
Kandidatuppsats i datalogi
Bachelor Thesis in Computer Science

Maximum Matchings in Graph Products

Anna Lindeberg

Handledare: Marc Hellmuth
Examinator: Lars Arvestad

Inlämningsdatum: 27 maj 2021

Sammanfattning

En matchning inom grafteorin är en delmängd av en grafs kanter, sådan att inga
två kanter i matchningen delar någon ändpunkt. En grafs matchningstal definieras
som storleken av den största matchningen i grafen. I denna uppsats behandlas största
matchningar i relation till tre olika grafprodukter, med fokus på den Cartesiska samt
den starka produkten. Vi introducerar faktorinducerade matchningar av en produkt
och visar att de alltid har samma kardinalitet, vilket leder till en undre begränsning av
matchningstalet av en produkt. Detta leder till en karaktärisering av de produkter vars
största matchingar kan erhållas från dess faktorer. De faktorinducerade matchningar-
na är enbart definierade för den Cartesiska och den starka produkten, men en undre
gräns för matchningstalet av en direktprodukt etableras likväl. Slutligen generalise-
ras resultaten för k-matchningar, vilka definieras som kantmängden till en k-reguljär
delgraf av en given graf.

Abstract

A matching of a graph is a subset of vertex-disjoint edges, and a matching is a
maximum matching if there is no matching of greater cardinality. The cardinality
of a maximum matching is called the matching number of the graph. In this thesis,
we investigate the structural properties of maximum matchings with respect to three
graph products. We introduce factor induced matchings of a product and show that
they always have the same cardinality, which implies a lower bound of the matching
number of a product. This results, in particular, in a characterization of maximum
matchings in products that can be derived from their factors. The factor induced
matchings are only defined for the Cartesian and the strong product, nevertheless a
lower bound of the matching number of a direct product is established. As a conse-
quence, we additionally derive a tight lower bound of the matching numbers for all
graphs that contain a Cartesian product as (spanning) subgraph. Lastly, the results
are generalized for k-matchings, defined as the edge set of a k-regular subgraph.

Contents
1 Introduction 1

2 Preliminaries 2
2.1 Basic definitions and properties . 2
2.2 Graph Products . 3
2.3 Matchings . 7

3 Results 10
3.1 Lower bound for Cartesian and strong products 10
3.2 Characterization of some (near-)perfect matchings 13
3.3 Lower bound for direct product . 18

4 Generalization to k-matchings 21

5 Summary and outlook 27
5.1 Is there a relation between mk(G□H) and mk(G⊠H)? 27
5.2 Claw-free graphs . 27
5.3 When is uk(G ⋆ H) = uk(G)uk(H)? . 28
5.4 What algorithmic applications could future results and ours have? 30

References 32

1 Introduction
A common problem in graph theory is the study of graph invariants, that is, structural
properites of the underlying graphs that can be described in terms of some number. As
virtually any other mathematical object, graphs can be combined with several operations,
and it is of theoretical and practical interest to understand how some given operation
interacts with a specified invariant. This thesis will deal with this kind of problem, where
the graph invariant are the so-called maximum matchings and the operation is graph
products.

We say that we match a vertex of a graph by choosing one of the vertex’s incident
edges. Then a maximum matching of a graph is a selection of edges such that as many
vertices as possible are matched by exactly one edge. In particular, the matching is perfect
if all vertices are matched precisely once. A helpful way to think about it is to see the
existence of an edge in the graph as indication that its endpoints are possible to pair up
in some sense; then a maximum matching may be interpreted as a way to pair up as
many vertices as possible. By way of example, suppose that we have a group of people
that we need to pair up for, say, accommodation in 2-person bedrooms. To respect the
individual wishes we let everyone hand in a list of persons they are willing to share room
with. A suitable model of the problem of finding a way to distribute the group into as few
rooms as possible is then a graph where each vertex represent a person, and two vertices
are connected if the two persons both agree to share a room with the other. A maximal
matching is then a solution to our accommodation problem.

The second component of this thesis are graph products. There are several different
ones –– Cartesian, direct and strong products –– but the underlying idea is the same,
namely that there’ll be a vertex in the product for each pair of vertices from the factors.
Edges in the product are then defined in terms of slightly different conditions. The Carte-
sian and strong products will be the main focus here, for reasons that will be discussed
further on, but the direct product is included briefly as well.

The remainder of this thesis is divided into four sections. In Section 2 we introduce
necessary definitions of graphs, graph products and matchings, as well as one earlier known
characterization of matchings. The first part of Section 3 states and proves a lower bound
of the cardinality of a maximum matching of a Cartesian or strong product of two graphs
which, in turn, provides sufficient conditions for perfect matchings. After this, we find
necessary conditions and discuss maximum matchings in direct products. In Section 4 a
generalization of matchings into k-matchings is made, and corresponding results stated
and proved. The last section contains a summary and outlook.

1

2 Preliminaries
2.1 Basic definitions and properties
We begin with basic definitions of graphs needed throughout the thesis. For further
reference, see e.g. [2], [3] or the first chapter of [5].

Definition 2.1. A simple, undirected graph G consists of a vertex set V and an edge set

E = {{v, u} | v ̸= u, and u, v ∈ V } ,

i.e. E ⊆
(
V
2

)
, where

(
V
2

)
denotes the two-element subsets of V . When not explicitly

defined, we will use V (G) and E(G) to refer to the vertex and edge set of the graph G.
Furthermore, |V (G)| is called the order of G, while |E(G)| is called the size of G.

We will only consider graphs of finite order. It is also worth noting that the definition
above does not allow so-called loops, so edges such as {u, u} are not allowed. No other
types of graphs will be considered, so when G is said to be a graph we always mean a
loop-free, undirected and simple graph of finite order.

Graphs with at least two vertices are called non-trivial, and the graphs with zero or
one vertices are called trivial. Notice that there exists an upper bound to the size m of
a graph G of order n, namely m ≤

(
n
2

)
. The graphs where m =

(
n
2

)
are called complete

graphs, and they are denoted by Kn.

Definition 2.2. Given a graph G = (V,E), the vertices u and v are incident to the edge
{u, v}, and adjacent to each other. Two edges e and f are incident if they share a vertex,
i.e. e∩f ≠ ∅. The degree of a vertex v in V , denoted degG(v) or deg(v), equals the number
of vertices that are adjacent to v. If a vertex has degree zero, it is said to be isolated.

A classical observation in graph theory is the following lemma.

Lemma 2.3 The Handshake Lemma. Let G = (V,E) be a graph. The sum of the degree
of each vertex in G equals twice the size of G, that is∑

v∈V
deg v = 2|E|.

Suppose we are given the two graphs G =
(
{a, b},

{
{a, b}

})
and H =

(
{1, 2},

{
{1, 2}

})
.

Is it true that G = H? Not really, since the vertices are named differently, but they are
still both graphs with two vertices joined by an edge. To address this issue we introduce
the following definition.

Definition 2.4. Given two graphs G and H, a bijective mapping φ : V (G) → V (H) is
called an isomorphism if it satisfies that

{u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(H).

If such an isomorphism exists we say that G and H are isomorphic and denote this by
G ∼= H.

Definition 2.5. If the graph H satisfies that V (H) ⊆ V (G) and E(H) ⊆ E(G) for some
graph G we say that H is a subgraph of G, denoted as H ⊆ G. If H is a subgraph of G
such that V (H) = V (G) we call it a spanning subgraph.

2

When there is no risk of ambiguity we sometimes relax the definition of subgraphs
somewhat, and state that H ⊆ G if there exists a graph K such that K ⊆ G and K ∼= H.

Definition 2.6. Let G = (V,E) be a graph. Given a set of vertices U ⊆ V
we define the vertex-induced subgraph ⟨U⟩G as the subgraph of G with vertex set U
and edge set {{u, v} | {u, v} ∈ E, and u, v ∈ U}. Analogously, if F ⊆ E define the
edge-induced subgraph ⟨F ⟩G as the subgraph of G with edge set F and vertex set
{v | v ∈ V, and ∃e ∈ F : v ∈ e}. If the context is clear and there is no risk of confu-
sion, we call an edge induced and vertex induced subgraph simply an induced subgraph
and write ⟨U⟩ respectively ⟨F ⟩, instead of ⟨U⟩G and ⟨F ⟩G.

Definition 2.7. The path graph Pn = (V,E) is defined with V = {1, 2, . . . , n} and
E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}. Apath P in the graph G is a subgraph of G that
is isomorphic to some Pn. We may identify P by the sequence of distinct vertices in P ,
and write P = v0v1 . . . vn. If P = v0v1 . . . vn, v0 = x and vn = y we call P an x-y-path.

The graph G = (V,E) is said to be connected if there exists a u-v-path between any
pair of distinct vertices u, v ∈ V . If there are at least two distinct vertices where no
such path exist, G is disconnected. If H ⊆ G is connected and there exist no connected
subgraph K such that H ⊊ K (i.e. H is connected and inclusion-maximal) then H is said
to be a component of G. An odd component (even component) is a component where the
order of the subgraph is of odd (even) parity.

