [...]

40 0.45% 7.1358ms 4690 1.5210us 1.3760us 13.025us _ZN5Eigen8internal15Eigen [...]

41 0.42% 6.7617ms 4690 1.4410us 1.3760us 10.912us _ZN5Eigen8internal15Eigen [...]

42 0.41% 6.6046ms 4690 1.4080us 1.3120us 11.680us _ZN5Eigen8internal15Eigen [...]

43 0.37% 5.9988ms 4690 1.2790us 1.1840us 13.377us _ZN5Eigen8internal15Eigen [...]

44 0.37% 5.9562ms 4690 1.2690us 1.2160us 13.217us _ZN5Eigen8internal15Eigen [...]

45 0.36% 5.7932ms 4690 1.2350us 1.1840us 12.705us _ZN5Eigen8internal15Eigen [...]

46 0.35% 5.6259ms 4690 1.1990us 1.1520us 12.513us _ZN5Eigen8internal15Eigen [...]

47 0.00% 26.083us 8 3.2600us 2.8170us 4.6720us _ZN10tensorflow26BiasGrad [...]

48 0.00% 21.953us 4 5.4880us 3.2320us 9.2480us _ZN10tensorflow7functor28 [...]

49 0.00% 9.3760us 4 2.3440us 1.1520us 5.1840us _ZN5Eigen8internal15Eigen [...]

50 0.00% 1.5360us 1 1.5360us 1.5360us 1.5360us [CUDA memcpy DtoD]

51 API calls: 57.02% 5.18110s 389286 13.309us 5.1400us 732.70ms cudaLaunchKernel

52 19.60% 1.78053s 122052 14.588us 272ns 41.742ms cuEventRecord

53 8.85% 804.43ms 28177 28.549us 3.4030us 1.6580ms cuMemcpyHtoDAsync

54 6.07% 551.14ms 28150 19.578us 3.7850us 42.723ms cuMemcpyDtoHAsync

55 3.31% 300.76ms 2 150.38ms 4.0250us 300.76ms cudaFree

56 1.62% 146.85ms 90921 1.6150us 400ns 336.43us cuEventQuery

57 1.51% 137.62ms 1 137.62ms 137.62ms 137.62ms cuDevicePrimaryCtxRetain

58 0.90% 82.223ms 61018 1.3470us 342ns 412.26us cuStreamWaitEvent

59 0.50% 45.496ms 9380 4.8500us 2.8860us 294.64us cuMemsetD32Async

60 0.41% 37.514ms 4702 7.9780us 2.8380us 24.333us cuCtxSynchronize

61 0.07% 5.9449ms 1 5.9449ms 5.9449ms 5.9449ms cuMemAlloc

62 0.05% 4.1529ms 23450 177ns 104ns 13.742us cudaGetLastError

63 0.03% 2.8689ms 6 478.16us 421.57us 529.34us cudaGetDeviceProperties

64 0.02% 1.5267ms 295 5.1750us 106ns 207.13us cuDeviceGetAttribute

65 0.01% 1.2938ms 2 646.92us 630.78us 663.05us cuMemHostAlloc

66 0.01% 1.1951ms 4 298.78us 190.48us 357.12us cuDeviceTotalMem

67 0.00% 300.86us 1 300.86us 300.86us 300.86us cuDeviceGetProperties

68 0.00% 297.73us 11 27.065us 1.0020us 208.94us cuStreamCreate

69 0.00% 278.61us 24 11.608us 228ns 105.16us cuEventCreate

70 0.00% 227.52us 4 56.880us 38.995us 75.003us cuDeviceGetName

71 0.00% 186.99us 1 186.99us 186.99us 186.99us cudaMemcpyAsync
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72 0.00% 175.99us 3 58.664us 3.7230us 162.24us cudaMalloc

