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Abstract

Phylogenetics is the study of evolutionary relationships and the his-
tory of organisms. A phylogenetic tree is a representation of hy-
pothesized evolutionary relationships. By embedding a phyloge-
netic gene tree into a species tree one creates a reconciliation, to
explain the evolution of the genes using the known species tree.
Most software for simulating gene trees, given a species tree, begins
the simulation at the root of the species tree. However, in nature
it is not always so. We implement non-rooted simulation start in
GenPhyloData and evaluate how capable the JPrIME-DLRS soft-
ware is at inferring and reconciling gene trees generated using non-
rooted start. Features implemented include the explicit selection
of vertex for evolution start, uniform selection of a vertex over the
timespan of the species tree, specification of a timespan over the
species tree to select uniformly from, and the possibility to exclude
the root of the species tree from the possible vertices. We found
that our non-rooted start implementation in GenPhyloData is sound
and that JPrIME-DLRS, in general, performs poorly on non-rooted
start gene trees compared with trees generated using a rooted start.
JPrIME-DLRS also appears incapable of inferring and reconciling
the non-rooted start gene trees. However our implementation can
be used as a reference and for the evaluation of software incorpo-
rating lateral gene transfer events, contributing to more realistic
phylogenetic simulations.



Sammanfattning

Icke-rotad evolutionsstart i GenPhyloData

Fylogeni är läran om organismers evolutionära släktband och his-
toria. Ett fylogenetiskt träd representerar organismers hypotestiska
evolutionära släktband. Genom att bädda in ett fylogenetiskt träd
i ett artträd skapas en rekonsiliering, vars syfte är att förklara
geners evolution med hjälp av det kända artträdet. Det har ob-
serverats att dagens mjukvara för simulering av genträd, givet ett
artträd, börjar simuleringen vid artträdets rot, men det har visat
sig att detta antagande inte alltid gäller i naturen. Vi har imple-
menterat icke-rotad simulering-start i GenPhyloData och utvärderat
hur programmet JPrIME-DLRS klarar av att inferera och rekon-
siliera genträd simulerade med icke-rotad start. Implementerade
funktioner inkluderar: explicit val av nod för evolutionsstart, lik-
formigt val av startnod över artträdets tidsspann, specifiering av
ett tidsspann som startnod väljs ifr̊an och ett val att exkludera
artträdets rotnod fr̊an möjliga startnoder. V̊ara resultat visar att
implementationen av icke-rotad start i GenPhyloData fungerar väl
och att JPrIME-DLRS inte klarar av att inferera eller rekonsiliera
genträd simulerade med icke-rotad start. V̊ar implementation av
icke-rotad start kan användas som referens och för att evaluera
mjukvara som implementerar lateral gen överföring, vilket kan bidra
till mer realistisk fylogenetisk simulering.
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1 Background, Problem and Purpose

Phylogenetics is the study of evolutionary relationships and the his-
tory of organisms. Phylogenetic trees are used to represent the hy-
pothesized evolutionary relationships between organisms. For exam-
ple, a species tree represents the evolutionary relationships between
species, while a gene tree represents the evolutionary relationships
between genes.

While the phylogenetics of species are known in general, the
evolution and relationships of the species genes are not. To explain
the evolution of genes using the known species evolution, reconciled
evolution is used. Reconciled evolution is the embedding of a phy-
logenetic gene tree into a species tree [1]. Figure 1 visualizes one
such embedding, we say that the lineages (edges) of the guest tree
evolves over the lineages of the species tree.

Figure 1: The embedding of a gene tree (guest tree, thin tree) of six genes within

a species tree (host tree, thick tree) of three species. We also say that the gene

tree has evolved over the species tree.

Software is used for the simulation of reconciled evolution. How-
ever, it has been observed that the software always starts the sim-
ulation at the root of the species tree, ignoring that in nature it is
possible for a gene to appear later in the tree and by lateral gene
transfer spread to other branches.
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GenPhyloData [2] is a set of the three tools – HostTreeGen,
GuestTreeGen, and BranchRelaxer, used for the simulation of re-
alistic phylogenetic trees and is a part of the JPrIME [3] software
suite for phylogenetics. HostTreeGen is used for simulating species
trees which can then be used as input for the GuestTreeGen tool.
GuestTreeGen takes a species tree as input and generates a gene
tree evolving over the species tree.

We present a non-rooted start of evolution implementation for
GuestTreeGen. Users of GuestTreeGen can explicitly select evolu-
tion start vertex, randomize the vertex, or select a time interval of
the species tree over which the start will be randomized. With non-
rooted start of evolution in GuestTreeGen users can simulate more
realistic gene trees.