The path graph Pn will appear in examples. Two other such graphs are the cycle graph
Cn and the star graph Sn. The former have the vertex set V (Cn) = {1, 2, . . . , n} and the
latter the vertex set V (Sn) = {1, 2, . . . , n, n+ 1}. The edge sets are

E(Cn) = E(Pn) ∪
{
{1, n}

}
and

E(Sn) =
{
{1, 2}, {1, 3}, . . . , {1, n}, {1, n+ 1}

}
.

Before we introduce the more elaborate graph products, we end this subsection with
two other operations on graphs.

Definition 2.8. Given two graphs G and H such that V (G) ∩ V (H) = ∅ we define their
disjoint union G+H as the graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H).

If the vertex sets aren’t disjoint, we may, in practise, find a graph K isomorphic to H
with V (G) ∩ V (K) = ∅ and define G+H as G+K.

Definition 2.9. Given a graph G = (V,E) and a set X ⊆ V we define the graph G−X
as the subgraph induced by the vertex set V \X, that is ⟨V \X⟩G. If X = {v} we simply
write G− v instead.

2.2 Graph Products
As mentioned in the introduction, there are several ways to define the product of two
graphs. For further reference of the results in this section, see for example [5] or [6].

Definition 2.10. Let G and H be graphs of finite order. We define the Cartesian product
G□H, the direct product G×H and the strong product G⊠H as the respective graphs
with the vertex sets

V (G□H) = V (G×H) = V (G⊠H) = {(g, h) | g ∈ V (G), h ∈ V (H)} = V (G)× V (H)

3

Figure 1: Rationale behind the symbols □, × and ⊠.

and the edge sets

E(G□H) =
{
{(g, h), (g, h′)} | {h, h′} ∈ E(H)

}
∪
{
{(g, h), (g′, h)} | {g, g′} ∈ E(G)

}
,

E(G×H) =
{
{(g, h), (g′, h′)} | {h, h′} ∈ E(H) and {g, g′} ∈ E(G)

}
and

E(G⊠H) = E(G□H) ∪ E(G×H).

Observe that the definition imply that |V (G⋆H)| = |V (G)| · |V (H)| for ⋆ ∈ {□,×,⊠},
something we will use without explicit reference throughout this text. As remarked in [5],
the use of the symbols □, × and ⊠ has a clear justification, see Figure 1.

Although the graph products are quite elaborate constructions in comparison to, for
example, multiplication of numbers it still satisfies some of the algebraic properties we are
used to.

Proposition 2.11 [5]. The graph products are commutative and associative up to isomor-
phism. That is, for ⋆ ∈ {□,×,⊠}

G1 ⋆ G2
∼= G2 ⋆ G1, and

(G1 ⋆ G2) ⋆ G3
∼= G1 ⋆ (G2 ⋆ G3) .

Furthermore, they are distributative over disjoint unions, i.e.

G ⋆ (H1 +H2) = G ⋆ H1 +G ⋆ H2.

Proofs of associativity can be found in Proposition 4.1 of [5], whereas commutativity
and distributativity are more or less trivial consequences of the respective definitions. A
short discussion of why this is the case can be found in section 4.2 and sections 5.1–5.3 of
[5].

The associativity allows us to omit the parentheses and write

k

□
i=1

Gi = G1□G2□ . . .□Gk

for the graph with vertex set V (G1)× V (G2)× . . .× V (Gk). The vertices (x1, x2, . . . , xk)
and (y1, y2, . . . , yk) are adjacent in this graph if {xi, yi} ∈ E(Gi) for some i ∈ {1, 2, . . . , k}

4

and xj = yj for all j ∈ {1, 2, . . . , k} \ {i}. Another crucial consequence of the associativity
of the Cartesian product is that we can, in most cases, limit ourselves to studying the
product of exactly two factors. For example, we may write

k

□
i=1

Gi = H □K

for H = G1□G2□ . . .□Gl and K = Gl+1□Gl+2□ . . .□Gk, without loss of generality.
The same arguments can be applied to the other two products.

By definition, the vertex set of the graph G⋆H, with ⋆ ∈ {□,×,⊠}, consists of ordered
tuples, that is if v ∈ V (G ⋆ H) then there exists a g ∈ V (G) and a h ∈ V (H) such that
v = (g, h). We refer to g (h) as the G-coordinate (H-coordinate) of v. Fixing either g or
h, a certain subgraph of G ⋆ H is obtained.

Definition 2.12. Let ⋆ ∈ {□,×,⊠}. Given a vertex v = (g, h) ∈ V (G⋆H), the subgraph

Gv = ⟨{(x, h) | x ∈ V (G)}⟩G⋆H

is called the G-layer through v. Similarly, the subgraph

vH = ⟨{(g, y) | y ∈ V (H)}⟩G⋆H

is called the H-layer through v.

Immediately from this definition it follows that the vertex v = (g, h) is not unique. In
fact, any G-layer is uniquely determined by which vertex h ∈ V (H) is chosen, but not on
g ∈ V (G). For convenience, we thus simplify the notation from Gv to Gh and from vH to
gH. This convenient notation is due to [6], where the term fiber is used synonymously to
the above definition of a layer.

We also note these important properties of the layers in Cartesian and strong products,
for later use.

Lemma 2.13. Consider the graph G ⋆ H, where ⋆ ∈ {□,⊠}.

i) ([5, Sec. 4.3]) Any G-layer is isomorphic to G and any H-layer is isomorphic to H.

ii) Let u and v be vertices of G. The layers uH and vH are disjoint (in respect to both
vertices and edges) if and only if u ̸= v.

iii) Let x and y be vertices of H. The layers Gx and Gy are disjoint (in respect to both
vertices and edges) if and only if x ̸= y.

iv) Fix a G-layer and an H-layer. The edge sets of these layers are disjoint, and there
is a unique vertex v ∈ V (G□H) such that the intersection of the layers’ vertex sets
equals {v}.

Proof of ii) and iii). By definition of H-layers we have V (uH) = {(u, h) | h ∈ V (H)} and
V (vH) = {(v, h) | h ∈ V (H)} which clearly are disjoint if and only if v ̸= u. Since the
vertex sets are disjoint, so are the edge sets. Part iii) is proven analogously.

5

Figure 2: The Cartesian product of two graphs. The factors G and H are depicted
alongside their product, and their corresponding layers are highlighted in red and blue,
respectively.

Proof of iv). Let u ∈ V (G) respectively v ∈ V (H) and consider the layers Gv respectively
uH. By definition

V (Gv) ∩ V (uH) = {(g, v) | g ∈ V (G)} ∩ {(u, h) | h ∈ V (H)} = {(u, v)}.

Since the layers do not share more than one vertex, they have no edges in common.

None of the properties in Lemma 2.13 are true for the direct product G×H simply
because its layers are totally disconnected — that is, each G-layer (H-layer) of G×H
consists of |V (G)| (|V (H)|) isolated vertices (see [5, Sec. 5.3]).

The concept of layers may also be used when drawing the Cartesian product of two
graphs. Draw a copy of G — a G-layer of G□H —for each vertex in H, then connect
corresponding vertices in each layer as edges appear in H. An example of a Cartesian
product and its layers is given in Figure 2. The strong product G⊠H can be drawn in
a similar manner, then adding in the edges from G×H. However, the drawings of direct
and strong products often contain many overlapping edges, resulting in cluttered figures.
For this reason, most of our examples will involve Cartesian products.

Another property that distinguishes the direct product from the strong product is this
theorem.

Theorem 2.14 [5, Cor. 5.3 and Cor. 5.6]. Let ⋆ ∈ {□,⊠}. The graph G⋆H is connected
if and only if both G and H are connected.

Analogously to the case of multiplication of integers we consider prime graphs, that is,
non-trivial graphs (i.e. graphs with at least two vertices) that cannot be represented as
the product of two non-trivial graphs.

6

Theorem 2.15. Let G be a non-trivial graph and let ⋆ ∈ {□,×,⊠}. Then

i) there exists a prime factor decomposition of G in regards to the three products, that
is, G = G1 ⋆ G2 ⋆ . . . ⋆ Gk where the k ∈ Z≥1 factors Gi are prime graphs. It is not
necessarily unique.

ii) If G is connected, then the prime factor decomposition over the Cartesian and strong
product is unique, up to isomorphism and the order of the factors.

iii) The respective prime factorizations can be computed in polynomial time.

The existence of (non-unique) prime factorization for the Cartesian product can be
found in Theorem 6.1 of [5], and the same proof may be repeated for the direct and strong
products. Part ii) is then stated and proved in Theorem 6.6 and Theorem 7.14 of [5]. Note
that the uniqueness is not necessary in regards to the direct product. The algorithms for
computing the respective prime factorizations are discussed at great length in chapters 23
and 24 of [5].

It is clear that the Cartesian and strong products share some characteristics, whereas
the direct product does not. We will rely heavily on Lemma 2.13 in Section 3 and Section 4,
which motivates the main focus of the Cartesian and strong products.

A direct consequence of the respective definitions is that both G□H and G×H are
spanning subgraphs of G⊠H, and E(G□H) ∩ E(G×H) = ∅ for any graphs G and H.
Note that this latter fact is true only since we consider graphs without loops, otherwise
the edge sets may not be disjoint. We will see how this relationship gives us a reason to
still consider the direct product, but first we must introduce the second important concept
of this thesis: the maximum matchings.

2.3 Matchings
We introduced the main idea of a matching in the introduction and now make the formal
definition, as done in [9].

