
Kandidatuppsats i datalogi
Bachelor Thesis in Computer Science

Phylogenetic Tree Extraction Through the
Application of Pixel Neighborhoods
Axel Brandberg

Supervisor: Lars Arvestad
Examiner: Marc Hellmuth



August 2021

Abstract

There exists many phylogenetic trees in the literature, but in many cases
these are only accessible in the form of an image. The reader of a scientific
paper may wish to perform some tests of their own, or want to perform a
control study to confirm or contradict the results. For these types of prob-
lems, a way to easily extract information from trees is useful. There exist
one program TreeSnatcher which works semi-automatically by requiring
users to click branches. There exists another program PhyloPhaser which
sought to fully automate this through machine learning. This paper stud-
ied a method for extracting the tree from a raster image containing a fully
resolved phylogenetic tree. The results shows a flawless execution under
ideal circumstances, where the quality of images is guaranteed. The tests
on graphs from scientific papers shows difficulties, when applied to circular
trees. The best of these results came from the rectangular phylogenetic
trees where a large majority worked flawlessly after some small modifi-
cations. The method was tested also on non-binary trees, in which case
trees could still be extracted, but naturally with some errors. We found
that the algorithm is feasible but the usefulness depends on the quality of
images used and the amount of manual labor allowed in the users specific
project.



Sammanfattning

Det finns många fylogenetiska träd i litteraturen, men i många fall är
dessa endast tillgängliga i form av en bild. Läsaren av en vetenskaplig
artikel kan vilja utföra egna tester eller uppföra en kontrollstudie för att
bekräfta eller bestrida resultaten. För dessa typer av problem är ett sätt
att enkelt extrahera information från träd användbart. Det finns ett pro-
gram TreeSnatcher som fungerar halvautomatiskt och kräver att använ-
dare klickar på grenarna i grafen. Det finns ett annat program PhyloPhaser
som försökte automatisera detta fullt ut genom maskininlärning. Detta
dokument studerade en metod för att extrahera trädet från en rasterbild
som innehåller ett binärt fylogenetiskt träd. Resultaten visar ett utmärkt
resultat under idealiska omständigheter, där bildkvaliteten är garanterad.
Testerna på grafer från vetenskapliga artiklar visar på svårigheter för ap-
plicering på cirkulära träd. Testerna på rektangulära fylogenetiska träden
visade istället mycket bättre resultat, där en stor majoritet fungerade fel-
fritt efter några små modifieringar. Metoden testades också på icke-binära
träd, i vilket fall träd fortfarande kunde extraheras, men naturligtvis med
vissa fel. Vi fann att algoritmen är funktionell men bärkraften beror på
kvaliteten på bilderna som används och mängden manuellt arbete som
tillåts i användarens specifika projekt.



Acknowledgements

I would like to thank my supervisor Woosok Moon for supporting my
chosen project idea, and for advising on how to work with and plan this
kind of project. I also wish to thank my family and friends for all support
throughout the work.

I would like to thank my supervisor Lars Arvestad for supporting my project
and advice on improvements and proofreading. I would also like to thank
my family for helping with support and additional proofreading.

Lastly I would like to thank the companies Elsevier, Springer and John
Wiley Sons for accepting my requests for including their copyrighted fig-
ures in this thesis aswell as Rajangam et al and Nalbant et al for having
some of their work published in Open Access.

4



Contents

1 Introduction 7

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Phylogenetic tree and synonyms . . . . . . . . . . . . . . . . . . . 10

2.3 Newick format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Binary Image and the threshold problem . . . . . . . . . . . . . 12

2.5 NumPys masked array . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Pixel concepts in the algorithm . . . . . . . . . . . . . . . . . . . 14

2.6.1 Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 8-simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 The adjacency problem, intersection and adjacent
neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Visualizing phylogenetic trees . . . . . . . . . . . . . . . . . . . . . 17

2.8 Why binary trees were necessary . . . . . . . . . . . . . . . . . . . 18

3 Methodology 21

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Images for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 General overview of the implementation . . . . . . . . 23

3.3.2 Thinning implementation . . . . . . . . . . . . . . . . . . 23

3.3.3 Graph finding implementation . . . . . . . . . . . . . . . 23

3.3.4 Tree generation implementation . . . . . . . . . . . . . . 24

5



3.4 Testing of the graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Testing the 16 graphs . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Testing of generated binary phylogenetic trees . . . . 27

4 Result 29

4.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The Generated Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Discussion 35

5.1 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Problematization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Appendix 42

6.1 The Circular Phylogenetic Trees (Graph 4, 6, 8, 11) . . . . . 42

6.1.1 Graph 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.2 Graph 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.3 Graph 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.4 Graph 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 The rectangular phylogenetic Trees (12 Graphs) . . . . . . . . 46

6.2.1 Graph 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.2 Graph 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.3 Graph 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.4 Graph 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.5 Graph 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.6 Graph 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.7 Graph 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.8 Graph 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.9 Graph 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.10 Graph 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.11 Graph 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.12 Graph 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6



1 Introduction

When finding a phylogenetic tree in a scientific paper, you may want to
focus on different parts of the hierarchy or analyze the tree with your
own code. For example the paper may handle mutations in genes, and
you want to change some of the parameters for your own experimental
purpose. There is also a possibility and interest to build databases of
Phylogenetic trees with a uniform presentation.

One relatively labor intense way is to extract the data from the phyloge-
netic tree, and type the hierarchical structure and vertex names by hand
in a systematic way. This thesis tries to automate extraction of data by
giving the image of the tree to a program.

1.1 Problem Statement

Investigate the feasibility of extracting the hierarchical structure of a phy-
logenetic tree through pixel traversal. Create a program that, given an
image of a phylogenetic tree, can extract the root, intersections and leaves
of the tree and output this data in a mathematical form.

1.2 Limitations

The phylogenetic tree must be a binary tree. Emergence of errors using
non-binary trees will not happen, but the output will be incorrect. The
phylogenetic tree should be rooted to not be ambiguous, as the output
will be rooted.

7



To select the root, distance from a specific edge of the image is used. The
pixel of the graph closest to this edge is used as the root and modifications
of the image may be necessary because of this. A more advanced selection
process is left for another paper to limit the scope.

This algorithm will not extract the names of leaves and intersections. It
will instead extract the pixel coordinates of these as the decision was made
to only extract the structure of the tree. This can be further developed
by looking at text closest to each leaf and intersection and couple it to
the coordinates.

8



2 Background

This section covers background needed to understand parts of the method-
ology and to better understand the results. It contains related work, a
short summery of relevant parts of the Newick format (output of the
code) and what NumPys masked arrays are. There are definition of a
neighbor, 8-simple, problem with adjacent neighbors which are pixel level
concepts used in the method. It also covers thresholds which are relevant
when making the image monochrome binary, synonyms of phylogenetic
trees and why one of the limitations demands binary trees.

2.1 Related Work

There exists a program called TreeSnatcher (Laubach et al. 2012) which
uses a graphical interface to interact with phylogenetic trees. This re-
quires the user to interact by clicking branches and is semi-automatic
but requires tracing tree contours and have problems with quality of the
image (Lee et al. 2017). In 2017, Lee et al. proposed PhyloParser, a
program described as “a fully automated end-to-end system for extracting
species relationships from phylogenetic tree figures in scientific literature”.
Their method involves deep learning and convolutional networks to find
the structure of the tree and presents a high success rate(Lee et al. 2017).

In a paper from 2012, Gallego et al. tried to encouraged modeling of
images using graphs by proposing three different techniques (Gallego et
al. 2012). Relevant for this paper is their third technique called Skeleton
Graphs where the objects of in the image is thinned while retaining their
general shape. This results in 1-pixel thick lines and represents the skele-

9



ton. A root is chosen, and the image is traversed using some criterion’s
and enables extraction of leaves, intersections and the root.

Gallego et al suggested using the thinning algorithm proposed by Cychosz
et. al. (Cychosz 1994). The idea of the method is to make the im-
age binary (black and white, no grayscale), then through several passes,
removing border pixels (bordering a specific, orthogonal direction) that
satisfy 8-simple but not endpoint (The 8-simple concept is defined in the
background section of this thesis).