73 0.00% 163.09us 2 81.543us 65.705us 97.381us cuMemGetInfo

74 0.00% 44.079us 8 5.5090us 4.8010us 6.5930us cuEventSynchronize

75 0.00% 33.690us 1 33.690us 33.690us 33.690us cuMemsetD32

76 0.00% 27.609us 7 3.9440us 932ns 15.583us cuCtxSetCurrent

77 0.00% 13.580us 1 13.580us 13.580us 13.580us cudaMemcpy

78 0.00% 7.3510us 16 459ns 352ns 1.5740us cudaEventCreateWithFlags

79 0.00% 6.7710us 8 846ns 747ns 1.0190us cuEventElapsedTime

80 0.00% 4.9860us 2 2.4930us 1.1190us 3.8670us cudaGetDevice

81 0.00% 4.8740us 3 1.6240us 1.1890us 2.2670us cuInit

82 0.00% 3.9220us 11 356ns 223ns 970ns cudaDeviceGetAttribute

83 0.00% 3.5740us 11 324ns 129ns 1.2910us cuDeviceGetCount

84 0.00% 3.5360us 5 707ns 248ns 2.1910us cuDeviceGet

85 0.00% 3.3050us 8 413ns 242ns 749ns cuEventDestroy

86 0.00% 2.4680us 4 617ns 166ns 1.3410us cuDriverGetVersion

87 0.00% 1.5540us 2 777ns 310ns 1.2440us cudaSetDevice

88 0.00% 1.3280us 1 1.3280us 1.3280us 1.3280us cuDeviceGetPCIBusId

89 0.00% 1.1010us 1 1.1010us 1.1010us 1.1010us cudaGetDeviceCount

90 0.00% 806ns 1 806ns 806ns 806ns cuDeviceComputeCapability

91 0.00% 695ns 3 231ns 205ns 284ns

92 0.00% 593ns 1 593ns 593ns 593ns cuDevicePrimaryCtxGetState

93 0.00% 250ns 1 250ns 250ns 250ns cuCtxGetCurrent
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Appendix C

Pro�ling data

Table C.1: Mean time (in seconds) of 10 runs with 1 pass over the MNIST dataset

DSL Target Batch size Mean time Std. Dev.

LHask CPU 32 6.68 0.05
TensorFlow CPU 32 6.28 0.00

LHask GPU 32 8.43 0.26
TensorFlow GPU 32 5.90 0.02

LHask CPU 64 3.73 0.01
TensorFlow CPU 64 4.63 0.00

LHask GPU 64 4.59 0.01
TensorFlow GPU 64 4.69 0.00

LHask CPU 128 2.43 0.05
TensorFlow CPU 128 3.79 0.01

LHask GPU 128 2.81 0.01
TensorFlow GPU 128 4.14 0.01
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Table C.2: Mean time (in seconds) of 10 runs with 5 passes over the MNIST dataset

DSL Target Batch size Mean time Std. Dev.

LHask CPU 32 31.39 0.27
TensorFlow CPU 32 23.59 0.04

LHask GPU 32 38.46 0.07
TensorFlow GPU 32 16.07 0.03

LHask CPU 64 17.85 0.11
TensorFlow CPU 64 15.38 0.01

LHask GPU 64 19.69 0.03
TensorFlow GPU 64 10.05 0.01

LHask CPU 128 10.84 0.05
TensorFlow CPU 128 11.27 0.01

LHask GPU 128 10.31 0.05
TensorFlow GPU 128 7.31 0.04

Table C.3: Mean time (in seconds) of 10 runs with 10 passes over the MNIST dataset

DSL Target Batch size Mean time Std. Dev.

LHask CPU 32 63.13 0.40
TensorFlow CPU 32 45.29 0.04

LHask GPU 32 76.88 0.09
TensorFlow GPU 32 28.88 0.09

LHask CPU 64 35.23 0.16
TensorFlow CPU 64 28.87 0.03

LHask GPU 64 38.64 0.05
TensorFlow GPU 64 16.82 0.04

LHask CPU 128 21.40 0.11
TensorFlow CPU 128 20.62 0.02

LHask GPU 128 19.49 0.02
TensorFlow GPU 128 11.18 0.03
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