Definition 2.16. A subset of edges M in a graph G is called a matching if no two edges
in M share a common vertex. A vertex v is said to be matched if some edge in M is
incident to v. Similarly, if no edge in M is incident to v, then the vertex is unmatched.

Definition 2.17. Suppose M is a matching in G. M is called a maximum matching if there
are no matchings in G which contain a larger number of edges. The cardinality of such a
matching is called the matching number of G and is denoted by m(G). Furthermore, M is
said to be a perfect matching if each vertex in G is matched by M , and it is a near-perfect
matching if all vertices but one is matched by M . Lastly, define the unmatching number of
the graph G as the number of vertices left unmatched by any maximum matching. Denote
this by u(G).

Note that one should not confuse maximum matchings for maximal matchings, since
the latter refers to inclusion-maximal matchings, which are not necessarily maximum in
terms of cardinality. Observe that maximum matchings does not need to be unique.

Remark 2.18. Only graphs of even order can have a perfect matching. If G satisfies this,
then m(G) = |V (G)|/2. Similarly, a near-perfect matching can only occur in graphs of
odd order, and if such is the case we have that m(G) = (|V (G)| − 1)/2.

7

Figure 3: A perfect matching (A), a matching which is not a maximum matching (B),
a near-perfect matching (C) and a maximum matching in a graph which has no (near-
)perfect matching (D). The graph in A and B has matching number 3 and unmatching
number 0. The graph in C has matching number 2 and unmatching number 1. The graph
in D has matching number 1 and unmatching number 2.

We use the letters m and u to allude to the first letter of ’matching number’ respectively
’unmatching number’. This is not a standard notation, rather [9] use ν(G) for the matching
number of G and introduce what we call the unmatching number as the deficiency of G,
denoted as def(G). Furthermore, they use the following relationship as a definition,
whereas we state it as a lemma.

Lemma 2.19. For all graphs G of order n we have

m(G) =
n− u(G)

2
.

Proof. Put m = m(G) and u = u(G). Let M be a maximum matching of G, i.e. |M | = m .
Observe that each edge in M is incident to two distinct vertices in G, all which are matched
by M . The other vertices are unmatched by M and thus counted in u. Therefore

n = 2|M |+ u =⇒ |M | = m =
n− u

2
.

The definitions above are visualized in Figure 3. Other examples include the path
graph Pn and the cycle graph Cn which have perfect (near-perfect) matchings when n is
even (odd). If n ≥ 3 the star graph Sn have no perfect nor near-perfect matching.

Let us now make a trivial observation.

Observation 2.20. Let H be a subgraph of G. By definition each matching in H is a
matching of G, thus m(G) ≥ m(H).

In particular this means that given the two graphs G and H, we will have that

m(G⊠H) ≥ max
(
m(G□H), m(G×H)

)
.

We will discuss possible use of this relationship in Section 3.3.
The existence of perfect matchings in graphs have a characterization stated and proved

by W. Tutte in [14].

Theorem 2.21 Tutte’s Theorem. Let co(G) denote the number of odd components of the
graph G. G has a perfect matching if and only if co(G− S) ≤ |S|, for all S ⊆ V (G).

8

To show that a graph has a perfect matching we may simply provide one. A clear
advantage of Tutte’s Theorem is that it implies that it is sufficient to give a subset of
vertices S such that the above formula hold, whenever we need to show that a perfect
matching does not exist. Such a set is called a Tutte set. Obviously, Tutte’s Theorem
may be applied directly to the product of two graphs but this gives no direct link to the
factors. Examples of applications of the theorem can be found in Section 3.2, and we will
discuss possible links between Tutte sets in the factors and Tutte sets of their product in
Section 5.3.

Using Tutte’s Theorem or other methods one may obtain a multitude of sufficient con-
ditions for a graph to have a perfect matching. We will not try to include a comprehensive
list of such conditions, but one will be of particular interest later on.

Proposition 2.22 [13, Cor. 2]. If G is a connected graph of even order with no vertex
induced subgraph isomorphic to the star graph S3, then G has a perfect matching.

Sometimes the star graph S3 is called a claw. With that terminology, it is possible
to state the proposition above as ”Every connected, claw-free graph of even order has a
perfect matching”.

Lastly, it is reasonable to at least mention that there exists a polynomial-time algorithm
for finding a maximum matching of a graph. It is called the Blossom algorithm, and its
correctness was proved by J. Edmonds in [4].

9

3 Results
In this section we will explore the possibility of constructing a matching in a graph product
from the maximum matchings of the two factors. The existence of such a construction
implies both a lower bound of the matching number, and sufficient conditions for perfect
and near-perfect matchings of a graph product. We begin with the Cartesian and strong
products in Section 3.1, and continue with the direct product in Section 3.3. In section 3.2
we discuss certain necessary conditions for perfect and near-perfect matchings of Cartesian
and strong products.

3.1 Lower bound for Cartesian and strong products
Lemma 3.1. Let G be a graph of order nG and H be a graph of order nH . Suppose
⋆ ∈ {□,⊠}. Then

m(G ⋆ H) ≥ max
(
m(G)nH + m(H)u(G), m(H)nG + m(G)u(H)

)
.

Proof. We begin by constructing a matching in G ⋆ H with cardinality m(G)nH +
m(H)u(G). Firstly, let MG and MH be maximum matchings of G respectively H. Recall
that |MG| = m(G) and |MH | = m(H). Define, for all h ∈ V (H),

Ah =
{
{(g, h), (g′, h)} | {g, g′} ∈ MG

}
.

By construction, each Ah is a matching of the layer Gh and since the layers are subgraphs
of G ⋆ H, each Ah is a matching of G ⋆ H. As observed in Lemma 2.13 the G-layers are
pairwisely edge-disjoint, i.e. E(Gu) ∩ E(Gv) = ∅ for all u, v ∈ V (H) such that u ̸= v.
Since Au ⊂ E(Gu) and Av ⊂ E(Gv) this means that V (⟨Au⟩G⋆H)∩V (⟨Av⟩G⋆H) = ∅ for all
vertices u ̸= v as well. It is easy to verify that the union of two vertex disjoint matchings
is another matching, and so the set

A =
⋃

h∈V (H)

Ah =
{
{(g, h), (g′, h)} | {g, g′} ∈ MG, h ∈ V (H)

}
is a matching in G ⋆ H. By construction, |Ah| = |MG| for all h ∈ V (H). The latter two
arguments imply

|A| =
∑

h∈V (H)

|Ah| =
nH∑
1

|MG| = nH · |MG| = nHm(G).

Now, let U be the subset of vertices of G that are unmatched by MG, so that |U | =
u(G). Define, for all u ∈ U,

Bu =
{
{(u, h), (u, h′)} | {h, h′} ∈ MH

}
.

Each Bu is a matching of the layer uH, and thus a matching of G ⋆H. As before, the
H-layers are disjoint, implying that the set

B =
⋃
u∈U

Bu =
{
{(u, h), (u, h′)} | u ∈ U, {h, h′} ∈ MH

}

10

Figure 4: A S3-induced matching of S3□C3 with cardinality m(S3)nC3 + m(C3)u(S4) =
1 · 3 + 1 · 2 = 5 (left) and a C3-induced matching of S3□C3 with cardinality m(C3)nS3 +
m(S3)u(C3) = 1 · 4 + 1 · 1 = 5 (right).

is another matching of G ⋆ H. Its cardinality is

|B| =
∑
u∈U

|Bi| =
u(G)∑
1

|MH | = u(G)m(H).

By Lemma 2.13, V (uH)∩V (Gh) = {(u, h)} and E(uH)∩E(Gh) = ∅ for each u ∈ U and
h ∈ V (H). The vertex u in G is unmatched by MG, so the vertex {(u, h)} is unmatched
by A in G⋆H. In extension, this means that there is no edge in A which is incident to an
edge in B. Hence, A ∪B is a matching of G□H of cardinality m(G)nH + m(H)u(G).

By interchanging the roles of MG and MH above we obtain another matching, which
has size m(H)nG + m(G)u(H). A maximum matching in G ⋆ H must contain at least as
many edges as the largest of these two matchings. Hence

m(G ⋆ H) ≥ max (m(G)nH + m(H)u(G), m(H)nG + m(G)u(H)) .

In the proof above we constructed a matching in G⋆H using the maximum matchings
of G and H in two possible ways. One way is to select the edges from each G-layer
corresponding to the edges of the matching of the factor G and the edges from the H-
layers with a G-coordinate which is not matched by the matching of G. The other option
is to start with the H-layers, and then choose edges from the G-layers with a H-coordinate
which is not matched by the maximum matching of H. We will refer to the respective
construction as a G-induced matching of G ⋆ H respectively an H-induced matching of
G ⋆ H. An example is clarifying; consider the product S3□C3 in Figure 4 where both
the G-induced matching and the H-induced matching is highlighted. Notice that these
matchings have the same cardinality and somewhat surprisingly, this is always the case.

Proposition 3.2. Let G be a graph of order nG and H be a graph of order nH . Then

m(G)nH + m(H)u(G) = m(H)nG + m(G)u(H) =
nGnH − u(G)u(H)

2
.