The non-rooted start implementation is then used for evaluating
the JPrIME-DLRS phylogenetic software. We compare how capable
JPrIME-DLRS is at inferring and reconciling gene trees generated
using non-rooted start and rooted start.
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2 Theory

To evaluate our implementation we make full use of the GenPhylo-
Data software suite, the sequence generation software Seq-Gen [4],
the PrIME-DLRS tool, and the visual Markov chain Monte Carlo
(VMCMC) [5] tool. Following is an overview of the tools used and
the theory they are built upon.

2.1 GenPhyloData

The GenPhyloData software suite is available at Github [3]. The
three tools in the GenPhyloData software suite are,

• HostTreeGen,

• GuestTreeGen,

• BranchRelaxer.

2.1.1 HostTreeGen

The HostTreeGen tool uses a birth-death process to generate a bi-
furcating host tree over a specified time interval [2].

The birth-death process is a continuous-time Markov chain that
can transition from state n only to state n � 1 or n + 1 [6]. In a
birth-death process, the time until a transition from state n to state
n + 1 is Exp(�n) distributed, here �n is known as the rate of the
transition. Correspondingly, the time until a transition from state
n to state n � 1 is Exp(µn) distributed. A transition from state n

to n+ 1 known as a ”birth” and to n� 1 as a ”death”.
The host tree generated by HostTreeGen starts as a single lineage

at the specified interval start. A birth event splits the lineage into
two separate child lineages which evolve independently of each other
and all other lineages [2], here each child linage is a new separate
birth-death process. In the event of a death in the birth-death
process for a lineage, the process is stopped, this means that for
a lineage to survive until the interval end there must be no death
events. HostTreeGen use the same rates � and µ for births and
deaths for all lineages, i.e. �i = �j 8i, j and µi = µj 8i, j.

We can view HostTreeGen as a single birth-death process where
being in state n means that there are n active lineages that die and
gives births independently. This means that if there are n active
lineages the rate of a birth event is n ·� and a death event n ·µ, see
Figure 2.
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Figure 2: The number of active lineages during a HostTreeGen run can be seen

as a single birth-death process. The transition rates grow and decline linearly as

each lineage evolves independently of others.

Figure 3: Example of an unpruned tree and its pruned version. HostTreeGen

outputs both the unpruned tree and the pruned, the pruned version of the tree is

created by removing all lineages (edges) with a death event.

Lineages that do not make it to the interval end are pruned away.
Pruning an edge means that it is removed from the tree, see Figure
3 for an example of am unpruned tree and its pruned version. The
output consists of the unpruned tree, the pruned tree, and auxiliary
information files.

2.1.2 GuestTreeGen

The GuestTreeGen tool takes a bifurcating, dated, and clock-like
host tree and generates a dated guest tree over the host tree, us-
ing either the duplication-loss, DL, model or the duplication-loss-
transfer, DLT, model [2].

The DL model (or process) is similar to the birth-death process
of HostTreeGen but also features deterministic duplication events.
It can be described as follows, beginning at the stem of the host
tree S, the DL process starts with a single guest lineage – a guest
lineage is a lineage (edge) over one of the lineages of the host tree.
The DL process takes two parameters, the duplication rate � and the
loss rate µ (just as HostTreeGen takes a speciation and death rate),
starting at the stem the DL process then continues independently
over the edges of S. A duplication event causes the guest lineage to
split into two lineages, both evolving separately and independently
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over the host tree lineages. A loss event causes the process to stop.
A lineage reaching a vertex x of the host tree causes the lineage to
split in two, one evolving over the left child of x and the other over
the right child. When a lineage reaches a leaf of S the process stops.

The DLT model is identical to the DL model except that it also
takes a transfer rate ⌧ , the rate of lateral gene transfer events. A
lateral gene transfer event is when a gene transfers to another species
by means other than reproduction. If a transfer event occurs, the
guest lineage will split in two, one continuing its evolution over
the current host edge, while the other is instantly transferred to
another, uniformly selected, separate edge in S, where it continues
independently.

The output consists of the unpruned and pruned reconciled guest
tree, a file describing its reconciliation with the host tree, and other
auxiliary information files.

2.1.3 BranchRelaxer

The BranchRelaxer tool takes a guest tree and applies a relaxed
evolutionary clock model to it [2]. The guest trees branch lengths
represent the number of substitutions on average until the next spe-
ciation. A substitution is a mutation that changes a base into an-
other, for example ACGT ! ACCT where G was changed into
C.