2.2 Phylogenetic tree and synonyms

A phylogenetic tree is a graph tree (see figure 2.1). It models evolutionary
relationships between different species, genes or other types of populations.
They are often rooted and binary (bifurcating) but there also exist those
that may be unrooted or non-binary (Nakhleh 2013).

In the literature, there exist different terms for graph trees representing
evolutionary relationships between genes or species. These names are
used interchangeably and among them are dendrogram, cladogram and
phylogenetic trees (Choudhuri 2014).

When categorizing the phylogenetic tree, two categories would be circular
and rectangular phylogenetic tree. Other names for the circular phyloge-
netic trees are polar, fan or circular dendrograms. The rectangular phylo-
genetic tree is sometimes just called phylogenetic trees or dendrograms.

In this paper the term phylogenetic trees will be used, including both
above categories, and with focus on rooted binary trees. We may also use
the terms trees and graphs.

10



Figure 2.1: Example of a phylogenetic tree, this specific tree is Graph 10 (Klinter et al. 2019).This
figure was published in Molecular Phylogenetics and Evolution, 139, Klinter et al., Diver-
sity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota), 106558,
Copyright @Elsevier 2019.

2.3 Newick format

The output is a tree in Newick format, see figure 2.2. It is a string rep-
resentation used by tree plotting programs to represent a tree as text.
Intersections in this format are called interior nodes. Children of interior
nodes are represented as comma-separated lists. The interior nodes them-
selves are represented as the parenthesis around the list of the children.
The names of interior nodes are written to the right of the parenthesis.
The names of leaves are written at their locations in the list. Both these
types of names are optional. The string must end in a semi-colon “;”
(Felsenstein 1990; Olsen 1990; Laubach et al. 2012).

Figure 2.2: This binary tree graph can be written in Newick format as “(A,(B,C)I1);” or “(,(,));” where
root is the north most pixel.

11



As this format is well established, easy to use and used by other applica-
tions , it was found to be suitable as output format. In this paper the
term intersection and interior nodes will be used interchangeably.

2.4 Binary Image and the threshold problem

A binary image is an image of two colors, usually black and white. A color
image can be transformed into grayscale which means each pixels value
is set to an 8-bit number, this means it has a value of between 0 and
255. The transformation from color to grayscale used ITU-R 601-2 luma
transform which follows the formula:

L = R · 299

1000
+G · 587

1000
+B · 114

1000
. (2.1)

R, G and B are 8-bit numbers representing the amount of red, green and
blue contained in the original, colored pixel. The fractions, 299/1000
represent percentages of how much influence red will have on the final
grayscale pixel (Clark 2009).

To make the image binary monochrome, a threshold is used, which is an
8-bit number. In a grayscale image, this threshold marks the cutoff point
between pixels set to black or white by the code, usually colors below
threshold is set to 0 and above to 1 but in the code the reverse happens,
as a necessity of using NumPy (Cychosz 1994). See examples of effects
of thresholds in figures (2.3, 2.4, 2.5 )

2.5 NumPys masked array

NumPy is an open-source project that provides libraries for numerical com-
putations in Python. For this project, the most important functionalities
were their arrays and masked arrays. When iterating over large arrays of
data such as pixels of images, NumPy array are quicker than Python list.

12



Figure 2.3: Example of using too small threshold, holes appearing in graph 4 after thinning, (Frygelius
et al. 2010). Republished with permission of Copyright @John Wiley Sons – Books
2010, from Evolution and human tissue expression of the Cres/Testatin subgroup genes,
a reproductive tissue specific subgroup of the type 2 cystatins, Frygelius et al., 12, 3,
2010; permission conveyed through Copyright Clearance Center, Inc.

Figure 2.4: Example using too high threshold resulting in areas not part of the graph being colored the
same way as the graph in graph 11, left is the original image and right is the image made
binary (Konrad et al. 2014).Reprinted by permission from Springer: Nature, Journal of
molecular evolution, (The Phylogenetic Distribution and Evolution of Enzymes Within the
Thymidine Kinase 2-like Gene Family in Metazoa, Konrad et al.), Copyright @Springer
Nature 2014.

Figure 2.5: Example where no threshold works, left shows holes and blocks in the same image, right
shows the same image after thinning. (Konrad et al. 2014).Reprinted by permission
from Springer: Nature, Journal of molecular evolution, (The Phylogenetic Distribution
and Evolution of Enzymes Within the Thymidine Kinase 2-like Gene Family in Metazoa,
Konrad et al.), Copyright @Springer Nature 2014.

Masked arrays allows us to use this speed while ignoring elements (pix-
els) of the array which are finished being modified by masking them (The
NumPy Community 2021).

13



2.6 Pixel concepts in the algorithm

2.6.1 Neighbors

A pixel has 8 adjacent pixels, unless it’s located on the edge of the image.
Any pixel value is either on or off, these are interpreted as same or similar
color as the graph and the opposite respectively. Using the term black
and white may cause confusion unless clarified at each use as the image
colors are inverted during part of the algorithm.

Each pixel adjacent to another pixel of the same color is called a neighbor
and already visited pixels are called marked or masked pixels (Cychosz
1994). This is performed using NumPys Masked array .

2.6.2 8-simple

The 8-simple is a procedure used in the thinning part of the algorithm.
If a pixel can be removed without destroying the connectedness between
neighbors, then it is 8-simple, see figure 2.6. (Cychosz 1994)

Figure 2.6: Left image where the center pixel is 8-simple, right image is the negative example.

Any pixel with 8 adjacent pixels can be represented as an 8-bit number
using a configuration like the figure 2.7. Note that the quantity of 8-bit
numbers is 256. Writing a function and checking by hand, the quantity
of 8-simple 8-bit numbers is 133.

These are all the 8-bit numbers that satisfy the condition of being an 8-
simple using the configuration of figure 2.7. Some of the examples from
the list below can be seen in figure 2.8: 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13,

14



Figure 2.7: The ordering of adjacent pixels when interpreting the neighborhood as an 8-bit number.
The 1 represent 128, the 2 represent 64 and the 8 represent 1.

14, 15, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 48, 52, 53, 54, 55, 56,
60, 61, 62, 63, 64, 65, 67, 69, 71, 77, 79, 80, 81, 83, 84, 85, 86, 87, 88,
89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 103, 109, 111, 112, 113, 115, 116,
117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 131, 133,
135, 141, 143, 149, 151, 157, 159, 181, 183, 189, 191, 192, 193, 195,
197, 199, 205, 207, 208, 209, 211, 212, 213, 214, 215, 216, 217, 219,
220, 221, 222, 223, 224, 225, 227, 229, 231, 237, 239, 240, 241, 243,
244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255.

Figure 2.8: Examples of configurations of neighborhoods, left image represents 3, middle 64, right
67.

2.6.3 The adjacency problem, intersection and adjacent neighbors

The algorithm finds leaves and interior nodes (intersections) by traversing
neighboring pixels of the phylogenetic tree (described in more detail in the
implementation section). During this traversal, a pixel is an interior node
if it contains two or more unmarked neighbors. The I in the images is the
interior node and the red crosses are the unmarked neighbors

15



(figure 2.9). If any of these red crosses borders another red cross (un-
marked neighbors), then these will falsely be interpreted as interior nodes
(false intersections), which is a problem.

Figure 2.9: Two examples of the same scenario, any black box represent a pixel. The roots are
the top left R:s where the traversal originated from, the red crosses are the bordering
neighbors and the yellow I:s are the interior nodes. Green circles are endpoints and the
thin lines represent arbitrary lines of pixels without interior nodes.

There are two ways to solve this problem:

• The first, which was not used, is to mark all neighbors before you
start traversing any of them. This was not used as it was thought
of after the code were finished, this could be a future development
work.

• The second way is inspired by Gallego (2012), this involves joining
problematic neighbors with the corresponding interior node.