11

Proof. By Lemma 2.19

m(G) =
nG − u(G)

2
and m(H) =

nH − u(H)

2
.

Thus, we obtain

m(G)nH + m(H)u(G) =
nG − u(G)

2
· nH +

nH − u(H)

2
· u(G)

=
1

2
(nGnH − u(G)nH + nHu(G)− u(H)u(G))

=
1

2
(nGnH − u(H)u(G)) .

Similarly,
m(H)nG + m(G)u(H) =

1

2
(nHnG − u(H)u(G)) ,

and the result follows.

Since any G- and H-induced matchings of G ⋆H are equally large, we allow ourselves
to refer to any such matching as a factor induced matching of G ⋆ H. These matchings
trivially bound the matching number of a product from below.

Corollary 3.2.1. Let G be a graph of order nG and H be a graph of order nH . Suppose
⋆ ∈ {□,⊠}. Then

m(G ⋆ H) ≥ nGnH − u(G)u(H)

2
.

Proof. This is an immediate consequence of Lemma 3.1 and Proposition 3.2.

The upper bound of the matching number trivially depend on the number of vertices
of the product, as seen in Remark 2.18. Thus

nGnH − u(G)u(H)

2
≤ m(G ⋆ H) ≤ nGnH

2

if the order of G ⋆ H is even, and

nGnH − u(G)u(H)

2
≤ m(G ⋆ H) ≤ nGnH − 1

2

if the order of G ⋆ H is odd.

Corollary 3.2.2. Let G and H be graphs and suppose ⋆ ∈ {□,⊠}. Then

u(G ⋆ H) ≤ u(G)u(H).

Proof. By Lemma 2.19

m(G ⋆ H) =
nG⋆H − u(G ⋆ H)

2
=

nGnH − u(G ⋆ H)

2
.

Inserting this in the inequality from Corollary 3.2.1 we obtain

nGnH − u(G ⋆ H)

2
≥ nGnH − u(G)u(H)

2
⇐⇒ u(G ⋆ H) ≤ u(G)u(H).

12

In [6] the kind of relationship occurring in Corollary 3.2.2 is called submultiplicative.
Corollary 3.2.1 also imply the next two propositions, stated and proved in [12], but

only in the context of Cartesian products. We state them here and show alternative and
simplified proofs.

Proposition 3.3 [12, Lemma 7.]. Suppose ⋆ ∈ {□,⊠}. If G has a perfect matching, then
G ⋆ H has a perfect matching for all graphs H.

Proof. If G has a perfect matching, then u(G) = 0. Thus Corollary 3.2.1 imply that
m(G⋆H) ≥ (nGnH −0 ·u(H))/2 = nGnH/2 = nG⋆H/2, the size of a perfect matching.

Proposition 3.4 [12, Prop. 17.]. Suppose ⋆ ∈ {□,⊠}. If both G and H have near-perfect
matchings, then G ⋆ H has a near-perfect matching.

Proof. If both G and H have near-perfect matchings, then u(G) = u(H) = 1, and Corol-
lary 3.2.1 imply that m(G⋆H) ≥ (nGnH − 1)/2 = (nG⋆H − 1)/2, the size of a near-perfect
matching.

3.2 Characterization of some (near-)perfect matchings
In Section 3.1 we obtained sufficient conditions for (near-)perfect matchings in a Cartesian
or strong product. We will now find necessary conditions for a subset of Cartesian and
strong products, and thus characterizations of certain (near-)perfect matchings.

Theorem 3.5. Let ⋆ ∈ {□,⊠}. G or H has a perfect matching if and only if G ⋆ H has
a perfect matching and u(G ⋆ H) = u(G)u(H).

Proof. By commutativity, we may assume that G has a perfect matching without loss of
generality, and so u(G) = 0. By Proposition 3.3 there exists a perfect matching of G ⋆H,
and thus u(G ⋆ H) = 0. Hence

u(G ⋆ H) = 0 = 0 · u(H) = u(G)u(H).

For the converse, assume G⋆H has a perfect matching and that u(G⋆H) = u(G)u(H).
By assumption u(G⋆H) = 0, and so u(G)u(H) = 0. This means at least one of G and H
has a maximum matching with no unmatched vertices, that is, a perfect matching.

Theorem 3.6. Let ⋆ ∈ {□,⊠}. G and H have near-perfect matchings if and only if G⋆H
has a near-perfect matching and u(G ⋆ H) = u(G)u(H).

Proof. Assume G and H have near-perfect matchings, so u(G) = u(H) = 1. By
Proposition 3.4, G ⋆ H has a near-perfect matching, and thus u(G ⋆ H) = 1. Hence
u(G ⋆ H) = u(G)u(H).

Conversely, assume G⋆H has a near-perfect matching and u(G⋆H) = u(G)u(H). Thus,
u(G)u(H) = 1. Recall that the unmatching number is always a non-negative integer and
so u(G) = 1 and u(H) = 1, i.e. both G and H have near-perfect matchings.

It is not possible to omit the condition u(G⋆H) = u(G)u(H). We emphasize this with
a couple of examples.

13

Figure 5: The graph G□G and its perfect matching highlighted in red. The two factors
G, drawn to the left and below of G□G, has no perfect matching.

Example 3.1. We may obtain a perfect matching in a product where both factors have
even order but no perfect matchings. Consider the graphs shown in Figure 5, where the
product G□G is drawn with its perfect matching highlighted. Formally, let G = (V,E)
be the graph with vertex set V = {1, 2, 3, 4, 5, 6} and edge set

E =
{
{1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}

}
.

That G has no perfect matching follows from Tutte’s theorem, by choosing S as the set
of the two vertices of order 3, obtaining co(G− S) = 4 > |S|.

Example 3.2. In Figure 6 we see the product S3□C3 which has a perfect matching,
although the star graph S3 has even order and no perfect matching and the cycle graph
C3 has a near-perfect matching. Compare the perfect matching shown here with the
maximal (but not maximum) matchings in Figure 4.

Example 3.3. In Figure 7 we see the product S4□C3 which has a near-perfect matching.
Both factors have odd order, the star graph S4 has no near-perfect matching and the cycle
graph C3 has a near-perfect matching.

Note that the respective (near-)perfect matchings of the Cartesian products in the
three examples are (near-)perfect matchings of the corresponding strong products as well.
For example, the matching in Figure 5 is a perfect matching of G⊠G as well.

Furthermore, the examples above highlight that G or (and) H having a perfect (near-
perfect) matching is not a necessary condition for G ⋆ H to have a perfect (near-perfect)

14

Figure 6: The graph S3□C3 and its perfect matching highlighted in red. The factor S3

has even order but no perfect matching. The factor C3 has odd order and a near-perfect
matching.

Figure 7: The graph S4□C3 and its near-perfect matching highlighted in red. The factor
S4 has odd order but no near-perfect matching. The factor C3 has odd order and a
near-perfect matching. The unmatched vertex of S4□C3 is highlighted in blue.

15

Figure 8: A maximum matching of S3□S3. Matchings of the product and factors are
highlighted in red, and the unmatched vertices of S3□S3 are marked with blue. Note
that u(S3□S3) = 4 = u(S3)u(S3).

matching, although it is a sufficient condition. Likewise, we cannot keep the condition
u(G ⋆ H) = u(G)u(H) and omit that G ⋆ H has a perfect matching. An example suffices
— take the product S3□S3 in Figure 8. Here u(S3□S3) = 4 = u(S3)u(S3), but neither
S3 nor S3□S3 have perfect matchings. However, there is more structure to the condition
u(G ⋆ H) = u(G)u(H) than one may think.

Proposition 3.7. Let G and H be graphs and let ⋆ ∈ {□,⊠}. The following statements
are equivalent.

(1) Any factor induced matching of G ⋆ H is a maximum matching of G ⋆ H.

(2) m(G ⋆ H) = m(G)nH + m(H)u(G)

(3) m(G ⋆ H) = m(H)nG + m(G)u(H)

(4) m(G ⋆ H) = 1
2 (nGnH − u(G)u(H))

(5) u(G ⋆ H) = u(G)u(H)

Proof. Let M be a factor induced matching of G ⋆ H. By Proposition 3.2 we have

|M | = m(G)nH + m(H)u(G) = m(G)nH + m(H)u(G) =
1

2
(nGnH − u(G)u(H)) .

Clearly M is a maximum matching if and only if m(G ⋆ H) = |M | and thus the first four
conditions are equivalent.

With no assumptions made on G and H, Lemma 2.19 implies that

m(G ⋆ H) =
nG⋆H − u(G ⋆ H)

2
=

nGnH − u(G ⋆ H)

2
.

Trivially, statement (4) hold if and only if u(G ⋆ H) = u(G)u(H).

16

We will discuss this further in Section 5.4.
The two examples S3□S3 and S3□C3 (see figures 4, 6 and 8) are interesting in a

shared context as well. Why does S3□C3 have a larger matching than a factor induced
matching, while S3□S3 does not? We will not answer this question fully, but make an
attempt to generalize the situation somewhat.

Proposition 3.8. Let G be a graph of odd order n ≥ 3 with V (G) = {u1, u2, . . . , un}.
Suppose that G has n distinct near-perfect matchings M1, M2, ..., Mn such that ui is the
vertex that is unmatched by Mi for each i ∈ {1, 2, . . . , n}. Let Sn denote the star graph
on n + 1 vertices. Then Sn□G has a perfect matching and Sn+1□G has a near-perfect
matching.