The molecular clock model is a tool for finding the time of spe-
ciation of two species. For example, given a fixed mutation rate
for nucleotides, one can observe the di↵erences in the two species
DNA and calculate the number of substitutions required to make
them identical. The number of substitutions and their rate is then
used to deduce the speciation time of the two species. The relaxed
molecular clock model does not assume fixed mutation rates over
lineages, instead, the rate can vary.

BranchRelaxer multiplies the edge times of the guest tree to sim-
ulate the relaxed molecular clock model [2]. We use an uncorrelated
iid model, where each edge is given a substitution rate modelled
after an gamma variable – That the model is iid means that the
random variables modelling the substitution rates are independent

and identically distributed ; log-normal and exponential distributions
are also supported.

5



2.2 Seq-Gen

The Seq-Gen tool uses models of substitution processes to simulate
the evolution of nucleotide sequences along a phylogeny [4], for ex-
ample a relaxed guest tree from BranchRelaxer. Seq-Gen traverses
(evolves) over the lineages of the phylogenetic tree using a Markov
chain with transition matrix P , a 4 ⇥ 4 matrix with substitution
probabilities for the four nucleotides (A,C,G,T).

P =

0

BB@

PA,A PA,C PA,G PA,T

PC,A PC,C PC,G PC,T

PG,A PG,C PG,G PG,T

PT,A PT,C PT,G PT,T

1

CCA

At each substitution site with state i, P is used to simulate a
substitution Pi,j – a substitution from i to j.

We use the Hasegawa, Kishino, and Yano (HKY) model [7]. The
HKY model assumes that evolution is identical and independent at
each substitution site and along all lineages. HKY also allows the
four nucleotides to have varying transition probabilities [4]. The
output consists of the simulated multiple sequence alignment.

2.3 Markov Chain Monte Carlo

and the Metropolis-Hastings Algorithm

For many problems and applications one wants to sample some prob-
ability distribution. However, it is often very di�cult to sample
directly from the distribution, especially in higher dimensions.

Markov chain Monte Carlo (MCMC) is a set of techniques for
sampling from such di�cult distributions using Markov chains [8].

The main idea of MCMC is to construct a Markov chain whose
stationary distribution equals the one from which we want to sample.
By simulating this Markov chain it can then be used to estimate the
stationary distribution. The Metropolis-Hastings algorithm is one
technique used for generating a Markov chain with the required
characteristics.

The generated Markov chain, with transition probabilities Pi,j

needs to be ergodic and time reversible [6].
That a Markov chain is ergodic means that it is irreducible and

aperiodic. In an irreducible Markov chain each state is reachable
from every other state. A state is said to have period d � 1 if
P

n
i,i = 0, 8n 6= d, i.e. the probability to return to state i in n steps

is positive only if n is divisible by d, if d = 1 then the state is said
to be aperiodic. A Markov chain is said to be aperiodic if all states
are aperiodic.

6



Given an ergodic Markov chain with transition probabilities Pi,j

and stationary probabilities ⇡i. The Markov chain is said to be time
reversible if

⇡iPi,j = ⇡jPj,i.

The goal of the Metropolis-Hastings algorithm is to generate a
time reversible Markov chain with stationary probabilities,

⇡(j) =
b(j)

B
, j = 1, 2, 3, ...

where B =
P

j b(j). It is the normalization denominator B that is
often di�cult to calculate directly. With the Metropolis-Hastings
algorithm we avoid it by the following construction.

Let Q be any specified irreducible Markov chain transition prob-
ability matrix. Let {Xn, n � 0} be a Markov chain such that when
Xn = i generate a random variable Y , known as the candidate state,
with P (Y = j|Xn = i) = Qi,j , j = 1, 2, .... The distribution from
which the candidate state is generated from is known as the proposal
distribution. If Y = j set

Xn+1 =

(
j with probability ↵(i, j),

i with probability 1� ↵(i, j).

↵(i, j) is known as the acceptance probability, as ↵(i, j) decides if
we should accept the transition to state j from i. This is a Markov
chain with transition probabilities Pi,j ,

Pi,j =

(
Qi,j↵(i, j), j 6= i,

Qi,i +
P

k 6=iQi,k(1� ↵(i, k)).