The red crosses that were falsely interpreted as internal nodes (false in-
tersections) can be found by comparing the distance between any two
unmarked neighbors of internal node I. If the distance is less than or equal
to 2, they are adjacent to each other. This is only true for the eight
neighboring pixels.

You solve this by joining the internal node and the false intersections
into a set called pixel cluster. The unmarked neighbors to any of the
pixels in the clustered is compared in search of false intersection and the
operation is repeated until no false intersections remain. The code is found
in graph_finder.py in joinAdjacentNeighbors(). (Brandberg 2021)

You can see that the solution is more general and works for 4 and 5 false
intersections too in figure 2.10 and 2.11.

16



Figure 2.10: Examples of an interior node with 4 false intersections. In left image, brown squares
are false intersections. In right image red squares are the internal nodes, leaves and root
after the algorithm is run. Notice that none of the false intersections are red and no red
pixel borders another red pixel.

Figure 2.11: Same as for (figure 2.10) but with 5 false vertices.

2.7 Visualizing phylogenetic trees

When saving the generated Newick format as graphs in images or display-
ing them, ETE3 was used. ETE Toolkit is a Python framework that is
used for displaying and analyzing phylogenetic trees (Huerta-Cepas et al.
2016).

17



2.8 Why binary trees were necessary

An interior node (intersection) is defined, during traversal, as a pixel with
two or more unmarked neighbors. When traversing pixels in a graph, it
is hard to know if an intersection should be interpreted as a child of the
previous interior node or part of the previous interior node.

For the case of rectangular phylogenetic trees the interpretation was pos-
sible, but in practice problems occurred. The theoretical solution for cal-
culating non-binary trees correctly would be to join adjacent intersec-
tions sharing same pixel height, from the perspective of the root direction
(meaning the same y-coordinate).

In figure 2.12, this theoretical solution would entail merging the blue
squares into one intersection, as shown in the right image, and make
all children of these three interior nodes the children of this new interior
node. In the image the root is the north most pixel, but if it were the
east or west most pixel, the pixel height should be interpreted in terms of
x-coordinate instead of y-coordinate.

Figure 2.12: Example where root is the north most pixel, blue squares represent three interior nodes
sharing the same pixel height and the orange circles represent children to the interior
nodes.

As seen in figure 2.13, this solution necessitates a tolerance in pixel height
resulting from the process of thinning. In the image, the root is the
northern red pixel. The left and right intersections represents intersections
which in the original image occupy the same pixel height as the middle
intersection. This means that this is a non-binary part of the graph.

18



According to the theoretical solution, these interior nodes should be joined
together but in the image, they have a height difference of 2 pixels. So a
minimum tolerance difference of 2 pixels is required.

Figure 2.13: This image is already thinned, the root is the north most red pixel, the other red pixels
represent intersections and leaves found by the algorithm. The left, right and middle
intersections abstractly occupy the same pixel height. The most left and right pixels are
black as the image is cropped.

In figure 2.14, we see that a tolerance of 2 pixels would make this im-
possible to use. At the arrow the difference in pixel height of the two
interior nodes is 2 which means they merge according to the tolerance of
2. There is also figure 2.15 which shows that the concept of pixelsheight
would need a new definition due to the circular graphs.

Figure 2.14: Examples where a tolerance of 2 is problematic, left image is the original version with
orange guidelines showing the true interpretation and right is the thinned version. The
red pixels represent intersections and leaves found by the algorithm using graph 5 (Mazet
et al. 2003). This figure was published in Gene, 316, Mazet et al., Phylogenetic rela-
tionships of the Fox (Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier
2003.

19



Figure 2.15: Example of graph 11 found in results, a circular phylogenetic tree were pixel height
would need to be redefined using for example polar coordinates (Konrad et al. 2014).
Reprinted by permission from Springer: Nature, Journal of molecular evolution, (The
Phylogenetic Distribution and Evolution of Enzymes Within the Thymidine Kinase 2-like
Gene Family in Metazoa, Konrad et al.), Copyright @Springer Nature 2014.

For these reasons the choice was made not to implement this solution to
allow non-binary trees.

20



3 Methodology

This section covers the hardware used to test graphs, source of the graphs
used when testing algorithm and the general code implementation of the
algorithm and generation of graphs. It also covers methodology of testing
and common errors handled in result.

3.1 Hardware

Tests were run using Ubuntu 20.04.2 LTS, on a 64-bit machine with an
Intel® Celeron(R) CPU N3060 at 1.60GHz, 3.8 GiB RAM, Intel® HD
Graphics 400 (BSW) GPU. This is an inexpensive, slow and three years
old laptop computer.

3.2 Images for testing

The images came from two different sources, the first source is 16 graphs,
sent by the supervisor of this paper through 10 different scientific papers,
the second source were two functions that generates binary trees found in
the file graph_generation.py in (Brandberg 2021).

The function generateAllTrees(leaves, keepSmallerTrees) generates all bi-
nary trees up to a specified number of leaves, the boolean parameter
“keepSmallerTrees” specify keeping trees with smaller quantity of leaves.

The second function generateXRandomTrees(leaves,trees,seed) works sim-
ilar to generateAllTrees(), but only keeps the trees with the most leaves
and limits the quantity of trees between each iteration.

21



The graphs analyzed were grouped into two subsets: circular (figure 3.1)
and rectangular phylogenetic trees (figure 3.1).

Figure 3.1: Examples of circular phylogenetic trees where the root is located in the center of a disc
and branches extends at different angles. Left to right is graph 4, 6 and 8 (Frygelius
et al. 2010; Mazet et al. 2003; Klinter et al. 2019). Republished with permission of
Copyright @John Wiley Sons – Books 2010, from Evolution and human tissue expression
of the Cres/Testatin subgroup genes, a reproductive tissue specific subgroup of the type 2
cystatins, Frygelius et al., 12, 3, 2010; permission conveyed through Copyright Clearance
Center, Inc. This figure was published in Gene, 316, Mazet et al., Phylogenetic rela-
tionships of the Fox (Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier
2003. This figure was published in Molecular Phylogenetics and Evolution, 139, Klinter
et al., Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota),
106558, Copyright @Elsevier 2019.

Figure 3.2: Examples of the rectangular phylogenetic trees where root is the furthest pixel to one
side and the leaves all point in the opposite direction. Left graphs 15, and right is 12
found (Rajangam et al. 2008b; Nalbant et al. 2005).

22



3.3 Implementation

3.3.1 General overview of the implementation

The code first calls the thinning algorithm. For practicality reasons, this
first adds a thin border of one pixel to the image and inverts it. The
traversal algorithm is then called, the root is chosen, and the graph given to
the algorithm, is traversed from the root. When all intersections and leaves
have been located, a modified image and the Newick code is returned.

For more information see the run() function in main.py (Brandberg 2021).

3.3.2 Thinning implementation

The algorithm first adds a one-pixel border around the image to ensure no
pixel outside the image is accessed. The image is made binary, inverted
and NumPys masked arrays is used to quickly iterate across the pixels of
the image and masking pixel that does not need more modifications.

The thinning is performed by iterating over the pixels of the image during
several passes. When no pixels are removed during a pass, the algorithm
is complete. Each pass is divided into four sub passes, each representing
an orthogonal direction (N, S, E, W). Pixels are marked for removal if it’s
located on an edge in the direction of the sub pass and is an 8-simple
while not being an end point. After any sub pass, all marked pixels are
removed and masked (Cychosz 1994).

For more information see thining_algorithm.py (Brandberg 2021).

3.3.3 Graph finding implementation

The root is chosen by giving a direction (N, S, E, W) to the algorithm.
The pixel of the same color as the graph and closest to that specified
directional edge of the image, is the choice for root. Intersections and
leaves of the graph are found by traversing neighboring pixels of the same

23



color.

Each pixel adjacent to another pixel of the same color is a neighbor. When
traversing the image, already visited pixels are marked using NumPys
Masked array. Unless the root has no neighbors, a pixel with no unmarked
neighbors is an endpoint, equivalent of a leaf. A pixel with one unmarked
neighbor is an arcpixel, the same as a point on a branch. If there are two
or more unmarked neighbors, the pixel is an interior node(intersection).