Proof. Let G be a graph satisfying the conditions above. Let Sn be the star graph with
V (Sn) = {0, 1, . . . , n} and E(Sn) =

{
{0, 1}, {0, 2}, . . . , {0, n}

}
. Define

ei = {(0, ui), (i, ui)}

and
Ai = {{(i, u), (i, v)} | {u, v} ∈ Mi}

for all i ∈ {1, 2, . . . , n}. See Figure 9 for a principal sketch of the situation. We claim that
the set (

n⋃
i=1

Ai

)
∪ {ei}ni=1 = A ∪ {ei}ni=1

is a perfect matching of Sn□G. To verify this, first note that both {ei}ni=1 and each Ai

are subsets of E(Sn□Cn). By definition, each Ai is a near-perfect matching of the layer
iG. Thus Lemma 2.13 imply that the union A is a matching of Sn□G. Furthermore, the
edges of {ei}ni=1 are vertex disjoint, since (0, ui) ̸= (0, uj) and (i, ui) ̸= (j, uj) for all i ̸= j,
so {ei}ni=1 is also a matching of Sn□G.

Now, (0, ui) /∈ V (⟨Aj⟩Sn □G) for each i, j ∈ {1, 2, . . . , n} since no edge of Aj is incident
to a vertex with G-coordinate 0. Since the vertex ui is unmatched by Mi no edge in Ai is
incident to the vertex (i, ui) of ei either. Using Lemma 2.13 again, we have verified that
A ∪ {ei}ni=1 is a matching of Sn□G. Since |Ai| = |Mi| = (n − 1)/2 by assumption, its
cardinality is

|{ei}ni=1|+
n∑

i=1

|Ai| = n+ n · |Mi| =
n(n+ 1)

2
=

|V (G)||V (Sn)|
2

=
|V (Sn□G)|

2
,

the size of a perfect matching.
The proof of the existence of a near-perfect matching in Sn+1□G is so similar we omit

it.

Corollary 3.8.1. Proposition 3.8 holds if all occurrences of □ is exchanged for ⊠.

Proof. This follows immediately from Observation 2.20, since Sn□G is a spanning sub-
graph of Sn⊠G and Sn+1□G is a spanning subgraph of Sn+1⊠G.

Corollary 3.8.2. Let n ≥ 3 be an odd integer, let ⋆ ∈ {□,⊠} and consider the cycle graph
Cn. Then Sn ⋆ Cn (Sn+1 ⋆ Cn) has a perfect (near-perfect) matching.

17

Figure 9: Construction of the perfect matching in the proof of Proposition 3.8. No edges
apart from e1, e2, ..., en and those of A1, A2, ..., An are shown.

Proof. It suffices to show Cn has n near-perfect matchings that unmatches distinct
vertices. This is fairly obvious; given that V (Cn) = {1, 2, . . . , n} and E(Cn) ={
{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}

}
we can, for example, define

M1 =
{
{2, 3}, {4, 5}, . . . , {n− 1, n}

}
M2 =

{
{3, 4}, {5, 6}, . . . , {n− 2, n− 1}, {n, 1}

}
M3 =

{
{1, 2}, {4, 5}, . . . , {n− 1, n}

}
...

Mn =
{
{1, 2}, {3, 4}, . . . , {n− 2, n− 1}

}
which clearly are n near-perfect matchings such that Mi unmatches the vertex i.

Note that if n is even, then Cn has a perfect matching and so Proposition 3.3 imply
that both Sn□Cn and Sn+1□Cn has perfect matchings.

3.3 Lower bound for direct product
It is possible to construct the factor induced matchings of G□H and G⊠H only because
the respective layers of the products are isomorphic to the respective factor. This is not
the case in the direct product G×H; thus we need a different approach.

Lemma 3.9. Let MG respectively MH be matchings of the graphs G and H. The set

M =
{
{(g, h), (g′, h′)} | {g, g′} ∈ MG, {h, h′} ∈ MH

}
is a matching of G×H.

18

Proof. By construction, M ⊆ E(G×H). Let e = {(g, h), (u, v)} be an edge in M . We
show that if the edge f ∈ E(G×H) is incident to e, it is not a member of M . Without
loss of generality, assume that e and f share the vertex (g, h) and thus f = {(g, h), (x, y)}
for some (x, y) ∈ V (G×H) with (x, y) ̸= (u, v). By definition of the direct product both
{g, u} and {x, g} are edges of G. Since e ∈ M we must have that {g, u} ∈ MG which
means {g, x} /∈ MG (otherwise MG would not be a matching of G) and therefore f /∈ M ,
by construction of M . In extension this means that if e and e′ are edges of M , then
e ∩ e′ = ∅, and so M is a matching of G×H.

Theorem 3.10. For all graphs G and H

m(G×H) ≥ 2m(G)m(H).

Proof. Let MG respectively MH be maximum matchings of the graphs G and H. Define
the matching M as in Lemma 3.9. For each {g, g′} ∈ MG and {h, h′} ∈ MH there are
two corresponding edges in M , namely {(g, h), (g′, h′)} and {(g, h′), (g′, h)}. Thus the
cardinality of M equals 2|MG||MH |, and so |M | = 2m(G)m(H). A maximum matching of
G×H must be at least as large as M and so the result follows.

Corollary 3.10.1. If both G and H have perfect matchings, then G×H has a perfect
matching.

Proof. Let G be a graph of order nG and H a graph of order nH . If G and H have perfect
matchings, then m(G) = nG/2 and m(H) = nH/2. By Theorem 3.10

m(G×H) ≥ 2 · nG

2
· nH

2
=

nGnH

2
=

nG×H

2
,

the size of a perfect matching in G×H.

It is noteworthy that we cannot omit the condition of both factors to have a perfect
matching, unlike the case of the Cartesian and strong products (see Proposition 3.3).
Take, for example, the graph P2×P3 in Figure 10 which does not have a perfect matching,
although the path graph P2 does. In contrast, P2□P3 (and P2⊠P3) does have a perfect
matching.

Seemingly, the lower bound of the direct product is, in some sense, lower than that
of the other two products. This is not altogether that surprising, considering that the
construction of the matching M in G×H won’t match any vertex where the G-coordinate
is unmatched by MG or where the H-coordinate is unmatched by MH whereas the factor
induced matchings of the Cartesian and strong product at least involves matching a subset
of these vertices. The following lemma solidifies this argument.

Lemma 3.11. Let G be a graph of order nG and H be a graph of order nH . Then

nGnH − u(G)u(H)

2
≥ 2m(G)m(H).

Proof. By Proposition 3.2 we have that

nHnG − u(H)u(G)

2
= m(G)nH + m(H)u(G).

19

Figure 10: The products P2×P3 and P2□P3. Maximum matchings are highlighted in red
in both products and factors. P2×P3 has no perfect matching, whereas P2□P3 does.

Both matching number and unmatching number are non-negative integers, so m(G)nH +
m(H)u(G) ≥ m(G)nH . By Lemma 2.19 we have nH = 2m(H) + u(H), and so

m(G)nH = 2m(G)m(H) + m(G)u(H) ≥ 2m(G)m(H)

concluding that
nGnH − u(G)u(H)

2
≥ 2m(G)m(H).

Recall from Observation 2.20 that we may bound the matching number of a strong
product in terms of the Cartesian and direct product:

m(G⊠H) ≥ max
(
m(G□H), m(G×H)

)
.

Thus Lemma 3.11 shows that the lower bound of m(G×H) does not improve the lower
bound

m(G⊠H) ≥ nGnH − u(G)u(H)

2
obtained in Corollary 3.2.1. We end this section by generalizing the lower bound of the
matching number to a larger class of graphs.
Theorem 3.12. Let H and K be graphs. Define GH □K as the set of all graphs G such
that H □K is a subgraph of G. Define Gs

H □K as the subset of GH □K where H □K is a
spanning subgraph of G. If G ∈ GH □K , then

m(G) ≥ nHnK − u(H)u(K)

2
,

where nH and nK are the orders of H respectively K. In particular, if G ∈ Gs
H □K and

H □K has a perfect matching, then G has a perfect matching.
Proof. By Corollary 3.2.1 there exists a matching M of H □K such that |M | ≥ 1

2(nHnK−
u(H)u(K)). Now, since M ⊆ E(H □K) and E(H □K) ⊆ E(G) the set M must be a
matching of G as well. Thus the matching number of G is at least as large as the cardinality
of M .

If H □K is a spanning subgraph with a perfect matching M , then |M | = nHnK/2 and
|V (H □K)| = |V (G)|. Hence nHnK = nG, the order of G, and M is a perfect matching
of G as well as of H □K.

20

4 Generalization to k-matchings
To be able to generalize the notion of matchings, we first need the following concept.

Definition 4.1. Let k be a positive integer. A graph G is said to be k-regular if deg(v) = k
for all vertices v in G.

Now observe that if we have a matching M of some graph G, and consider the graph
H = ⟨M⟩G, then H is a 1-regular subgraph of G. If M happens to be a perfect matching
then, by definition, we have that V (H) = V (G) and H is thus a 1-regular spanning
subgraph of G. This motivates the following definition.