The generated Markov chain is time reversible with the wanted
stationary probabilities ⇡(j) if ⇡(i)Pi,j = ⇡(j)Pj,i, j 6= i. Insert
Pi,j = Qi,j↵(i, j) such that,

⇡(i)Qi,j↵(i, j) = ⇡(j)Qj,i↵(j, i). (1)

We can now choose the acceptance probability ↵(i, j) as

↵(i, j) = min

✓
⇡(j)Qj,i

⇡(i)Qi,j
, 1

◆

for which both values (1) holds and shows that the generated Markov
chain is time reversible and that the stationary probabilities ⇡(j)
exists. Remember that since ⇡(j) = b(j)/B we get that

↵(i, j) = min

✓
b(j)Qj,i

b(i)Qi,j
, 1

◆
.
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B =
P

j b(j) is therefore not needed to define the generated Markov
chain. Also, note that if the proposal distribution Q is symmetric,
i.e. Qi,j = Qj,i, then the acceptance probability becomes,

↵(i, j) = min

✓
b(j)

b(i)
, 1

◆
.

This mean that if b(j) � b(i) the chain will transition to state j.
Algorithm 1 shows the psuedocode for the Metropolis-Hastings al-
gorithm as presented by Chib and Greenberg (1995) [8].

Algorithm 1 The Metropolis-Hastings algorithm.
1: let x0 be the starting state and m the number of iterations.
2: for i = 0, 1, ...,m� 1 do

3: Generate candidate state y from the proposal distribution
Qxi,y

4: ↵(xi, y) = min

⇣
⇡(y)Qy,xi
⇡(xi)Qxi,y

, 1
⌘

5: Generate random number z uniformly over [0, 1]
6: if ↵(xi, y) � z then

7: xi+1 = y

8: else

9: xi+1 = xi

10: end if

11: end for

12: return {x0, x1, .., xm}

How to choose the proposal distribution depends on the appli-
cation and is often not trivial. One factor to consider is the tail of
the proposal distribution, with a large tail a larger spread of states
are more likely to be proposed and thus more of the state space is
possible explored, however too large of a tail and many very un-
likely (maybe even impossible) states may be proposed which are
then rejected (due to very low acceptance probability) making the
Markov chain stay in the same state and thus does not explore the
state space.

In Algorithm 1 all visited states are returned, this is known as the
MCMC trace. However, in practice, often only every i

0
th, i 2 Z

+

visited state is returned. This is mainly due to two reasons: 1) if
we run the algorithm 106 iterations the full trace gives 106 samples,
this amount of data can make the post-processing of the trace very
slow or infeasible. 2) In the full trace each state is dependent on the
previous state due to the algorithm traversing a Markov chain, by
not sampling two following states we may reduce the dependency of
the included states in the trace.
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2.4 Duplication, Loss, Rates

and Sequence Evolution – DLRS

We evaluate how capable the JPrIME-DLRS [9] software is at infer-
ring and reconciling gene trees generated using non-rooted start.

DLRS is a probabilistic model for duplication events, loss events,
rate heterogeneity, and sequence evolution and takes a species tree
S, multiple sequence alignment D, and a relaxed gene tree G as
input.

Let r(e), `(e) and t(e) be functions for edge specific rate, length
and time for each edge e in G, and ⇥ the di↵erent model parame-
ters, for example µ and � in the DL model, note that r(e) = `(e)

t(e) .
JPrIME-DLRS then uses a MCMC framework to approximate the
posterior probability (2) of the gene tree G, `, and ⇥ given D, S,
and t,

p(G, `,⇥|D,S, t) =
p(G, `,⇥, D, S, t)

P (D,S, t)

=
p(D,G, `|⇥, S, t)p(⇥, S, t)

P (D|S, t)P (S, t)

=
P (D|G, `,⇥, S, t)p(G, `|⇥, S, t)p(⇥|S, t)P (S, t)

P (D|S, t)P (S, t)

=
P (D|G, `)p(G, `|⇥, S, t)p(⇥)

P (D|S, t) . (2)

Here, the model parameters ⇥ are independent of S and t, and D

is decided exactly given G and `.
JPrIME-DLRS use the Metropolis-Hastings algorithm to gener-

ate a Markov chain with states consisting of guest trees G, edge
lengths `, and the model parameters ⇥ which are all assigned uni-
form prior distributions [10]. When a candidate state is to be pro-
posed, only one of the state parameters {G, `,⇥} (and only one of
the parameters in ⇥) is updated, let {G0

, `
0
,⇥0} denote the updated

state parameters, all of the parameters have the same probability of
being updated. This means that the proposal distribution is sym-
metric and the acceptance probability is thus decided by the ratio
of the probability density for the candidate state p(G0

, `
0
,⇥0|D,S, t)

and the current p(G, `,⇥|D,S, t) [11].
JPrIME-DLRS also supports several di↵erent substitution mod-

els [9]. We use the Jukes and Cantor (JC69) DNA substitution
model [12]. The JC69 model assumes uniform mutation rates and
base frequencies.