When the algorithm encounters an arcpixel the current pixel is discarded
and the non-visited neighbor is chosen as the current pixel instead. En-
countering a leaf just returns the Newick format of a leaf and a list of
vertices since the last intersection.

Finding intersections uses the adjacency problem approach discussed in
background. The unmarked neighbors found are called recursively and
Newick code is generated from each, the list of vertices and Newick format
is then returned.

For more information see graph_finder.py (Brandberg 2021).

3.3.4 Tree generation implementation

The function generateAllTrees(L, K) starts with a tree of two leaves and
adds the tree to a set of new trees.

At each iteration step over the trees in the set, the algorithm substitutes
one leaf at the time with a basic tree of two leaves to create a new tree.
This tree is added to a temporary set containing all new trees in this
iteration. The procedure is repeated L-2 times. The parameter K decides
if the original trees with smaller number of leaves will be kept.

The three images of figure 3.3 shows the set after the first iteration when
keepSmallerTrees is set to true. In the next pass, the algorithm will create
8 new trees. This is the same as the number of leaves in the current trees,
but 3 of these will be duplicates and therefore ignored.

The function generateXRandomTrees(L,T,R) works like generateAllTrees(L,K)

24



Figure 3.3: The three trees stored in the set after one iteration.

but where K is false and T decides how many trees to keep during each
iteration. The trees to keep are chosen randomly.

A problem with generateAllTrees() is that Python list have a limitation
which prevents the use of more than 15 leaves, this is due to a memory
limitations using Python sets.

Because of this limitation, the only option were to use generateXRan-
domTrees(), when encountering trees with larger number of leaves.

When generating the graphs, the package

For more information see graph_generation.py (Brandberg 2021).

3.4 Testing of the graphs

3.4.1 Testing the 16 graphs

To evaluate the results there are a few aspects we focus on.

These include, whether the Newick Format were correctly extracted. Suc-
cessful test without modifying the image. If modifications were necessary,
was the problem only related to a few small problems or were there major
errors in the output.

To be correct the entire phylogenetic tree, from root to intersections and
finally to leaves must be found. A tree which requires modifications may
be deemed as successful if there are maximum 3 small errors which can be
fixed quickly. After these modifications, the code is required to correctly

25



identify all interior nodes and leaves to not be deemed a failure. An
exception to this rule were the non-binary graphs, which did not specifically
require the hierarchical structure of non-binary interior nodes to be correct.
But all other aspects still needed to be correct. Motivations for non-binary
aspect is found in the discussion section.

Note that finding the correct threshold is not counted as a modification.

In short, 100 percent of the leaves and interior nodes must be found and
display correct parent-child relationship, with only a few minor modifica-
tions, to be successful. The sole exception were the non-binary trees where
the rules of the relationships could be bent a little bit for the non-binary
parts.

The Problems that arose during testing include:

• bad positioning of root,

• non-binary sub-trees of the tree,

• non-graph parts overlapping with the tree, for example text and lines,

• holes or blocks resulting from bad thresholds,

• no possibility of choosing a correct threshold,

• branches too close to each other.

Some errors could easily be corrected.

• Bad positioning of root was fixed by drawing lines or removing nonessen-
tial pixels of the image.

• Text or numbers overlapping with the graph, were modified by chang-
ing the threshold to more appropriate value.

• When branches came too close to each other, setting a precise thresh-
olds, within a small margin for error was often enough.

• The non-binary errors were noted in the result as discrepancy.

• No possibility of choosing a threshold because selected value was to
high and low at the same time, for different parts of the graph, meant

26



that no useful output could be extracted and noted as failure in the
result.

3.4.2 Testing of generated binary phylogenetic trees

The tests were performed by generating all possible binary trees of two to
ten leaves using the function generateAllTrees(), for trees of more leaves
we used generateXRandomTrees(). These generated images of trees were
given to the algorithm and the algorithmically extracted code was com-
pared to the original Newick code, finally results were returned.

Figure 3.4: Examples of three images tested, left to right, their quantity of leaves are 10, 4, 10.

All trees up to 10 leaves were tested, figure 3.4 shows some of them.
When testing trees of more leaves, the set of trees were limited to 200
trees. The tests, using the limited number of leaves, were performed on
up to 20 leaves, 50, 60, 70, .. 110 leaves. These numbers were used due
to the time it took to thin and traverse the trees, just generating the set
of trees took a fraction of the time and was not a factor in the decision
to limit the number of leaves or trees. The figure 3.5 shows one of the
trees of 60 leaves.

27



Figure 3.5: Examples of one of the larger trees tested of 60 leaves.

28



4 Result

This section covers the overview of results from testing the 16 graphs
received and testing the generated graphs. The specifics of testing the 16
graphs can be found in the appendix.

4.1 Overview of results

The success of a test is determined by a string in Newick format being
generated as an image of a phylogenetic tree, then run through the algo-
rithm and returned as new Newick format string. If a comparison between
these two strings returns and are equal, the test is considered successful.
The success rate is the percentage of successful tests.

When generating trees, no matter the number of leaves tested, all trials
returned a success rate of 100 percent but higher quantities of trees or
leaves, took longer to run. The time limited the tests to either:

• all binary trees of up to 10 leaves,

• or selection of 200 trees, when using more leaves.

Analyzing provided phylogenetic trees, the circulars had a success rate of
25 percent due to problem of choosing valid threshold. All these graphs
required modifications to find the root (Table 4.1).

The rectangular phylogenetic trees had a success rate of 83 percent, with
two failures due to lines intersecting with the graph and in the case of
graph 9 triangles which abstractly represented sub-trees. Two graphs
needed modifications of the root as non-graph pixels were chosen. (Table
4.2). The most common problem was due to non-binary parts of the

29



Graph ID Success Failure Root Threshold
4 1 1 175
6 1 1
8 1 1
11 1 1
Total 1 3 4

Table 4.1: Graph ID is the id of the graph, Success and failure shows the result, Root shows if root
modification were necessary and Threshold shows a numbered that worked if successful.

Graph ID Success Failure Root Non-binary Overlap Triangles Threshold
1 1 1 130
2 1 1 1
3 1 1 130
5 1 1 1 35
7 1 1 130
9 1 1 1
10 1 150
12 1 1 1 130
13 1 130
14 1 1 14
15 1 1 130
16 1 1 100
Total 10 2 2 7 4 1

Table 4.2: For Graph ID, Success, failure, Root and Threshold (see table 4.1). Non-binary shows
these graphs. Overlap shows graphs where modifications were necessary to overlapping
text or lines. Triangles shows graphs with large triangles at the end of leaves, representing
sub trees.

graphs. This involved 58 percent of all rectangular trees and 60 percent
of the successful ones. This problem was handled as a minor error which
did not affect the success rate of the algorithm. This was due to non-
binary parts only affecting parent-child relationship in these few places
and as the alternative would be to not include these graphs in the result.
As for overlap, two of the successful trees had problems involving text
overlapping the graph. In the case of graph 5, a leaf disappearing due to
being too short is also included in this. The most common threshold was
130 and 150 were the highest necessary value of the successful trees.

30



Leaves Trees
Time
(seconds)

Time
(Minutes)

Time/Tree
Time
(Set)

Time
(Alg)

Time/Tree
(Alg)

Success

2 1 0.72 0.01 0.72 0 0.72 0.72 100%
3 2 0.31 0.01 0.16 0 0.31 0.16 100%
4 5 0.76 0.01 0.15 0 0.76 0.15 100%
5 14 2.25 0.04 0.16 0 2.25 0.16 100%
6 42 7.46 0.12 0.18 0 7.46 0.18 100%
7 132 25.07 0.42 0.19 0 25.07 0.19 100%
8 429 94.40 1.57 0.22 0 94.39 0.22 100%
9 1430 300.14 5.00 0.21 0.02 300.12 0.21 100%
10 4862 1099.60 18.33 0.23 0.05 1099.55 0.23 100%

Table 4.3: Leaves is the number of leaves in the trees. Trees is the number of trees in the set.
Time indicate seconds unless otherwise specified. Time/Tree is time per tree. Time(Set)
indicate time to create the set of trees. Time(Alg) is the time for the algorithm to run
on the set of trees. Success is the chance of success given the set of trees.