Definition 4.2. Let k be a positive integer. Suppose G is a graph that has some k-regular
subgraph H. We define the set M = E(H) to be a k-matching of G. We still say that
a vertex v of G is matched by M if there are k edges in M incident to v, otherwise v is
unmatched by M .

As before, M is a maximum k-matching if there’s no k-matching in G that contains a
larger number of edges. If M matches all vertices in G then M is a perfect k-matching.

Let M be a maximum k-matching of G, and let U ⊆ V (G) be the set of vertices
unmatched by M . Define the k-matching number of G as mk(G) = |M | and the k-
unmatching number of G as uk(G) = |U |.

If G has no k-matching, then it is reasonable to let uk(G) = |V (G)| and mk(G) = 0.
Note that by definition, G has a perfect k-matching if and only if it has a k-regular

spanning subgraph. In fact, perfect k-matchings are nothing else but what other authors
(e.g. [14]) call k-factors. Since we are dealing with graph products and their factors the
use of the term k-factor would be confusing and ill-advised. There are extensive results on
k-factors (see [1] for a comprehensive collection), however they are often concerned with
answering the question on whether or not a k-factor exists in a certain setting. We are
interested in this as well, but also pose a more general question: at least how large are the
maximum k-matchings of the products G□H and G⊠H? To the best of our knowledge,
no such results appeared in literature, so far.

Unlike the matchings in Section 3 — the 1-matchings in our current terminology —
there exists perfect k-matchings in graphs of both odd and even order. A couple of
examples are provided next.

Example 4.1. As mentioned in Section 3.2 it is easy to see that the cycle graph Cn has
a perfect 1-matching if n is even, and a near-perfect matching if n is odd. In contrast, Cn

has a perfect 2-matching for all n, namely the full edge set E(Cn).

Example 4.2. The complete graph Kn has a perfect (n−1)-matching for each n, namely
E(Kn). In particular, K6 has a perfect k-matching for each k ∈ {1, 2, 3, 4, 5}, see Figure 11.
K5, on the other hand, has no perfect 3-matching. If it would, then K5 would have a 3-
regular spanning subgraph and such a graph would have an odd number of vertices of odd
degree, violating the Handshaking Lemma.

Example 4.3. Consider the graph G in Figure 12. It is easy to see that m1(G) = 2,
m2(G) = 4 and m3(G) = 6. Furthermore, u1(G) = u2(G) = u3(G) = 1.

Example 4.4. A trivial necessary condition for the existence of a k-matching in a graph
is that each vertex must have degree at least k. For example, mk(Cn) = 0 for all k ≥ 3,
and mk(Kn) = 0 for all k ≥ n.

21

Figure 11: Perfect k-matchings in K6 for k ∈ {1, 2, 3, 4, 5}.

Figure 12: A maximum 1-matching (A), 2-matching (B) and 3-matching (C) of a graph.
Neither are perfect.

We begin our discussion of k-matchings with two lemmas.
Lemma 4.3. For all positive integers k and graphs G of order n we have

mk(G) =
k(n− uk(G))

2
.

In particular, G has a perfect k-matching if and only if mk(G) = k · n/2.
Proof. Let M be a maximum k-matching of G and let H = ⟨M⟩G. By definition mk(G) =
|M | = |E(H)|. By the Handshaking Lemma

2|E(H)| =
∑

v∈V (H)

deg v

and since H is k-regular deg v = k for all vertices of H. Hence 2|E(H)| = k|V (H)|. Now,
since vertices of G are either matched or unmatched by M , we have that |V (G)| = n =
|V (H)|+ uk(G). Therefore

2|E(H)| = k (n− uk(G)) ⇔ mk(G) =
k(n− uk(G))

2
. (1)

By definition, M is a perfect k-matching if and only if uk(G) = 0. Then (1) simplifies to
mk(G) = k · n/2.

22

Lemma 4.4. Suppose that M and M ′ are k-matchings of the graph G. If the vertex sets
of ⟨M⟩G and ⟨M ′⟩G are disjoint then M ∪M ′ is a k-matching of G.

Proof. Assume that the vertex sets of ⟨M⟩G and ⟨M ′⟩G are disjoint, then their edge sets
will also be disjoint. Thus the graph ⟨M⟩G+ ⟨M ′⟩G is a k-regular subgraph of G, and the
edge set M ∪M ′ is a k-matching of G.

It turns out that the results in Corollary 3.2.1 may be seen as the special case where
k = 1. We now state this more general version.

Theorem 4.5. Let G and H be graphs of order nG and nH respectively. Let ⋆ ∈ {□, ⊠}.
For each positive integer k

mk(G ⋆ H) ≥ k(nGnH − uk(G)uk(H))

2
.

The proof idea is essentially the same as in Lemma 3.1, where we show the existence of
a k-matching of the appropriate size by constructing a sort of factor induced k-matching
of G⋆H. However, the technical details of k-matchings are more extensive. Thus, we first
state and prove three lemmas.

Lemma 4.6. Let G and H be graphs, and let k be a positive integer. Suppose M is a
k-matching of G and v ∈ V (H). Then the set

X =
{
{(g, v), (g′, v)} | {g, g′} ∈ M

}
is a k-matching of G ⋆ H, where ⋆ ∈ {□, ⊠}.

Proof. Since M ⊆ E(G) and v ∈ V (H) we have, by definition of Cartesian and strong
products, that X ⊆ E(G ⋆ H). Thus ⟨X⟩G⋆H is a subgraph of G ⋆ H. It remains to show
that ⟨X⟩G⋆H is k-regular. Suppose (g, v) ∈ V (⟨X⟩G⋆H). This vertex (g, v) is adjacent to
the vertex (g′, v) if and only if {g, g′} ∈ M . Hence

deg⟨X⟩G⋆H
(g, v) = deg⟨M⟩G (g) = k,

where the latter equality holds since ⟨M⟩G is k-regular. Thus X is a k-matching of
G ⋆ H.

We may interchange the roles of G and H in this proof and obtain another k-matching
in G ⋆ H, since G ⋆ H ∼= H ⋆ G. This type of k-matching is important enough to deserve
its own notation.

Definition 4.7. Let G and H be graphs, let M be a k-matching of G and let h ∈ V (H).
Define the M-induced k-matching on vertex h as the set

⟨M,h⟩ = {{(u, h), (v, h)} | {u, v} ∈ M} .

Analogously, if M is a k-matching of H and g ∈ V (G), then define the M -induced
k-matching on vertex g as the set

⟨g,M⟩ = {{(g, u), (g, v)} | {u, v} ∈ M} .

23

Notice that these matchings of G ⋆ H are induced from a particular k-matching of G
respectively H; they are not equivalent to the factor induced 1-matching introduced in
Section 3.1.

Subsequently, we assume that k is a positive integer.

Lemma 4.8. Let MG (MH) be a k-matching of G (H) and suppose ⋆ ∈ {□, ⊠}. Let
A ⊆ V (H) and B ⊆ V (G). The sets

M ′ =
⋃
v∈A

⟨MG, v⟩ and M ′′ =
⋃
v∈B

⟨v,MH⟩

are both k-matching of G ⋆ H. Furthermore, |M ′| = |MG| · |A| and |M ′′| = |MH | · |B|.

Proof. By Lemma 4.6 ⟨MG, v⟩ is a k-matching of G⋆H for each v ∈ A. More so, ⟨MG, v⟩
is a k-matching of the layer Gv. Recall that the G-layers are vertex disjoint, and so the
subgraphs of G ⋆ H with edge set ⟨MG, u⟩ and ⟨MG, v⟩ respectively have distinct vertex
sets for all u, v ∈ A such that u ̸= v. This means that M ′ is a union of vertex disjoint
k-matchings of G ⋆ H, so by Lemma 4.4 M ′ is a k-matching of G ⋆ H.

Note that, by definition, |⟨MG, v⟩| = |MG| for each v ∈ A. We thus have that

|M ′| =
∑
v∈A

|MG| = |A| · |MG|.

The proof for M ′′ is done analogously.

Lemma 4.9. Let MG (MH) be a k-matching of G (H). Suppose U ⊆ V (G) is the set of
vertices that are unmatched by MG. Let

M ′ =
⋃

v∈V (H)

⟨MG, v⟩ and M ′′ =
⋃
v∈U

⟨v,MH⟩.

Then the set
M̃ = M ′ ∪M ′′

is a k-matching of G ⋆ H, where ⋆ ∈ {□, ⊠}.
The cardinality of M̃ is |MG| · |V (H)|+ |MH | · |U |.

Proof. By Lemma 4.8 both M ′ and M ′′ are k-matchings of G⋆H. We show that ⟨M ′⟩G⋆H

and ⟨M ′′⟩G⋆H are vertex disjoint. Assume (x, y) is a vertex of ⟨M ′⟩G⋆H . There exists
exactly k edges in M ′ that matches (x, y) and k edges in MG that matches x. Most
importantly, x is not unmatched by MG and thus not an element of the set U . Hence
(x, y) ̸= (u, v) for all vertices (u, v) in ⟨M ′′⟩G⋆H , and the two subgraphs have disjoint
vertex sets. By Lemma 4.4 M̃ is a k-matching of G ⋆ H.