Output is the MCMC trace from the posterior distribution (2).
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2.5 VMCMC

The visual Markov chain Monte Carlo (VMCMC) software is used
to analyse phylogenetic MCMC [5].

If the MCMC simulation of the posterior (2) is to be correct,
the Markov process needs to converge to the stationary distribu-
tion ⇡, which it will do in the limit. This means that before the
Markov chain has converged the trace will have a di↵erent distribu-
tion. Removing the first fraction of samples from the trace is known
as burn-in and can make the trace better approximate the posterior.

VMCMC can be used to visualize the trace, parameter estima-
tion, and burn-in estimation. We use VMCMC to visually inspect
the JPrIME-DLRS traces to see after how many samples it appears
that the Markov chain has converged, apply burn-in to the trace,
and to generate trace statistics in the JSON format.

2.6 Robinson-Foulds Distance

The Robinson-Foulds, RF , distance is a metric for labelled phylo-
genetic trees [13]. There are two di↵erent RF distances, one for
rooted trees, and one for unrooted trees. While the trees in this
study are rooted we will use the unrooted RF distance, this is due
to the relatively small size of the trees. For smaller trees the rooted
RF distance may be very large, but since the trees are small the
actual distance between them is small. The unrooted RF distance
will thus provide a more sensible metric for smaller trees.

We will now define the unrooted RF distance. The removal of
any edge in a tree G = (V,E) splits the vertex set V in two disjoint
sets. We denote a split by,

v1v2v3...vk|vk+1...vn where n > k and |V | = n.

Note that v1|v2 is seen as the same split as v2|v1. We say that a
split is trivial if either of the two sets in the split only contains one
leaf.

Let T1 = G(V1, E1) and T2 = G(V2, E2) be two labelled phylo-
genetic trees, and S1, S2 be the set of all possible splits in T1 and
T2. The RF distance is then defined as the sum of unique splits for
both trees,

RF = |S1 \ S2|+ |S2 \ S1|.

Here \ is the set di↵erence operator. For two sets A and B we define
the di↵erence A \B as the set,

A \B = {a; such that a 2 A and a 62 B}.
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I.e. all elements of A that are not in B. And | · | is the cardinality
(number of elements) of a set.

Figure 4: Two trees, T1 and T2, with an unrooted Robinson-Foulds distance of

2.

To illustrate we give an example RF calculation. We calculate
the RF distance between the two trees in Figure 4. Both trees have
the leaf set V = {a, b, c, d, e} and possible non-trivial splits for the
two trees are

T1 splits: S1 = { abc|de, ade|bc}.
T2 splits: S2 = { abc|de, ab|cde}.

We get a RF distance of,

|S1 \ S2|+ |S2 \ S1| = |{ade|bc}|+ |{ab|cde}| = 2.

The maximum RF distance becomes larger the bigger trees are
used. As we generate trees of di↵erent sizes but still want to com-
pare the distance of di↵erent pairs of trees we can normalize the
RF distance. The RF distance is normalized by dividing it by the
maximum possible RF distance for the two trees. The normalized
RF distance takes a value between 0 and 1. A normalized RF dis-
tance of 0 means that the two trees are isomorphic, and 1 that they
are very dissimilar. We use the ETE 3 Toolkit [14] to calculate the
unrooted RF distance between trees present in the JPrIME-DLRS
traces.
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3 Method

The JPrIME github home repository [3] was forked to [15] to avoid
changes to the main branch.

An experiment using JPrIME-DLRS was performed to evaluate
JPrIME-DLRS reconciliation capabilities for non-rooted start. We
used the Snakemake workflow management system [16] to automate
the steps below. All data used in the study, Snakemake files and,
the custom scripts used to parse, plot and, evaluate JSON data are
publicly available at GitHub [17].

A yeast species tree of 11 leaves and one simulated synthetic
species tree generated by HostTreeGen of 5 leaves was used to test
the non-rooted start implementation, see Figure 5.

(a) Host tree for real yeast genomes. (b) Host tree generated with Host-

TreeGen.

Figure 5: Host trees used for generating guest trees with GuestTreeGen and in

JPrIME-DLRS.

The experiment was performed through the following steps:

1. Use GuestTreeGen to generate guest tree G over the host tree
S.

2. Use BranchRelaxer to relax the pruned guest tree G.

3. Use Seq-Gen to simulate sequence data D for the relaxed tree.

4. Use S, pruned G, and D as arguments to JPrIME-DLRS to
generate a MCMC trace.
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5. Use VMCMC to generate JPrIME-DLRS trace statistics in
JSON format.