4.2 The Generated Trees

Using a function to collect all possible binary trees of up to 10 leaves
yielded the results seen in table 4.3. This tested in total 6917 trees of up
to 10 leaves, all of the trials were successful.

Some conclusions could be drawn from table 4.3:

• The time to create the set of trees is negligible compared to the time
running the algorithm.

• There is an increase in run time when the number of trees and leaves
increase and using time per tree we see that each leaf adds to the
time.

More information found by reviewing table 4.4:

• When the column leaves increase, we see a trend of convergence in
the column Multiplicative Increase (Trees). This column displays the
multiplier of quantity increase of trees compared to the row above.
Notice that even though the column Multiplicative Increase (Trees)
looks convergent as the column Increase of Multiplier decreases, this
can still be divergent.

31



Leaves Trees
Multiplicative
Increase (Trees)

Increase of
Multiplier

Time
Multiplicative
Increase (time)

2 1 0.72
3 2 2.0 0.31 0.43
4 5 2.5 0.50 0.76 2.5
5 14 2.8 0.30 2.25 2.9
6 42 3.0 0.20 7.46 3.3
7 132 3.1 0.14 25.07 3.4
8 429 3.3 0.11 94.40 3.8
9 1,430 3.3 0.08 300.14 3.2
10 4,862 3.4 0.07 1099.60 3.7
11 16,796 3.5 0.05
12 58,786 3.5 0.05
13 208,012 3.5 0.04
14 742,900 3.6 0.03
15 2,674,440 3.6 0.03

Table 4.4: Leaves is the number of leaves in the trees used, Time indicate seconds, Multiplicative
Increase (Trees) is the multiplicative increase in quantity of trees, Increase of Multiplier
is how much this multiplier grows when the number of leaves grow.

• The time increases of working on sets with more leaves and larger sets
of trees increases by a multiplier of approximately the same same size
as the trees for the 10 first leaves but the multiplier is around 0.3
higher.

As an example, if we assume a multiplier of 3.7 for time increase, run-
ning the algorithm for all binary trees of 11 leaves would take around 70
minutes.

In table 4.5, we limiting ourselves to a smaller subset of possible binary
trees, with maximum of 200 trees. This lets us increase the number
of leaves while keeping the time for running the program down. The
generation yielded the result seen in table 5 which tested 4196 trees of
up to 110 leaves, all of these trials were also successful. Notice the jump
in the number of leaves, after 20 in the result. We see that the time to
create the set of trees is still negligible compared to running the algorithm.

The table 4.6 below compares the time it takes to run the two functions
generateXRandomTrees() and generateAllTrees(). We see that the error

32



Leaves Trees
Time
(Total)

Time
(Minutes)

Time/Tree
Time
(Set)

Time
(Alg)

Time/Tree
(Alg)

Success

2 1 0.69 0.01 0.69 0 0.69 0.69 100%
3 2 0.26 0.00 0.13 0 0.26 0.13 100%
4 5 0.74 0.01 0.15 0 0.74 0.15 100%
5 14 2.23 0.04 0.16 0 2.23 0.16 100%
6 42 6.80 0.11 0.16 0 6.80 0.16 100%
7 132 23.42 0.39 0.18 0 23.42 0.18 100%
8 200 38.83 0.65 0.19 0.01 38.83 0.19 100%
9 200 42.92 0.72 0.22 0.02 42.91 0.22 100%
10 200 46.75 0.78 0.23 0.04 46.71 0.23 100%
11 200 48.46 0.81 0.24 0.04 48.42 0.24 100%
12 200 53.53 0.89 0.27 0.06 53.47 0.27 100%
13 200 62.02 1.03 0.31 0.08 61.94 0.31 100%
14 200 66.71 1.11 0.33 0.11 66.60 0.33 100%
15 200 68.00 1.13 0.34 0.12 67.88 0.34 100%
16 200 69.65 1.16 0.35 0.14 69.50 0.35 100%
17 200 75.86 1.26 0.38 0.17 75.68 0.38 100%
18 200 81.51 1.36 0.41 0.21 81.30 0.41 100%
19 200 85.09 1.42 0.43 0.24 84.85 0.42 100%
20 200 91.56 1.53 0.46 0.25 91.31 0.46 100%
50 200 280.47 4.67 1.40 1.92 278.54 1.39 100%
60 200 315.16 5.25 1.58 3.16 312.00 1.56 100%
70 200 351.95 5.87 1.76 4.25 347.70 1.74 100%
80 200 374.78 6.25 1.87 5.74 369.04 1.85 100%
90 200 443.52 7.39 2.22 6.85 436.67 2.18 100%
100 200 493.57 8.23 2.47 9.07 484.50 2.42 100%
110 200 575.45 9.59 2.88 10.50 564.95 2.83 100%

Table 4.5: Leaves is the number of leaves in the trees. Trees is the number of trees in the set,
Time indicate seconds unless otherwise specified, Time/Tree is time per tree, Time(Set)
indicate time to create the set of trees, Time(Alg) is the time for the algorithm to run on
the set of trees, Success is the chance of success given the set of trees.
Notice there is a jump from 20 leaves to 50 leaves in the table.

33



Leaves All XRandom Error Time/Tree
2 0.72 0.69 0.029
3 0.16 0.13 0.026
4 0.15 0.15 0.006
5 0.16 0.16 0.001
6 0.18 0.16 0.016
7 0.19 0.18 0.013
8 0.22 0.19 0.026
9 0.21 0.22 0.005
10 0.23 0.23 0.008

Table 4.6: Leaves is the number of leaves in tested trees, All is the time per tree when running
generateAllTrees(), Xrandom is the time per tree when running generateXRandomTrees(),
Error Time/Tree is the absolute time difference between them.

between them in terms of time per tree is very small when talking about
10 leaves.

34



5 Discussion

This thesis investigated the feasibility of using neighboring pixels to tra-
verse and extract hierarchical data from phylogenetic trees using Python.
The purpose was to create a program which, given an image, outputs the
structure of the tree graph. The paper did not seek to solve the problem
of combining this hierarchical data with the names of leaves and intersec-
tions. The pixel coordinate of leaves and intersections were stored in the
Newick format to make them easy to find.

We found that the method works flawlessly under ideal circumstances,
when generating binary trees of arbitrary leaf size. When checking the
16 images of graphs, of the circular phylogenetic trees, only 1 out of 4
worked, but all needed modifications. Of the 12 rectangular phylogenetic
trees, 2 failed and 4 needed small modifications to work. This makes a
success rate of 83 percent.

We also found that 58 percent of the rectangular trees were non-binary
which should be noted but not result in failure, as they do not affect the
main performance of the algorithm. A non-binary intersection only affects
sibling relationships, if there exist an intersection with three children, two
of these children will be replaced by an intersection whose children are the
two replaced children. This reasoning can be expanded to intersections
of more than three children. As these non-binary graphs is almost as
interesting as binary graphs from the point of exploring the feasibility,
and the non-binary aspect does not affect affinity with problems of root,
overlapping non-graph parts, threshold and too close branches, they were
used in the analyzes.

35



5.1 Sources of error

A source of error is contained in the control the non-generated graphs, as a
person must check the Newick code or the returned, modified image. Any
mistake may lead to missed errors. These results were checked multiple
times and at different days which should counteract possible errors.

Another source of error is related to the limitation of testing generated
trees. As trees of 11 leaves or more were not tested extensively, smaller
subsets of the possible trees were used and no trees with leaves of more
than 110 leaves were run through the algorithm due to increasing runtime.
The number of trees tested of up to 10 leaves were 6917 and the number
of trees of 11 or more leaves tested were 4196, in total 11,113 trees. Any
error occurring in a generated tree would also occur on a sub-tree, but as
100 percent of these cases tested succeed, using ideal quality images of
phylogenetic trees. We are confident this method works in the ideal case.