Lemma 4.8 implies that |M ′| = |V (H)| · |MG| and |M ′′| = |U | · |MH |. Hence |M̃ | =
|V (H)| · |MG|+ |U | · |MH |.

We are now in position to prove the main result of this section, that is, theorem 4.5.

Proof of theorem 4.5. We are proving that

mk(G ⋆ H) ≥ k(nGnH − uk(G)uk(H))

2
,

24

for all graphs G and H. Let MG be a maximum k-matching of G and MH a maximum
k-matching of H. Note that |MG| = mk(G) and |MH | = mk(H). Also, with U as the
set of unmatched vertices of MG, then |U | = uk(G). Denote the order of H by nH . By
Lemma 4.9 there exists a k-matching of G⋆H of size nHmk(G)+uk(G)mk(H). A maximum
matching of G ⋆ H must contain at least as many edges, and so

mk(G ⋆ H) ≥ nHmk(G) + uk(G)mk(H).

Now, by Lemma 4.3 we have that

mk(G) =
k(nG − uk(G))

2
and mk(H) =

k(nH − uk(H))

2
,

and so

nHmk(G) + uk(G)mk(H) = nH
k(nG − uk(G))

2
+ uk(G)

k(nH − uk(H))

2

=
k(nHnG − nHuk(G) + uk(G)nH − uk(G)uk(H))

2

=
k(nGnH − uk(G)uk(H))

2
.

Thus
mk(G ⋆ H) ≥ k(nGnH − uk(G)uk(H))

2
,

which finishes the proof.

What we constructed in Lemma 4.9 is nothing but a generalized notion of the G-
induced 1-matching from Section 3. Due to associativity, we may interchange the roles of
the factors G and H and obtain an H-induced k-matching. Once again, the cardinality of
any G-induced k-matching equals the cardinality of any H-induced k-matching, that is, if
M is a G-induced k-matching and M ′ an H-induced k-matching of G ⋆ H, then

|M | = nHmk(G) + uk(G)mk(H), |M ′| = nGmk(H) + uk(H)mk(G)

and |M | = |M ′| = k · (nGnH − uk(G)uk(H)) /2. We thus allow ourselves to refer to factor
induced k-matchings, analogous to the case when k = 1.

That G having a perfect k-matching is a sufficient condition for G□H having a perfect
k-matching was stated and proved in Theorem 4 of [8]. We have the following, stronger
result.
Theorem 4.10. Let G and H be graphs, let k be a positive integer and assume ⋆ ∈ {□, ⊠}.

G or H has a perfect k-matching if and only if G ⋆ H has a perfect k-matching and
uk(G ⋆ H) = uk(G) · uk(H).
Proof. Without loss of generality, assume that G has a perfect k-matching. Then uk(G) =
0. By theorem 4.5 G ⋆ H will then satisfy that

mk(G ⋆ H) ≥ knGnH

2
=

k · nG⋆H

2
.

By Lemma 4.3, G⋆H thus has a perfect k-matching. Trivially, we have that uk(G⋆H) =
0 = uk(G) · uk(H).

Now assume that G⋆H has a perfect k-matching and that uk(G⋆H) = uk(G) · uk(H).
Due to the perfect k-matching we have that uk(G ⋆H) = 0, but then either uk(H) = 0 or
uk(G) = 0, and one of the factors must have a perfect k-matching.

25

Figure 13: The product C3×C ′
3. Here C3 is the graph with vertex set V (C3) = {a, b, c}

and edge set E(C3) = {{a, b}, {b, c}, {c, a}} while C ′
3 is the graph with vertex set V (C ′

3) =
{1, 2, 3} and edge set E(C ′

3) = {{1, 2}, {2, 3}, {3, 1}}. Clearly, C3
∼= C ′

3.

Analogous to Proposition 3.7 we also have this result. The proof is almost identical,
so we omit it.

Proposition 4.11. Let G and H be graphs and let ⋆ ∈ {□,⊠}. The following statements
are equivalent.

(1) Any factor induced k-matching of G ⋆ H is a maximum k-matching of G ⋆ H.

(2) mk(G ⋆ H) = mk(G)nH + mk(H)uk(G)

(3) mk(G ⋆ H) = mk(H)nG + mk(G)uk(H)

(4) mk(G ⋆ H) = 1
2 (nGnH − uk(G)uk(H))

(5) uk(G ⋆ H) = uk(G)uk(H)

We have now generalized the results for Cartesian and strong products in Section 3.
However, the results obtained for the direct product will not necessarily hold for k-
matchings when k ̸= 1. We show this by example. Recall that we constructed the
1-matching M = {{(g, h), (g′, h′)} | {g, g′} ∈ MG, {h, h′} ∈ MH} in G×H from the 1-
matching MG of G and the 1-matching MH of H. Consider the product C3×C3 in
Figure 13. As shown in Example 4.1, the factor C3 has a perfect 2-matching, namely
E(C3). Define

X =
{
{(g, h), (g′, h′)} | {g, g′} ∈ E(C3), {h, h′} ∈ E(C3)

}
.

By definition of direct products, X = E(C3×C3) — but the full edge set of C3×C3 is
not a 2-matching since C3×C3 is not a 2-regular graph.

26

5 Summary and outlook
In this thesis we’ve investigated connections between maximum k-matchings of the graphs
G and H and the maximum k-matching of their product G⋆H, where ⋆ primarily denote
the Cartesian product □ or the strong product ⊠. We have mostly considered factor
induced k-matchings and showed that

mk(G ⋆ H) ≥ k (nGnH − uk(G)uk(H))

2

for ⋆ ∈ {□,⊠}. This lower bound of the k-matching number arises from the surprising
fact that any G-induced k-matching of G⋆H have the same cardinality as any H-induced
k-matching. Furthermore, from the lower bound of the k-matching number we’ve deduced
sufficient criteria for the existence of perfect k-matchings in the Cartesian and strong
product of G and H. We also derived that m1(G×H) ≥ 2m1(G)m1(H), and remarked on
why this is not necessarily the case for k ̸= 1.

The topic of this thesis raises a couple of follow-up questions, which we will discuss in
this section.

5.1 Is there a relation between mk(G□H) and mk(G⊠H)?
Virtually all results in Section 3 are stated for the Cartesian product alongside the strong
product. We have not discussed how the results for the Cartesian product are interrelated
to those for the strong product. Since G□H ⊆ G⊠H we trivially have mk(G□H) ≤
mk(G⊠H). When does equality hold? There are cases when mk(G□H) < mk(G⊠H):
see Figure 14. There is no perfect 1-matching in the product S3□P3 whereas the graph
S3⊠P3 has a perfect 1-matching.

5.2 Claw-free graphs
As mentioned in both the preliminaries and in the beginning of Section 4 there exists a
large set of sufficient conditions implying existence of perfect k-matchings (i.e. k-factors)
in a graph. Using Theorem 4.10 we may utilize these conditions for all Cartesian and
strong products as well. More precisely, suppose C is a condition on G such that

C(G) is satified ⇒ G has a perfect k-matching.

Figure 14: The two graphs S3⊠P3 and S3□P3. The former has a perfect 1-matching, as
indicated in red. S3□P3 has no perfect 1-matching.

27

Principally, we then have that

C(G) is satisfied ⇒

{
G□H has a perfect k-matching for all graphs H

G⊠H has a perfect k-matching for all graphs H.

Limiting ourselves to 1-matchings, one particular condition comes to mind, namely that
in Proposition 2.22. Recall that a graph is claw-free if it does not contain an induced
subgraph isomorphic to the star graph S3 (called the claw graph). The proposition then
states that connected, claw-free graphs of even order have a perfect (1-)matching. With the
examples S3□S3 and S3□C3 (discussed in Section 3.2, see also Example 3.1 in Figure 5)
in mind it would indeed be interesting to understand exactly what happens in general. On
one hand, what happens if both factors are of even order, connected and contains claws?
What if one factor is of even order, connected and contains a claw and the other is of odd
order? This could at least clarify the situation for products of connected graphs. Similar
case distinctions are possible to study for each existing sufficient condition.

5.3 When is uk(G ⋆ H) = uk(G)uk(H)?
Let ⋆ ∈ {□,⊠}. In Theorem 4.10 we concluded that G ⋆ H has a perfect k-matching and
uk(G ⋆H) = uk(G)uk(H) if and only if G or H has a perfect k-matching. It is no obvious
task to describe which graphs that satisfy uk(G ⋆ H) = uk(G)uk(H) though. When is the
unmatching number multiplicative?

For simplicity, we limit this discussion to 1-matchings, henceforth called matchings.
One possible method is to try to use The Berge Formula, a theorem tightly connected to
Tutte’s Theorem. Recall that co(G) denotes the number of odd components of the graph
G. Berge’s formula ([9, Thm. 3.1.14]) then states that

u(G) = max {co(G− S)− |S| : S ⊆ V (G)} .

Recall that Tutte’s Theorem states that G has a perfect matching if and only if co(G−S) ≤
|S| for all S ⊆ V (G). For the (Cartesian or strong) product of two graphs we then have

u(G ⋆ H) = max {co(G ⋆ H − T)− |T | : T ⊆ V (G ⋆ H)} ,

where at least some sets T ⊆ V (G ⋆ H) can be constructed from SG ⊆ V (G) and SH ⊆
V (H). Is it possible to find a connection between co(G⋆H−T), co(G−SG) and co(G−SH)
respectively |T |, |SG| and |SH |? There may not exist such a connection at all and if it
does, we suspect it’ll be hard to find.

We motivate this suspicion with an example. First consider the graph S3□S3. Let
T ⊆ V (S3) be the set T = {c} where c is the only vertex of degree three, and then define

T ′ = {(v, w) | v ∈ T, w ∈ V (S3) \ T} ∪ {(v, w) | v ∈ V (S3) \ T, w ∈ T} .

As shown in Figure 15, co(S3 − T) = 3 > 1 = |T | and co(S3□S3 − T ′) = 10 > 6 = |T ′|,
implying that neither S3 nor S3□S3 have perfect matchings. Now consider the graph
G□G in Example 3.1 (see Figure 5). Recall that G□G has a perfect matching, although
G doesn’t. For G we may, for example, choose the set S to contain one of the vertices
of degree three. Then co(G − S) = 3 > 1 = |S|, and Tutte’s theorem implies the non-
existence of a perfect matching in G. We will not find such a Tutte set for G□G (since
it has a perfect matching). In particular, the set

S′ = {(v, w) | v ∈ S, w ∈ V (G) \ S} ∪ {(v, w) | v ∈ V (G) \ S, w ∈ S}

28

Figure 15: Tutte sets of S3 and S3□S3. The edges drawn in gray are those removed from
the respective graphs — they are not part of S3 −T and S3□S3 −T ′. Thus co(S3 −T) =
3 > 1 = |T | and co(S3□S3 − T ′) = 10 > 6 = |T ′|. See the text for further details.

gives co(G□G− S′) = 10 ≤ 10 = |S′|, as seen in Figure 16. Although S and T resemble
each other (same cardinality and co(G− S) = co(S3 − T)) and T ′ is defined analogous to
S′, we still obtain quite different results.

Apart from Tutte’s Theorem there is a characterization of matchings which we have
not included to keep the thesis compact; it is called the Gallai-Edmonds decomposition.
It is indeed more complicated than Tutte’s Theorem, which is the reason why we excluded
it earlier on. For now we will only state a part of the theorem, as it will suffice for
us. See Theorem 3.2.1 in [9] for the full statement and proof. Given a graph G, define
U(G) ⊆ V (G) as the set of vertices that are unmatched by at least one maximum matching
of G and let

A(G) = {v | v ∈ V (G) \ U(G), ∃u ∈ U(G) s.t. v and u are adjacent} .

Denote the number of components of the subgraph H ⊆ G with c(H). Then the Gallai-
Edmonds Structure Theorem states that

m(G) =
|V (G)|+ |A(G)| − c(⟨U(G)⟩G)

2
.

Possibly, it would be interesting to examine relationships between A(G), A(H), A(G⋆H),
c(⟨U(G)⟩G), c(⟨U(H)⟩H) and c(⟨U(G ⋆ H)⟩G⋆H), hoping for a characterization of when
u(G ⋆ H) = u(G)u(H).

Lastly, by Proposition 4.11 the condition uk(G ⋆ H) = uk(G)uk(H) is equivalent to a
number of other conditions. In particular, uk(G ⋆ H) = uk(G)uk(H) if and only if any
factor induced matching of a product is a maximum matching, which links the discussion
of this subsection to the examples S3□S3 and S3□C3 in Section 5.2.

29

Figure 16: A Tutte set S of the graph G, and a vertex subset S′ of G□G which is not
a Tutte set. The edges drawn in gray are those removed from the respective graphs —
they are not part of G − S and G□G − S′. Notice that co(G − S) = 3 > 1 = |S| and
co(G□G− S′) = 10 ≤ |S′|. See the text for further details.

5.4 What algorithmic applications could future results and ours have?
We end this section with a short discussion of algorithmic applications of the topics dis-
cussed in this thesis. We assume that the reader has some previous knowledge of algorithms
and time complexity.

As mentioned in the preliminaries, there is a polynomial time algorithm for computing a
maximum 1-matchings of a graph. The blossom algorithm for finding maximum matchings
runs in O(n4) time (see [9, Thm.9.1.8, Table 9.1.1]) for a graph of order n. This algorithm
was improved significantly by in S. Micali and V. Vazirani in [11], and the fastest known
runtime is now O(m

√
n) for a graph with n vertices and m edges. For simplicity, let us

assume we have two graphs G and H of equal order n and equal size m (G ∼= H is not
required). To compute a factor induced matching in G⋆H, where ⋆ ∈ {□,⊠}, we first find
a maximum matching of both G and H in O(m

√
n) + O(m

√
n) = O(m

√
n) time. After

this, the factor induced matching of G⋆H must be constructed by some algorithm running
in f(n) time, obtaining a complete runtime of O(m

√
n) + f(n). Trivially, f(n) ∈ O(n2),

since such a construction is possible by iterating over the edges in the maximum matching
of G and the vertices of H (and vice versa). We omit to construct such an algorithm here.

By definition of the Cartesian product, |V (G□H)| = |V (G)||V (H)| = n2 and
|E(G□H)| = |V (G)||E(H)| + |V (H)||E(G)| = 2nm. If a maximum matching of G□H
is computed with the algorithm we thus obtain the runtime O(2nm

√
n2) = O(n2m). The

expected runtime O(m
√
n) + O(n2) = O(n2) obtained by calculating the factor induced

matching is significantly better than this, indicating that it is more efficient to calculate

30

the factor induced matching of the product, than it is to calculate the maximum matching
directly. The difference is even greater for G⊠H, since this graph has more edges than
G□H. However, the factor induced matching is only maximum if u(G⋆H) = u(G)u(H),
further motivating the topic discussed in Section 5.3.

In some cases, it would be even more practical if we could first find the factors of a
given graph G, and then find a factor induced matching. Recall that there exist polyno-
mial time algorithms for finding prime factorization (over all three products). The fastest
known algorithm for recognizing Cartesian products is presented in [7], with a runtime of
O(n log n) for a graph with n vertices1. Whether or not this technique is viable depend on
how the time complexity of the combined runtime of prime factorization, maximum match-
ing calculations for each prime factor and the construction of a factor induced matching
compare to the time complexity of computing a maximum matching of G directly.

Since we introduced k-matchings where k ̸= 1 in this thesis, there are no known
algorithms for computing them. However, there is an algorithm for computing perfect
k-matchings described in [10]. It is worth investigating if this algorithm may be extended
to an algorithm for computing maximum k-matchings in general, as well as perfect k-
matchings.

1It is more time consuming to find prime factorizations of strong and direct products, and there are
some restrictions that need to be made; see Chapter 24 of [5] for details.

31

References
[1] J. Akiyama and M. Kano. Factors and Factorizations of Graphs. Vol. 2031. Lecture

Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2011.
[2] J.A. Bondy and U.S.R Murty. Graph Theory. 1st Ed. Graduate Texts in Mathemat-

ics. Springer Publishing Company, Incorporated, 2008.
[3] R. Diestel. Graph Theory. 5th Ed. Graduate Texts in Mathematics. Springer-Verlag

Berlin Heidelberg, 2017.
[4] J. Edmonds. “Paths, Trees, and Flowers”. In: Classic Papers in Combinatorics. Ed.

by I. Gessel and G.C. Rota. Birkhäuser Boston, 1987, pp. 361–379.
[5] R. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs. 2nd Ed.

CRC Press, Inc., 2011.
[6] W. Imrich, S. Klavzar, and D.F. Rall. Topics in Graph Theory: Graphs and Their

Cartesian Product. 1st Ed. A K Peters/CRC Press, 2008.
[7] W. Imrich and I. Peterin. “Recognizing Cartesian products in linear time”. In: Dis-

crete Mathematics 307 (Sept. 2007), pp. 472–483.
[8] A. Kotzig. “1-Factorizations of Cartesian Products of Regular Graphs”. In: Journal

of Graph Theory 3 (1979), pp. 23–34.
[9] L. Lovász and M.D. Plummer. Matching Theory. Vol. 121. North-Holland Mathe-

matics Studies. North-Holland, 1986.
[10] H. Meijer, Y. Núñez-Rodríguez, and D. Rappaport. “An algorithm for computing

simple k-factors”. In: Information Processing Letters 109.12 (2009), pp. 620–625.
[11] S. Micali and V. Vazirani. “An O(

√
|v||E|) algorithm for finding maximum match-

ing in general graphs”. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science. IEEE Computer Society, Oct. 1980, pp. 17–27.

[12] A. Ribeiro de Almeida, F. Protti, and L. Markenzon. “Matching Preclusion Number
in Cartesian Product of Graphs and its Application to Interconnection Networks”.
In: Ars Combinatoria -Waterloo then Winnipeg- 112 (Oct. 2013).

[13] D. Sumner. “Graphs with 1-Factors”. In: Proceedings of the American Mathematical
Society 42 (Jan. 1974), pp. 8–12.

[14] W. T. Tutte. “The Factorization of Linear Graphs”. In: Journal of the London Math-
ematical Society s1-22.2 (1947), pp. 107–111.

32

Matematiska institutionen

Datalogi
Maj 2021

www.math.su.se
Beräkningsmatematik

Matematiska institutionen
Stockholms universitet

106 91 Stockholm