6. Use custom python scripts [17] to parse, plot and evaluate
JSON data.

The following options were used for the tools required in the
previous study implementation outline.

• HostTreeGen

dup rate=0.4. loss rate=0.1.

• GuestTreeGen

-nonrootrandomstart. -lowertime=0.4. -min 5. -max 15.
dup rate=0.4. loss rate=0.1. trans rate=0.0. For non-root
start yeast trees.

-min 5. -max 15. dup rate=0.4. loss rate=0.1. trans rate=0.0.
For rooted start yeast trees.

-nonrootrandomstart. -min 5. -max 15. dup rate=0.4.
loss rate=0.1. trans rate=0.0. For non-root start synthetic
trees.

-min 5. -max 15. dup rate=0.4. loss rate=0.1. trans rate=0.0.
For rooted start synthetic trees.

• BranchRelaxer

dist=IIDGamma. k=1.5. theta = 0.25.

• Seq-Gen

model=HKY. seq len=1000.

• DLRS

-dmin=15. -dmax=200. -i=1 000 000. -t=100. -sm=JC69.

• VMCMC

-b=2 000. -p. When generating tree statistics.

-b=2 000. -s. When generating inferred duplication rates
statistics.
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3.1 Comparison of Rooted and Non-rooted

Start for JPrIME-DLRS

For both the synthetic and yeast host tree we compare the JPrIME-
DLRS traces for both the non-rooted and rooted start runs. Custom
python scripts [17] are used to generate statistics and figures from
JSON formatted files generated with VMCMC on JPrIME-DLRS
traces.

The non-rooted and rooted start traces for the synthetic and
yeast host tree are compared through visual inspection and a sta-
tistical test. The visual inspection consists of histograms of the
following data:

• Maximum tree posterior probability for each trace.

• Mean duplication rates for each trace.

• Expected normalised Robinson-Foulds distance E(RFnorm(T )).

The expected normalised Robinson-Foulds distance is a way to
evaluate the similarity of the guest trees appearing in a JPrIME-
DLRS posterior to the input guest tree. It is calculated by,

E(RFnorm(T )) =
X

T2Posterior

RFnorm(T )P (T ),

where P (T ) is the probability of T in the posterior and RFnorm(T )
is the normalised RF distance between the tree T 2 Posterior and
the input guest tree.

To supplement the visual inspection of the trace data a Mann-
Whitney-U test is performed to test the Hypothesis (3). The Mann-
Whitney-U test is a non-parametric statistical test used for testing
if observations from two sample groups share the same distribution
[18]. We use a non-parametric test because the data does not seem
to follow a normal distribution.

H0 : Rooted and non-rooted start share the same distribution.

H1 : Rooted and non-rooted start does not share distribution.

(3)

3.2 Study Limitations

The DL model was used in GuestTreeGen for all guest trees used
in the JPrIME-DLRS evaluation. While it would have been more
interesting, from a realistic and applied perspective, to use the
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DLT model and evaluate the JPrIME-DLTRS [19] tool, a part of
JPrIME which incorporates LGT events to JPrIME-DLRS, instead
of JPrIME-DLRS. We were unable to get JPrIME-DLTRS runs to
converge so JPrIME-DLRS was used instead.

3.3 Implementation of Non-rooted Evolution start

The implementation of non-rooted evolution start was done by al-
tering the Java source code of GenPhyloData, the new features are
available at GitHub [15]. Several di↵erent options for the non-root
start are accessible to users through the following command-line
options:

-nonroot <integer>, allows the user to specify a JPrIME ID
over which the host tree edge into a vertex the evolution should
start. JPrIME ID is a label that can be assigned to a vertex in the
extended Newick tree format used by the JPrIME software suite.

-randomstart, a starting edge is chosen by: (i) a time t is
uniformly selected over the dated species tree timespan interval. (ii)
The edge with start vertex closest to t is selected as the simulation
start, the start vertex is the vertex of the edge with the lowest
distance to the root of the tree. (iii) If two or more edges start
vertices have the same distance to t, then the starting edge is selected
at random using a uniform distribution over the edges.

-nonrootrandomstart, identical to -randomstart except that
the stem time of the species tree is excluded from the interval which
t is selected from. The stem time is the time the evolution has
elapsed before reaching the root node. This forces the guest tree to
not start from the root of the host tree.

-uppertime <decimal> and -lowertime <decimal> allows
the user to specify the uniform time interval from which t is selected
from.
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4 Results

We will first demonstrate the non-root start implementation in Gen-
PhyloData and then present the results of the JPrIME-DLRS evalu-
ation. Figure 5 shows the two host trees with their respective branch
lengths used in tests and for the evaluation.

During the evaluation no bugs were encountered when using the
non-root start implementation. Figure 6 shows two example guest
trees generated by GuestTreeGen using the -nonrootrandomstart op-
tion over the two host trees in Figure 5.

(a) Guest tree generated over yeast

genomes host tree.

(b) Guest tree generated over five

leaf host tree.

Figure 6: Two guest trees generated over the host trees in Figure 5 using the

-nonrootrandomstart option for GuestTreeGen.

4.1 JPrIME-DLRS Evaluation

We have explored how capable JPrIME-DLRS is at inferring and
reconciling guest trees generated using non-rooted start. For each
of the two host trees in Figure 5 JPrIME-DLRS was run on
100 guest trees, where half of the guest trees were generated using
non-rooted start. JPrIME-DLRS was run with 106 iterations with
a sample taken every 100th iteration. When generating JSON files
from the MCMC trace with VMCMC a burn-in of 20 % was used,
i.e. the first 2000 samples were removed to allow the Markov chain
to converge. In total, the statistics generated was based on 8000
samples from each trace.

Figure 7 shows the maximum tree posterior probability achieved
by JPrIME-DLRS in each run for both host trees and using rooted
and non-rooted evolution start. JPrIME-DLRS can find a recon-
ciliation of high probability for the rooted start in a majority of
the runs. However, using the non-rooted start guest trees JPrIME-
DLRS becomes significantly less capable of finding a high probability
reconciliation.
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(a) Yeast host tree. Non-rooted

start.

(b) Yeast host tree. Rooted start.

(c) Synthetic host tree. Non-rooted

start.

(d) Synthethic host tree. Rooted

start.

Figure 7: Posterior probabilities of the trees with the maximum probability in the

JPrIME-DLRS posterior for each run. For both rooted and non-root GuestTree-

Gen start. Using both host trees in Figure 5.

Figure 8 shows the inferred mean duplication rates from the
JPrIME-DLRS trace for both host trees. For reference, the dupli-
cation rate used when generating all guest trees was 0.4. JPrIME-
DLRS infers duplication rates close to the used rate for the guest
trees using rooted start, especially for the yeast host tree which dis-
tribution is more concentrated around the known duplication rate.
While for non-rooted guest trees the inferred duplication rates are
not as precise.

Figure 9 shows the expected RFnorm distance for each JPrIME-
DLRS posterior distribution. Both rooted start runs seem to have
similar distributions, with a majority of the runs having an expected
RFnorm distance close to 0. The two non-rooted start runs also
have similar distributions, but with larger expected RFnorm values
present compared to the rooted start posteriors.

To confirm the visual inspection of the results in Figures 7, 8
and 9 we test the hypothesis (3). Rooted and non-rooted start
sharing the same distribution means that JPrIME-DLRS is equally
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(a) Synthetic host tree. Non-rooted

start.

(b) Synthetic host tree. Rooted

start.

(c) Yeast host tree. Non-rooted

start.

(d) Yeast host tree. Rooted start.

Figure 8: Mean duplication rates inferred by DLRS over n=50 runs for each

subplot. For both rooted and non-root GuestTreeGen start. Using both host trees

in Figure 5

capable of inferring rooted and non-rooted start guest trees. We
use the Mann-Whitney-U test to test the hypothesis. Table 1 show
the calculated p-values and that we can dismiss H0 with a strong
statistically significant result for each of the six performed tests. The
results of the tests are in line with the previous visual inspection.
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(a) Synthetic host tree. Non-rooted

start.

(b) Synthetic host tree. Rooted

start.

(c) Yeast host tree. Non-rooted

start.

(d) Yeast host tree. Rooted start.

Figure 9: Expected RFnorm distance from each guest tree genereated by Guest-

TreeGen using both host trees in Figure 5, to each tree in the JPrIME-DLRS

posterior in its corresponding run.

Table 1: Mann-Whitney-U test p-values for the hypothesis (3), rounded to three

digits. The Mann-Whitney-U test was run on data inferred by JPrIME-DLRS.

The tests was done for both the yeast and synthetic samples (rows), and for each

of the three inspected statistics in Figures 7, 8 and 9 (columns). The two datasets

used for each test was the corresponding rooted and non-rooted datasets.

Mean Duplication E(RFnorm) Posterior

Rate Probability

Yeast 0.000 0.000 0.000
Synthetic 0.009 0.000 0.000
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5 Discussion, Conclusions

and Recommendations for Further Study

We start this chapter with a discussion of potential pitfalls when
using the non-rooted start option in GenPhyloData and continue
with a discussion of the JPrIME-DLRS evaluation results.

5.1 Non-Rooted Start Implementation

Even if the non-rooted evolution start implementation in GenPhy-
loData is sound there are some potential problems when using the
feature. The biggest issue is a bias towards selecting a leaf-adjacent
edge. As the generated guest trees are rooted and bifurcating they
contain more leaves than internal nodes. Edges into leaf vertices
can potentially cover a large time span of the species tree, caus-
ing a bias for the simulation to select an edge into a leaf as a
starting point. To counteract the bias we recommend using the
-lowertime < decimal > option to limit the number of possible
leaves to select.

While it was not possible for this study, we recommend using
the non-rooted start option together with lateral gene transfer. As
a reason why say the evolution starts at an edge into a leaf of the
species tree and the minimum amount of leaves is set to five for the
guest tree. Since there are no speciation events during the evolution
the simulation will rely solely on duplication events to generate the
guest tree. There will thus be a clear bias towards lower leaf counts
in the guest tree. However, with lateral gene transfer there can be
LGT events, transferring a gene into another branch where there
might be speciation events, forcing the branch to split and creating
a larger tree.

5.2 JPrIME-DLRS Evaluation

As shown in the Results section, JPrIME-DLRS is in general not ca-
pable of converging to a single reconciled guest tree using non-rooted
start. This can likely be explained by JPrIME-DLRS not support-
ing the DLT model causing us to generate the guest trees without
lateral gene transfer events. As mentioned in the Method section,
a more realistic and applied approach would have been to use rec-
onciliation software supporting the DLT model, such as DLTRS.
However, this does not make our results void, only less interesting
from an applied perspective.

In the non-rooted start case, JPrIME-DLRS does, see Figure 7,
not seem to perform better at converging to a single tree for the
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smaller synthetic host tree compared to the larger yeast tree. This
is slightly surprising as the gene trees generated over the yeast tree
were in general larger than the ones generated over the synthetic
tree, partly to the usage of the -lowertime option. Larger trees mean
a larger number of possible trees for reconciliation. One possible
explanation is that JPrIME-DLRS performs worse the closer to the
leaves the evolution starts. As -lowertime was used for the yeast
tree, less of its guest trees started at its leaves. While there possibly
was a bias towards starting into the leaves for the synthetic guest
trees.

Figure 8 showed that JPrIME-DLRS infers the duplication rate
best for the yeast host tree with rooted start. The inferred duplica-
tion rates are quite poor in other cases, especially for the non-rooted
starts. That the results for the non-rooted start yeast tree are better
than for the synthetic tree is likely due to the larger size of yeast
tree compared with the synthetic tree. Due to the larger size, the
guest trees are generated over a larger number of edges. Since the
evolution over an edge is independent of the evolution over the other
edges there is more data to infer the duplication rate from, which
gives a more accurate estimation. This could also explain the, in
comparison, poor inferred duplication rates for the synthetic rooted
start trees. As the trees are smaller there are fewer edges for the
guest tree to evolve over, resulting in less data to infer from.

As for the non-rooted start trees, the inferred duplication rates
are in general far from the real value. This is not surprising, one
reason being the one discussed above, as the evolution does not
start in the root node the evolution will occur over a smaller tree
and timespan. Another reason is that JPrIME-DLRS infers the
duplication rate using the given host tree, but as the evolution did
not start in the root node there is an incongruence between the
trees.

When it comes to the expected RFnorm distance in Figure 9,
both the non-rooted and rooted start posteriors have a large number
of values close to 0. This is likely due to the size of the trees, as
small trees are by default quite similar. However, as shown by the
Mann-Whitney-U test, there is a statistically significant di↵erence
between the rooted and non-rooted distributions.

From the results of the visual data inspection and the Mann-
Whitney-U tests it is clear that JPrIME-DLRS is more capable of
reconciling guest trees generated using rooted start than non-rooted
start.
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It is not surprising that JPrIME-DLRS performs poorly on non-
rooted start generated guest trees given that JPrIME-DLRS was
designed for reconciliation of rooted start guest trees generated using
the DL model.

5.3 Recommendations for Further Study

For further studies we recommend evaluating reconciliation software
which supports the DLT model using our implementation of non-
rooted evolution start. It would also be interesting to perform the
study with increased computational capabilities as our study was
limited in sample scope due to computational constraints.
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