5.2 Problematization

One problem is the limited number of real world examples of phylogenetic
trees used. If done again, a large number of scientific papers with phylo-
genetic trees would be collected and a random selection of these graphs
would be run through the algorithm. The number of graphs would have
to be limited to be manageable as measure of performance if the control
is performed by eye, by one person. As a side note, collecting licenses
for this large quantity of graphs would also be a limiting factor to this
suggestion.

A problem with the method is the reliance on threshold. For some graphs
the acceptable range of threshold values was big while for example graph
5 only values between 32 and 37 could be used. The only way to find
the correct range was testing and checking by eye. Another problem with
the method is locating the root. This was often easy to fix but demanded
manual revisions of image in applicable cases.

36



As described, the biggest obstacles are finding the root, text or lines over-
lapping the graph, bad quality of image which complicates selection of
threshold or makes threshold selection impossible, or lastly branches al-
most overlapping each other.

The cases where this algorithm would be most useful are in large phylo-
genetic trees with many leaves and intersections. Typing these by hand
may not be feasible and here the algorithm would be useful. The problem
with these trees is that information is packed tight, numbers may not fit
without encroaching on the graph using lines or themselves. Branches
may need to be too close to each other to fit on the page.

5.3 Conclusion

This method shows promise if you are prepared to verify the result after
the run. Looking at the data, the algorithm works better with rectangular
phylogenetic trees than circular ones but as the data set is small, confirm-
ing this with certainty is not possible. If you stay within the limitations of
the algorithm, or you ignore the non-binary limitation but accept incorrect
hierarchically classifications in these cases, this is a possible method to
use.

As the extraction of texts were ignored in this paper, there are more work
to be done on this application. As the runtime was not in focus, the code
was optimized a bit but not enough, a possible way forward would be
to port the code to a faster language than Python, replace the thinning
algorithm with a faster one. Lastly, implement a process that combines
text extraction with the coordinates of inserted in the Newick code for
further development of the algorithm. Another feature to implement would
be in the further development would be the lifting the limitation of non-
binary parts, maybe by looking at horizontal and vertical tendencies of
branches.

So is the method feasible? Yes, it works in the ideal circumstance and
if you allow modification, to some part of the images, it then worked for

37



a majority of them. Is the method practical? Maybe, depends on the
manual labor allowed by the specific use case. Can the algorithm handle
multiple trees at the same time, meaning it be automated? Yes if you
know an acceptable threshold and all images are modified prior to run or
do not need modifications. The quality of each image would need to be
acceptable and at the same level for all the phylogenetic trees.

38



References

Brandberg, A. (2021). Dendogram Traversal. https://github.com/bjru/dendogram-
traversal.

Choudhuri, S. (2014). “Chapter 2 - Fundamentals of Molecular Evolution”. In: Bioinformatics
for Beginners. Ed. by S. Choudhuri. Oxford: Academic Press, pp. 27–53. isbn: 978-0-12-
410471-6. doi: https://doi.org/10.1016/B978-0-12-410471-6.00002-5. url:
https://www.sciencedirect.com/science/article/pii/B9780124104716000025.

Clark, A. (2009). PIL:s Image.convert() function. [Accessed 14-August-2021]. url: https://
pillow.readthedocs.io/en/stable/reference/Image.html?highlight=convert#
PIL.Image.Image.convert.

Cychosz, J.M. (1994). “Efficient Binary Image Thinning Using Neighborhood Maps”. In:
Graphics Gems IV. USA: Academic Press Professional, Inc., 465–473. isbn: 0123361559.
url: https : / / books . google . se / books ? id = CCqzMm_ - WucC & lpg = PA465 & dq =
Efficient % 20Binary % 20Image % 20Thinning % 20Using % 20Neighborhood % 20Maps &
hl=sv&pg=PA466#v=onepage&q&f=false.

Djerbi, S. et al. (2005). “The genome sequence of black cottonwood (Populus trichocarpa)
reveals 18 conserved cellulose synthase (CesA) genes”. In: Planta 221. Copyright @Springer
Nature 2005, pp. 739–746. doi: 10.1007/s00425-005-1498-4.

Felsenstein, J. (1990). The Newick tree format. [Accessed 14-August-2021]. url: https:
//evolution.genetics.washington.edu/phylip/newicktree.html.

Frygelius, J. et al. (2010). “Evolution and human tissue expression of the Cres/Testatin sub-
group genes, a reproductive tissue specific subgroup of the type 2 cystatins”. In: Evolution
& Development 12. Copyright @John Wiley Sons – Books 2010. doi: 10.1111/j.1525-
142X.2010.00418.x.

Fugelstad, Johanna et al. (2009). “Identification of the cellulose synthase genes from the
Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expres-
sion and enzyme activity.” In: Fungal genetics and biology : FG & B 46 10. Copyright
@Elsevier 2009, pp. 759–767. doi: 10.1016/j.fgb.2009.07.001.

Gallego, A.J., J. Calera-Rubio, and D. Lopez (Jan. 2012). “Structural Graph Extraction from
Images”. In: vol. 151, pp. 717–724. isbn: 9783642287640. doi: 10.1007/978-3-642-
28765- 7_86. url: https://www.researchgate.net/publication/237265944_
Structural_Graph_Extraction_from_Images.

Huerta-Cepas, J., F. Serra, and P. Bork (2016). ETE 3: Reconstruction, analysis and vi-
sualization of phylogenomic data. Mol Biol Evol 2006, [Accessed 14-August-2021]. doi:
10.1093/molbev/msw046. url: http://etetoolkit.org/.

39



Klinter, Stefan, Vincent Bulone, and Lars Arvestad (2019). “Diversity and evolution of chitin
synthases in oomycetes (Straminipila: Oomycota)”. In: Molecular Phylogenetics and Evolu-
tion 139. Copyright @Elsevier 2019, p. 106558. issn: 1055-7903. doi: https://doi.org/
10.1016/j.ympev.2019.106558. url: https://www.sciencedirect.com/science/
article/pii/S1055790318301830.

Konrad, Anke et al. (Feb. 2014). “The Phylogenetic Distribution and Evolution of Enzymes
Within the Thymidine Kinase 2-like Gene Family in Metazoa”. In: Journal of molecular
evolution 78. Copyright @Springer Nature 2014, pp. 202–213. doi: 10.1007/s00239-
014-9611-6.

Laubach, T., A. von Haeseler, and M. Lercher (May 2012). “TreeSnatcher plus: Capturing
phylogenetic trees from images”. In: BMC bioinformatics 13, p. 110. doi: 10.1186/1471-
2105- 13- 110. url: https://www.researchgate.net/publication/225042859_
TreeSnatcher_plus_Capturing_phylogenetic_trees_from_images.

Lee, P.S. et al. (2017). “PhyloParser: A Hybrid Algorithm for Extracting Phylogenies from
Dendrograms”. In: 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR) 01, pp. 1087–1094. url: https://www.semanticscholar.org/
paper/PhyloParser%3A-A-Hybrid-Algorithm-for-Extracting-from-Lee-Yang/
ae7c43ad409a7be5dc0cc59f29d3c30eee068d05.

Mazet, Francoise et al. (Nov. 2003). “Phylogenetic relationships of the Fox (Forkhead) gene
family in the Bilateria”. In: Gene 316. Copyright @Elsevier 2003, pp. 79–89. doi: 10.1016/
S0378-1119(03)00741-8.

Nakhleh, L. (2013). “Evolutionary Trees”. In: Brenner’s Encyclopedia of Genetics (Second
Edition). Ed. by S. Maloy and K. Hughes. Second Edition. San Diego: Academic Press,
pp. 549–550. isbn: 978-0-08-096156-9. doi: https://doi.org/10.1016/B978-0-12-
374984-0.00504-0. url: https://www.sciencedirect.com/science/article/pii/
B9780123749840005040.

Nalbant, Demet et al. (Feb. 2005). “FAM20: an evolutionarily conserved family of secreted
proteins expressed in hematopoietic cells”. In: BMC genomics 6, p. 11. doi: 10.1186/
1471-2164-6-11.

Olsen, G. (1990). Gary Olsen’s Interpretation of the ’Newick’s 8:45’ Tree Format Standard.
[Accessed 14-August-2021]. url: https://evolution.genetics.washington.edu/
phylip/newick_doc.html.

Peltier, J.B. et al. (2002). “Central Functions of the Lumenal and Peripheral Thylakoid Pro-
teome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction”. In:
The Plant cell 14, pp. 211–236. doi: 10.1105/tpc.010304. url: https://pubmed.
ncbi.nlm.nih.gov/11826309/.

Rajangam, Alex S. et al. (Sept. 2008a). “MAP20, a Microtubule-Associated Protein in the
Secondary Cell Walls of Hybrid Aspen, Is a Target of the Cellulose Synthesis Inhibitor 2,6-
Dichlorobenzonitrile ”. In: Plant Physiology 148.3, pp. 1283–1294. issn: 0032-0889. doi:
10.1104/pp.108.121913. eprint: https://academic.oup.com/plphys/article-
pdf/148/3/1283/37095583/plphys\_v148\_3\_1283.pdf. url: https://doi.org/
10.1104/pp.108.121913.

40



Rajangam, Alex Selvanayagam et al. (Sept. 2008b). “Evolution of a domain conserved in
microtubule-associated proteins of eukaryotes”. In: Advances and applications in bioinfor-
matics and chemistry : AABC 1, pp. 51–69. doi: 10.2147/AABC.S3211.

The NumPy Community (2021). NumPys Masked arrays. [Accessed 14-August-2021]. url:
https://numpy.org/doc/stable/reference/maskedarray.html.

41



6 Appendix

The specifics of the results can be found here. The results from specific
graphs of first circular phylogenetic trees and then rectangular phyloge-
netic trees are displayed in this section.

6.1 The Circular Phylogenetic Trees (Graph 4, 6, 8, 11)

This section contains the specifics of testing each of the circular phyloge-
netic graphs.

6.1.1 Graph 4

The graph 4, figure 6.1 required a small fix to correct root position and
a part of the graph which had color 214 on the grayscale, these two
modifications were necessary as using threshold of 214 resulted in problems
of artifacts. Using the two modifications and a threshold of 175 worked
for giving a perfect readout. When trying different values, threshold 130
missed spots in the graph while 180 made numbers overlap it, figure 6.2,
(Frygelius et al. 2010).

42



Figure 6.1: Graph 4 and the result of running the algorithm on it. Red pixels in right image are
the intersections and leaves, middle image are the two modifications performed (Frygelius
et al. 2010). Republished with permission of Copyright @John Wiley Sons – Books
2010, from Evolution and human tissue expression of the Cres/Testatin subgroup genes,
a reproductive tissue specific subgroup of the type 2 cystatins, Frygelius et al., 12, 3,
2010; permission conveyed through Copyright Clearance Center, Inc.

Figure 6.2: Graph 4, where left image had spots missed by threshold 130, middle shows intersection
at threshold 180, right shows result using threshold 175. (Frygelius et al. 2010). Repub-
lished with permission of Copyright @John Wiley Sons – Books 2010, from Evolution
and human tissue expression of the Cres/Testatin subgroup genes, a reproductive tissue
specific subgroup of the type 2 cystatins, Frygelius et al., 12, 3, 2010; permission conveyed
through Copyright Clearance Center, Inc.

6.1.2 Graph 6

Correction to the root were necessary, note that the wrong choice of root
does not affect the result as this graph proved to be unusable by the
algorithm, figure 6.3.

The tree contained too many intersections where branches were too close
to each other at sharp angles, that created cycles for traversal see figure 6.4
as an example. This problem can be mitigated by changing the threshold,
but too high threshold yields artifacts which we want to mitigate. For this

43



graph to work the threshold must be above 252 which is too high to yield
useful results (Mazet et al. 2003).

Figure 6.3: Graph 6, Original image with a modification and the result (Mazet et al. 2003). This
figure was published in Gene, 316, Mazet et al., Phylogenetic relationships of the Fox
(Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier 2003.

Figure 6.4: Graph 6, showing the problems of the graph where cycles are created where they should
not exist. Red pixels are leaves or intersection found by the algorithm. (Mazet et al.
2003). This figure was published in Gene, 316, Mazet et al., Phylogenetic relationships
of the Fox (Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier 2003.

6.1.3 Graph 8

The graph 8, figure 6.5 required modification of root. It had a similar
problem to graph 6 where branches are intersecting. One more factor
affecting the result were the lines from numbers to parts of the graph,
intersecting with the branches, these lines were at least as dark as the
graph which means threshold did not solve it (Klinter et al. 2019).

44



Figure 6.5: Graph 8, Original image with modification to root and some problem parts (Klinter et al.
2019). This figure was published in Molecular Phylogenetics and Evolution, 139, Klinter
et al., Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota),
106558, Copyright @Elsevier 2019.

6.1.4 Graph 11

Some modification to the root were necessary to figure 6.6, the problem
were that there existed no threshold that did not create artifacts. This
graph did not work unless you performed major modifications to the colors
boxes of the image. The results of thinning can be seen in the right image
of figure 6.6, (Konrad et al. 2014).

Figure 6.6: Graph 11, showing original image and the result of the algorithm (Konrad et al. 2014).
Reprinted by permission from Springer: Nature, Journal of molecular evolution, (The
Phylogenetic Distribution and Evolution of Enzymes Within the Thymidine Kinase 2-like
Gene Family in Metazoa, Konrad et al.), Copyright @Springer Nature 2014.

Using threshold 150, holes were left in the graph, this meant an increase
of the threshold were necessary but the green background were already
passed the threshold which meant it needed to be lowered, figure 6.7.

Because the graph was in contact with the colored box the solution would
be to remove all these connections, but that is too many modifications.

45



Figure 6.7: Graph 11, why no threshold works. Holes created at the same time as non-graph parts
are overlapping with it (Konrad et al. 2014). Reprinted by permission from Springer:
Nature, Journal of molecular evolution, (The Phylogenetic Distribution and Evolution of
Enzymes Within the Thymidine Kinase 2-like Gene Family in Metazoa, Konrad et al.),
Copyright @Springer Nature 2014.

A suggestion of maybe filtering out the colors is possible? Will not be
handled in this paper.

6.2 The rectangular phylogenetic Trees (12 Graphs)

This section contains the specifics of testing each of the rectangular phy-
logenetic graphs.

6.2.1 Graph 1

This graph cannot be shown here due to not clearing the copyright in time
but it is figure 3 from the paper of Rajangam et. al. (Rajangam et al.
2008a).

The graph contained multiple non-binary intersections, which would make
the graph interpreted incorrectly. Ignoring the problem with non-binary
tree, using threshold 130 were enough to yield correct result.

When deciding the threshold, the brightest relevant pixel of the graph were
66 meaning the threshold must be above this value. As some numbers
intersected with the graph, the darkest pixels NOT of the graph had value
151, this meant a threshold between these two values.

46



6.2.2 Graph 2

The algorithm did not work for this graph of figure 6.8, it had non-binary
parts and multiple false positives. Some parts intersecting with graph at
value 106, while brighter parts of the graph had 143. As seen in figure
6.9, using threshold 150, the graph is visible but the result is not usable
without preprocessing where text close to the graph is removed (Frygelius
et al. 2010).

Figure 6.8: Graph 2, showing the original graph (Frygelius et al. 2010). Republished with permis-
sion of Copyright @John Wiley Sons – Books 2010, from Evolution and human tissue
expression of the Cres/Testatin subgroup genes, a reproductive tissue specific subgroup of
the type 2 cystatins, Frygelius et al., 12, 3, 2010; permission conveyed through Copyright
Clearance Center, Inc.

Figure 6.9: Graph 2, one of the problem areas, red pixels are leaves and intersections found, most
of these is text and not part of the graph(Frygelius et al. 2010). Republished with per-
mission of Copyright @John Wiley Sons – Books 2010, from Evolution and human tissue
expression of the Cres/Testatin subgroup genes, a reproductive tissue specific subgroup of
the type 2 cystatins, Frygelius et al., 12, 3, 2010; permission conveyed through Copyright
Clearance Center, Inc.

47



6.2.3 Graph 3

This phylogenetic tree in figure 6.10 is not circular, but it also looks
different from the other rectangular phylogenetic trees, as it’s closer to
the rectangular it will be categorized as such. A modification of the root
was necessary to circumvent the word “Eutheria”. The algorithm worked
using threshold 130 and the modification to the root (Frygelius et al.
2010).

Figure 6.10: Graph 3, original image and the thinned version (Frygelius et al. 2010). Republished
with permission of Copyright @John Wiley Sons – Books 2010, from Evolution and
human tissue expression of the Cres/Testatin subgroup genes, a reproductive tissue spe-
cific subgroup of the type 2 cystatins, Frygelius et al., 12, 3, 2010; permission conveyed
through Copyright Clearance Center, Inc.

As a side note, in figure 6.11 when threshold 200 was originally used, the
first intersection created a cycle.

6.2.4 Graph 5

The tree in figure 6.12 is not binary at root level. Ignoring the non-binary
aspect, almost no modifications were necessary and using threshold 35
there were only two misses in the graph. There were 115 leaves in the
tree (Mazet et al. 2003).

The first mistake was missing a leaf, figure 6.13, this was removed during
thinning as the branch were too short, especially compared to the width
of the line. Notice that HsFOXF1 has no leaf in the thinned output. This

48



Figure 6.11: Graph 3, examples where bad threshold may lead to cycles in the graph. From left
to right, the cycle zoomed in, as well as before and after thinning (Frygelius et al.
2010). Republished with permission of Copyright @John Wiley Sons – Books 2010,
from Evolution and human tissue expression of the Cres/Testatin subgroup genes, a
reproductive tissue specific subgroup of the type 2 cystatins, Frygelius et al., 12, 3,
2010; permission conveyed through Copyright Clearance Center, Inc.

Figure 6.12: Graph 5, original image and the result of the algorithm, the red pixels are enlarged to
display on screen and they represent leaves and intersections (Mazet et al. 2003). This
figure was published in Gene, 316, Mazet et al., Phylogenetic relationships of the Fox
(Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier 2003.

could also have been solved by the two vertical lines having space between
them.

The second mistake, figure 6.14, being the number 1 at branch GCi-

49



Figure 6.13: Graph 5, the problem part before and after the algorithm (Mazet et al. 2003). This
figure was published in Gene, 316, Mazet et al., Phylogenetic relationships of the Fox
(Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier 2003.

Wno608 intersecting with the graph, as the value of the 1 were the same
as the graph, modifying the threshold does not help.

Figure 6.14: Graph 5, the one in the image were the same color as the graph and required modi-
fications (Mazet et al. 2003). This figure was published in Gene, 316, Mazet et al.,
Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria, 79–89,
Copyright @Elsevier 2003.

50



When searching for the threshold, branches of the graph were extremely
close to each other, making pixels in-between the two branches as dark as
38 while the graph had value 32, see figure 6.15.

Figure 6.15: Graph 5, Showing the small difference between some pixels not of the graph and some
of the graph (Mazet et al. 2003). This figure was published in Gene, 316, Mazet et al.,
Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria, 79–89,
Copyright @Elsevier 2003.

When using threshold 35, almost all vertices were displayed correctly, ex-
cept for the two mistakes mentioned earlier.

Figure 6.16: Graph 5, a part of the graph that worked perfectly after the specific threshold. (Mazet
et al. 2003). This figure was published in Gene, 316, Mazet et al., Phylogenetic rela-
tionships of the Fox (Forkhead) gene family in the Bilateria, 79–89, Copyright @Elsevier
2003.

51



6.2.5 Graph 7

The graph 7, figure 6.17, required modification of root by drawing a line
and worked flawlessly for threshold 130 (Fugelstad et al. 2009).

Figure 6.17: Graph 7, the graph used (Fugelstad et al. 2009). This figure was published in Fungal
genetics and biology : FG & B, 46 10, Fugelstad et al., Identification of the cellulose
synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis
inhibitors on gene expression and enzyme activity. 759–767, Copyright @Elsevier 2009.

6.2.6 Graph 9

The image of figure 6.18 required modifications of root. This was not
enough as no useful result could be extracted. There were two types of
problems preventing the algorithm from working on this tree. The first
was the extra lines drawn across and intersecting with the branches, figure
6.18 and 6.19, the second are the black triangles in figure 6.19, (Klinter
et al. 2019).

The lines caused problems as their color values were 0 when overlapping
the branches, this meant that the threshold could not solve that problem.
The black triangles, caused problems as they were interpreted by the al-
gorithm as an intersection with two leaves as children. The unfortunate
mistake arose from the thinning algorithm.

52



Figure 6.18: Graph 9, the original image and a problem part, there were multiple problem parts (Klinter
et al. 2019). This figure was published in Molecular Phylogenetics and Evolution, 139,
Klinter et al., Diversity and evolution of chitin synthases in oomycetes (Straminipila:
Oomycota), 106558, Copyright @Elsevier 2019.

Figure 6.19: Graph 9, more problem parts (Klinter et al. 2019). This figure was published in Molec-
ular Phylogenetics and Evolution, 139, Klinter et al., Diversity and evolution of chitin
synthases in oomycetes (Straminipila: Oomycota), 106558, Copyright @Elsevier 2019.

6.2.7 Graph 10

Using threshold 150 was enough to extract the data, figure 6.20, (Klinter
et al. 2019).

6.2.8 Graph 12

This graph of figure 6.21worked almost perfectly using threshold 130 but
as the root were non-binary the output was incorrect, ignoring the non-
binary aspect only one flaw arose, modifying this flaw were enough to fix
the tree (Nalbant et al. 2005).

The false-positive hits came from the F in leaf FAM20C(Hs) intersecting

53



Figure 6.20: Graph 10, original graph and result (Klinter et al. 2019). This figure was published in
Molecular Phylogenetics and Evolution, 139, Klinter et al., Diversity and evolution of
chitin synthases in oomycetes (Straminipila: Oomycota), 106558, Copyright @Elsevier
2019.

Figure 6.21: Graph 12, original image and the part requiring modification (Nalbant et al. 2005).

with the graph, see figure 6.21.

As some parts of the graph were as bright as 108 while the F had color
value 101, no threshold will solve this problem, figure 6.22. A small
modification of the pixels were enough to fix the problem.

Figure 6.22: Graph 12, left image is branch with color value 108, right is the F that overlaps with the
graph, value 101 (Nalbant et al. 2005).

54



6.2.9 Graph 13

This graph cannot be shown here due to not clearing the copyright in time
but it is figure 4 from the paper of Peltier et. al. (Peltier et al. 2002).

Graph 13 works flawlessly at threshold 130.

6.2.10 Graph 14

Using threshold 14 worked for figure 6.23. It was not a binary tree and
disregarding that aspect all 78 leaves were found and the algorithm worked
(Rajangam et al. 2008b).

Figure 6.23: Graph 14, original image, part of graph of color 14 and non-binary parts of the graph
(Rajangam et al. 2008b)

6.2.11 Graph 15

This graph of figure 6.24 worked using threshold 130. The graph is non-
binary but disregarding that aspect, output was correct.

55



Figure 6.24: Graph 15, original graph and the result (Rajangam et al. 2008b)

6.2.12 Graph 16

Figure 6.25: Graph 16, original graph and the single non-binary part of the graph, red pixels are en-
larged to be clearly visible (Djerbi et al. 2005). Reprinted by permission from Springer:
Nature, Planta, (The genome sequence of black cottonwood (Populus trichocarpa) re-
veals 18 conserved cellulose synthase (CesA) genes, Djerbi et al.), Copyright @Springer
Nature 2005.

A threshold of 100 were necessary in figure 6.25. There was one inter-
section with three children but disregarding this non-binary aspect, the
output was correct and returned 70 leaves.

56



Matematiska institutionen

Datalogi
August 2021

www.math.su.se

Beräkningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm


