Cloud Data Storage - Review and Com-
parison of Cryptographic Methods

Emilia Dunfelt

Handledare: Hannes Salin
Examinator: Lars Arvestad
Inlimningsdatum: 2021-06-11

Abstract

Cloud computing is a paradigm of increasing interest, solving many problems related to traditional
computing technologies such as scalability, resource constraints, location independence, and dis-
aster recovery. One of the most significant areas of cloud computing is cloud storage, allowing
customers to outsource data storage to a public provider. However, the lack of control over out-
sourced data poses a significant challenge to organizations looking to adopt the new technologies.
Using a so-called data integrity scheme, the integrity and correctness of remotely stored data can
be ensured. In this survey, we identify the crucial properties required of data integrity schemes
used in practical applications and conduct a comparative analysis of some of the recently proposed
schemes in this category. Finally, a discussion on the current state of practical implementations
offered by large cloud storage providers on the market today is given.

Sammanfattning

Molntjdnster ger goda mdjligheter att 16sa praktiska problem ofta forknippde med traditionella
metoder och tjénster, sa som resursbegrinsningar, platsberoende, datahantering och sikerhetskopier-
ing. Ett av de storsta omradena inom vilket molnet anvénds &r datalagring, vilket mojliggor for an-
vindare och organisationer att lagra filer och data pa servrar som hanteras av en extern molnlever-
antdr. Detta innebidr ocksa minskad kontroll 6ver informationen som lagras da tillgdnglighet och
datasikerhet styrs av leverantoren, vilket ofta innebdr ett stort hinder for organisationer med in-
tresse av molnlagring. Denna uppsats ger en 6versikt over kryptografiska protokoll for att verifiera
dataintegritet i molnet. Vi identifierar de avgorande egenskaper som krivs for att effektivt kon-
trollera integritet av data, samt ger en jamforande analys av nagra av de senaste protokollen inom
omradet. Slutligen disskuteras dven de mojligehter till implementation av integritetsprotokoll som
erbjuds av ledande molnleverantorer pA marknaden idag.

Acknowledgements

I want to express many thanks my supervisor Hannes Salin for his patience and guidance in writing
this thesis. I also want to thank my family for endless support along the way.

Table of contents

1 Introduction
2 Preliminaries

2.1
2.2
23

3.1
32

4.1
4.2
43
4.4

5.1
52

References

Cryptographic primitives and data structures
Cryptographic models and hardness assumptions
Exponentiation, bilinear pairings, and computational cost
3 The cloud storage model . .

Risks and challenges associated with cloud storage
Properties of data integrity schemes
4 Analysis of data integrity schemes
General structure of integrity schemes
Comparative analysis of PDPschemes
Methods of retrievability,
Comparative analysis of PoOR schemes
5 Conclusion

Practical implementations Lo

A look into the future

oo W U A

12
12
14
15
16
19
20
25
25
26

27

1. Introduction

1

Introduction

Cloud computing is rapidly emerging as one of the most prominent paradigms in the area of dis-
tributed computing today. Providing clients with near-unlimited computational resources on a pay-
per-use basis, cloud computing offers a solution to many of the limitations of traditional computing
— location independence, rapid provisioning of processing power, memory, and storage, as well as
outsourcing of measure and control services.

One area in which cloud computing proves particularly useful in many organizations is data
storage. In contrast to on-premise storage, the cloud storage model offers an on-demand scalable
solution that allows clients to access stored data from different locations and devices while also
reducing the burden of maintenance and operation. Naturally, as the adoption of cloud technologies
increases, so does the interest in the security of these solutions. Outsourcing data storage raises
concerns on data privacy and integrity, as a client storing sensitive data generally cannot assume
that a storage provider will not operate maliciously. A malicious or compromised server can modify
or even delete stored data with a low probability of detection unless the stored data is frequently
accessed. Cloud storage for data backups is, for this reason, particularly vulnerable to this kind of
integrity attack. Although the client and service provider generally operate under a service level
agreement, specifying the service’s premises such as availability, recovery conditions, and security,
this is often not enough to guarantee the integrity of the stored data.

Data integrity schemes allow a client to perform an audit on the cloud data, thereby verifying
that some part of the data has not been altered and is retrievable. The naive way of verifying data
integrity stored in a remote cloud is to download all the data and carry out the verification steps lo-
cally using the client’s computational resources. However, as one might expect, this soon becomes
impractical. One of the main reasons for outsourcing storage to a cloud storage provider is to re-
lieve the client of storing large amounts of data. Often we also assume that the client has limited
computational power. In practice, it is often better to choose a data integrity scheme that allows the
auditor to instead access only a small, randomly selected subset of the stored data in a way that also
provides good integrity guarantees. To this end, there are several solutions presented in the litera-
ture. A Proof of Data Possession (PDP) protocol allows a client to audit a small, randomly chosen,
subset of the stored data, often using precomputed authenticator values. This probabilistic method
can be used to verify, with high probability, that the stored data is intact. Another similar option
is to use a Proof of Retrievability (PoR) strategy that, although generally more computationally
intensive, also guarantees that the audited file can be restored with great probability.

In this thesis, we concentrate on methods of verifying the integrity of outsourced data and
survey some recent solutions in this area. We focus solely on PDP and PoR protocols, which have
emerged as an area of interest in research on cloud storage correctness and integrity auditing.

Section 2 provides some of the essential mathematical and cryptographical context needed for
analysis of the surveyed data integrity protocols. In Section 3 a background on the cloud computing
model is presented, as well as an analysis of the risks involved in cloud storage and a presentation of
the relevant properties of data integrity schemes. The primary analysis of state-of-the-art protocols
is presented in Section 4; we provide a comparative analysis of the properties, building blocks, and
general structure of each scheme. Finally, Section 5 briefly discusses the options available for
practical implementation of the examined protocols.

2. Preliminaries

2

Preliminaries

We here present the mathematical and cryptographic preliminaries necessary to analyze and com-
pare data integrity schemes in Section 4. The reader is assumed to be familiar with the foundations
of group theory and complexity theory.

2.1. Cryptographic primitives and data structures

This section aims to define the principal cryptographic primitives that are referenced frequently in
the examined protocols. Proofs and detailed explanations are available in [13, 7, 20].

We first specify how our notions of security are based on a security parameter in the crypto-
graphic primitives defined in this section and also in Section 3.

Definition 2.1. Let k € N be a security parameter. A function f : N — R is said to be negligible
if, for all positive integers ¢, we have that

1
Sl < 1%

for sufficiently large k.

Furthermore, we say that a problem is hard if there exists no polynomial time algorithm for
solving it. Let us now make a few definitions related to the authentication and verification of data,
which will be used heavily throughout the rest of the thesis.

Definition 2.2. A cryptographic hash function is a function H : {0,1}* — {0, 1}¥, mapping an
arbitrarily sized input document to a bit string of fixed size, generally called the hash value, or hash
digest.

We require the following properties of a cryptographic hash function:

i) Pre-image resistance: Given the value H (D) it is hard to compute D.

ii) Weak pre-image resistance: Given D it is hard to find D’ such that H(D) = H(D'). In this
case, H is also said to be collision resistant.

In order to reduce communications overhead in data integrity auditing we are often interested
in the ability to combine several hash values into a single value for verification. For this reason we
also make the following defintion:

Definition 2.3. A collision resistant hash function H : F" — G, from a finite field F" to a
multiplicative group G, of prime order p, is homomorphic if the equality

H(au+ pv) = Hw)* - H)?

holds for every u,v € F" and a, f € Gp.

2.1. Cryptographic primitives and data structures

Collision resistant hash functions can be used to verify the integrity of data by checking that a
newly computed hash value matches a previously stored hash. Instead of hashing an entire docu-
ment, we might be interested in hashing blocks of a document to save our computational resources
when verifying hash values independently. However, we must then store each file block’s hash in
memory, thereby consuming a large amount of read-only memory instead. One possible solution
to this problem is by using Merkle hash trees.

Definition 2.4. Let H be a collision resistant hash function and D = {d,,d,, ..., d,} afile divided
into n blocks. A Merkle tree is a perfect binary tree, in which the label of each leaf-node is a data
block in D. The intermediary nodes of the tree are labeled with the hash of its child nodes. The
hash value of the root is called the root-digest.

Using a Merkle hash tree, given a hash H (D) of the data D we can verify that a file block
d; € D is intact in its correct position by verifying the sibling nodes of the nodes in the path from
the leaf d; to the root. This is exactly the information required to verify a match with the root digest
H (D), given d;. An example of such a proof is shown in Figure 1.

h
H(hy. hy)

N

h, h,
H(hs, hy) H(hs, he)
h, h, hs he
H(d,.d,) H(ds,dy) H(ds,dg) H(d; dg)

NN N

d dy, dy dy ds dg d, dg

Figure 1: Merkle hash tree with data {d;, d,, ..., dg}, to verify authenticity of d; we check the values dy, h5,
and h,.

Hash functions are also commonly used to sign data in a digital signature scheme, which we
define as follows:

Definition 2.5. A digital signature scheme consists of a private key K", a public key K7*?, and
two algorithms:

Sign(D, KP"): A signing algorithm that takes a document D and the private key as
input, and returns a signature D5’ of the document.
Verify(D, DS, KP#b): A verification algorithm taking a document, its signature, and the public
key, and outputs whether the signature is valid or not.

A digital signature scheme has the following properties:

i) The verification algorithm Verify always accepts a signature generated by an honest signer.

2.1. Cryptographic primitives and data structures

ii) A signature scheme is secure if an adversary that has observed a polynomial number of
signatures generated by Sign on chosen documents cannot produce a valid signature on
some new document, except with negligible probability.

One frequently used signature scheme in the area of cloud data integrity auditing is the Boneh-
Lynn-Shacham (BLS) signature. This signature scheme relies on bilinear map computations, de-
fined in Section 2.3.

Definition 2.6 (BLS signature scheme). Let G and G; be groups of prime order p, where g is a
generator of G, and e : G X G — Gy a bilinear pairing. A BLS signature scheme is a digital
signature scheme in which K" = x, where x is a random element in Z »» the public key is K Pub —
g%, and

Sign(D, KP"): A signing algorithm taking the document D to its signature D58 =
H(D)*, where H is a so-called full-domain hash function — an RSA-
based hash function provably secure in the random oracle model (Sec-
tion 2.2) [25].
Verify(D, DS€, KP"P): Given the pair (D, DS18) the verifier checks the verification equation
e(D%¢,g) = e(H(D),x). If this equality holds, the algorithm returns
”success”’, and “failure” otherwise.

Yet another way to verify the integrity and authenticity of data are message authentication
codes (MACs), which in contrast to digital signatures are a symmetric construction in which only
a private key is used for signing and verifying. We make the following definition:

Definition 2.7. Let K" be a randomly chosen private key. A message authentication scheme
(MAC scheme) consists of two algorithms:

Sign(D, K*"): A signing algorithm taking the randomly chosen private key and the
document, generating the tag DT, often referred to as the message
authentication code (MAC).

Verify(D, DT, KPr): A verification algorithm taking the original document, its tag, and the
private key. Outputs ’success” if the tag is valid, and “failure” otherwise.

Valid tags generated by Sign should always be accepted by Verify.

A MAC scheme is said to be secure if it is secure against existential forgery under a chosen
message attack, except with negligible probability. This means that an adversary who can freely
obtain tags for chosen documents (chosen message attack), say from an unknowing signer using
their private key, should not be able to forge a message-tag pair, different from the previously seen
pairs (existential forgery), that is accepted by Verify.

We now define another cryptographic primitive commonly used in combination with hash func-
tions, and MAC schemes:

Definition 2.8. Let K be a set of encryption keys, M a space of possible messages, and C the space
of possible ciphertexts. A pseudorandom function (PRF) is an efficiently computable deterministic
algorithm, F, taking a randomly chosen key k € K and a message m € M to a value ¢ € C, such
that the output of F behaves like a random function from M to C.

2.2. Cryptographic models and hardness assumptions

A PRF is said to be secure if it is indistinguishable from a randomly chosen function from
the family of functions f : M — C, denoted by Funs[M, C]. Formally, this means that for a
challenger choosing either the function F or a random f € Funs[M, C], the probability that an
adversary given the output of a sequence of queries to the challenger can distinguish between either
choice is negligible.

Lastly, we cover the theory of zero-knowledge proofs. A zero-knowledge proof is a crypto-
graphic protocol taking place between two parties: a prover P and a verifier V. The ultimate goal
of P is to convince V' of the possession of some knowledge through a series of challenges without
revealing any information that could also be used to convince an outside party. Let y be a quan-
tity possessing the property P. A zero-knowledge proof between P and V' should then satisfy the
following properties:

i) Completeness: If the quantity y has property P, then V' should accept the proof from an
honest prover P.

ii) Soundness: If y does not have property P, then V' should only accept a proof from a cheating
prover P with negligible probability.

iii) Zero-knowledge: A valid proof from P should not, except with negligible probability, con-
vey any information to V', except the knowledge that y has property P.

The zero-knowledge property of a zero-knowledge protocol is generally proven by the con-
struction of a simulator algorithm by which the verifier simulate responses from P such that the
simulations are indistinguishable from genuine responses. Thus, V' gains no more information
through a series of interactions with P than could be obtained using a simulator.

2.2. Cryptographic models and hardness assumptions

Cryptographic schemes are often proven secure under general assumptions about the context in
which they operate. Such assumptions fall into two categories - cryptographic models and hardness
assumptions. Cryptographic models concern the abilities of the parties involved in the protocol,
such as their abilities to perform certain computations or utilize resources. For instance, a model
can grant the participants unrestricted access to a cryptographic primitive, after which a theoret-
ical statement such as security is proven. Although not proven secure in the so-called standard
model, i.e. by making no model assumptions at all, such security proofs provide us with a heuristic
indicating which part of the protocol is the weakest link in a practical implementation [12].

One of the more commonly used models is the random oracle model under which the parties
of a cryptographic protocol can efficiently evaluate a random hash function by querying an oracle,
called the random oracle. We give here the definition as in [5].

Definition 2.9. A random oracle is amap R : {0,1}* — {0, 1}* chosen by selecting each bit of
R(x) uniformly and independently, for every x. In particular, the function H : {0,1}* — {0, 1}¥
is called a random hash function.

The theory of hardness assumptions instead concerns the computational problems underlying a
cryptographic protocol. Under the assumption that a given problem cannot be solved in polynomial
time, it is possible to show that an algorithm is secure, assuming that an adversary does not have
unlimited computational resources.

We define here the hardness assumptions most frequently relied upon in protocols examined in
this thesis. We again rely on [13] in this section.

2.3. Exponentiation, bilinear pairings, and computational cost

Definition 2.10. Given a prime p, a generator g of the cyclic group Z ,, and two values g (mod p)
and g® (mod p), the Computational Diffie-Hellman Problem (CDH), or simply the Diffie-Hellman
Problem, is the problem of computing the value of g (mod p), without knowledge of the expo-
nents a and b.

Definition 2.11. Given a prime p, a generator g of Z,, and an element 7 € Z,, the discrete
logarithm problem (DLP) is to determine the integer x such that

g =h (mod p).

The final hardness assumption covered here is related to the famous RSA cryptosystem, which
we now briefly explain: Bob wishes to send a message to Alice over an insecure channel. Using the
RSA cryptosystem, Alice would then choose two large primes p and ¢, and an encryption exponent
e such that gcd(e,(p — 1)(g¢ — 1)) = 1. The pair (N = pg, e) then constitute Alice’s public key,
which she openly sends to Bob.

Bob can then choose a plaintext message m, and compute the ciphertext ¢ = m® (mod N)
before sending this value to Alice. Finally, Alice decrypts this message using her secret exponent
- the modular inverse e~! = d, which she can easily compute using her knowledge of the secret
primes p and g. She retrieves the plaintext by computing ¢ = m (mod N).

We now describe the so-called RSA assumption, a hardness assumption based on the RSA
cryptosystem.

Definition 2.12. Let N = pq be a product of two primes and e an integer such that (N, e) corre-
sponds to the public key in an instance of the RSA cryptosystem. The RSA problem is the problem
of determining m in the equation m® = ¢ (mod N) without knowledge of the factors of N.

2.3. Exponentiation, bilinear pairings, and computational cost

In this thesis, we will compare cryptographic schemes based on elliptic curve- and finite field cryp-
tography. To analyze the computational cost of the involved algorithms, we focus on the number
of costly operations involved in the process. In this setting, the most expensive operations are ex-
ponentiations in a multiplicative group and computations of a bilinear map between two elliptic
points. Arithmetic operations such as multiplication and addition are generally less costly than
exponentiations and pairing computations, and we will not consider those in our analysis.

We now give a brief overview of the theory of elliptic curves and bilinear pairings, roughly
following the presentation given in [7] and Chapter 6 of [13].

Definition 2.13. Let p be a prime. An elliptic curve E over the finite field [, is an equation of the
form
E:Y*=X’+AX +B,

such that A, B € [, and 4A3 +27B? # 0. The set of points, E (F,), on E together with the point at
infinity, denoted by O, is a finite abelian group under the addition of points on the curve.

Addition of the points P and Q on the elliptic curve E can be interpreted geometrically as in
Figure 2. That is, the sum P + Q = R on E is given by drawing the line through P and Q, finding
the third point of intersection with E and reflecting it across the x-axis.

10

2.3. Exponentiation, bilinear pairings, and computational cost

Operation Time
Addition in G, 0.003347ms
Addition in G, 0.010751ms
Addition in G 0.00037318ms
Exponentiation in G 2.662ms
Pairing 3.913ms

Table 1: Benchmark comparison using the MCL li-
Figure 2: Addition operation on the elliptic curve E. brary on the BN254 curve.

Definition 2.14. Let G, G, and G be cyclic groups of prime order g, where g, and g, are gener-
ators of G, and G, respectively. A bilinear pairing is an efficiently computable map e : Gy xXG; —
G with the following properties:

i) bilinearity: for all u,u’ € G, and v, v’ € G, it holds that
e(u-u',v) =e(u,v)- e, v)and ew,v V') = e(u,v) - e(u,v),

and;

ii) non-degeneracy: e(g, g;) is a generator of G .

As mentioned previously, we often consider pairings over elliptic curve groups. In this setting
we would typically define a pairing over the groups

e G, < E(F,), a subgroup of order g;
e G, < E(F,), a subgroup of order ¢ for some d > 0, such that G, N G, = {O}; and
e Gy < [, a multiplicative subgroup.

Explicit constructions of bilinear pairings over elliptic curve groups include the Weil pairings
and Tate pairings, which are computed using Miller’s algorithm. The Tate pairing is more com-
monly used in practice as it is computationally more efficient than the Weil pairing. For further
discussion on this deep topic, see [7].

A pairing computation has asymptotic complexity ©@(log ¢), but is in practical implementations
much slower than exponentiation over the same groups. On elliptic curves, the "exponentiation"
P" is really an addition n P since the group operation is addition. The value of such an operation is
computed using the double-and-add algorithm, similar to the fast powering algorithm for comput-
ing exponents in integer fields. Table 2.3 gives a benchmark comparison for elliptic curve pairings
computed using the MCL library on a 1.2 GHz ARM Cortex-A53 on the BN254 curve [18].

11

3. The cloud storage model

3

The cloud storage model

In the following section, we present the fundamental definitions of cloud computing, its charac-
teristics, and service- and deployment models. We then identify the primary security and privacy
risks associated with large-scale cloud storage and discuss ways to mitigate and possibly eliminate
such risks. To this end, we present several properties of interest in data storage schemes under the
assumption that the server is malicious or compromised.

The National Institute of Standards and Technology (NIST) gives the following definition of
cloud computing:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. [17]

NIST further identifies the five essential characteristics of cloud computing: on-demand self-
service, broad network access, resource pooling, scalability, and measured service. These five
properties together capture the advantage of cloud computing in large organizations. Cloud com-
puting offers a solution to the diverse computing needs of the client, such as file and data storage,
backup services, application development, and big data.

Providers of cloud computing often offer their services according to the following service mod-
els as defined by NIST.

e Software as a Service (SaaS): The provider offers applications running on its cloud infras-
tructure, accessible via a web- or program interface. Often these services follow a pay-per-
use payment model. Some examples include Google G Suite and Microsoft Office 365.

¢ Platform as a Service (PaaS): In contrast to SaaS, Platform as a Service allows the client
to develop and deploy applications onto the cloud infrastructure owned by the provider.

e Infrastructure as a Service (IaaS): This kind of service allows the client to utilize the
computational resources such as data storage and processing power of the provider. A few
of the most widely used [aaS providers are Amazon Web Services, Microsoft Azure, and
Google Cloud Infrastructure.

Following the NIST definition, we also recognize four deployment models of cloud computing:

e Private cloud: Cloud infrastructure provisioned exclusively for a single organization. Op-
erated and hosted either on-premise by the organization itself or externally by a provider.

o Community cloud: Provisioned for a community of consumers from different organizations
with shared interests and concerns such as jurisdiction, security, and policy. The infrastruc-
ture is possibly operated by one of the community organizations or by a provider.

e Public cloud: A cloud infrastructure offered to the general public over the internet. Operated
and hosted by a private provider, a government organization, or an academic institution.

e Hybrid cloud: In the hybrid cloud setting, two or more of the other infrastructures are
combined but remain separate entities bound together to satisfy the varying computing needs
of the client.

12

3.1. Risks and challenges associated with cloud storage

Cloud storage falls into the IaaS service model, and in this thesis, we primarily focus on the
private deployment model. In the context of cloud storage, we identify the following three primary
actors between which security protocols will be taking place: the client as the party interested in
outsourcing their data storage, the cloud storage provider (CSP) to whom the data will be out-
sourced, and a trusted third party auditor (TPA) responsible for auditing the integrity of the data
when outsourced to avoid a heavy computational burden on the client. The computational resources
of the client is generally assumed to be limited, and the CSP is assumed to be untrustworthy as will
be described in Section 3.1.

3.1. Risks and challenges associated with cloud storage

We here discuss the risks involved when outsourcing data storage to the cloud under the assumption
that the CSP is malicious. Risks associated with cloud storage are mostly related to the fact that
the client no longer is in possession of the outsourced data and often does not have access to
the underlying cloud infrastructure and its components. Transparency and trust are therefore of
significant importance when evaluating cloud storage solutions by different vendors.

Data availability is one risk in regards to cloud storage. A sudden outage at the CSP level
can leave the client unable to access crucial data. For this reason, cloud storage providers and
their customers operate under a Service Level Agreement (SLA), agreeing to a specified uptime
percentage during a billing cycle and otherwise often providing an agreed-upon amount of financial
compensation. For example, Google Cloud Storage provides a level of 99.95% availability [10],
and the SLA of Amazon Simple Storage Service (Amazon S3) specifies an uptime of 99.9% with
no compensation [1].

The second area of concern is that of data privacy. When outsourcing confidential data, a good
option might be to employ client-side encryption to prevent unauthorized access and leakage of
data to the CSP. However, this might be computationally expensive, and thus cloud providers can
offer server-side encryption and protection against unlawful physical access [11].

Finally, we consider the integrity of outsourced data. When accessing stored data, it is of utmost
importance that it has not unexpectedly been modified, corrupted, or even deleted. A malicious
provider might attempt to delete outsourced data that is rarely accessed by the client in order to save
storage space. Fundamentally, it lies in the interest of the CSP to provide a secure and stable service
to customers. On the other hand, the damage to a provider’s reputation caused by a catastrophic
breach in these areas could be enough to motivate an attempt to evade disclosure of such incidents.
Thus, we cannot assume a CSP to strictly act in good faith, and instead we want to guarantee data
correctness under the assumption of a malicious cloud provider.

By utilizing so-called data integrity schemes and allowing clients to conduct secure and regular
audits, the CSP can guarantee data integrity. In Section 3.2 we cover the critical properties of such
schemes before comparing the state-of-the-art protocols in Section 4.

3.2. Properties of data integrity schemes

We identify several properties of probabilistic data integrity schemes that together describe the
capabilities and limitations of a proposed scheme. In this thesis, we make the following broader
categorization of data integrity schemes:

13

3.2. Properties of data integrity schemes

Provable Data Possession (PDP): Provides data integrity auditing, often based on pre-
computed authenticator values. An overview of recently proposed PDP schemes is given
in Section 4.2.

Proof of Retrievability (PoR): Schemes providing data integrity auditing as well as data
recovery guarantees, often based on codings (Section 4.3). An analysis of PoR schemes is
presented in Section 4.4.

Note that any probabilistic data integrity scheme can trivially be transformed into a deterministic
scheme by making a query on all the stored data at once. Therefore, we will not consider any deter-
ministic protocols and will only analyze the efficiency and security of probabilistic protocols for use
in the cloud. Following the taxonomy presented in [26], within these categories, we furthermore
distinguish the following attributes:

Unbounded queries: Schemes with this property put no restrictions on the number of times
an auditor can perform the verification procedure. Typically, an audit would be performed
regularly to increase audit quality and avoid data corruption or data loss. Hence, the property
of allowing unbounded queries to the CSP is important to consider and also balance against
the cost of frequent computation. Indeed, most recently proposed integrity schemes do pos-
sess this property [26]. Unless otherwise specified, the data integrity schemes described in
our analysis will allow unbounded queries.

Soundness: Often, it is essential that the verification scheme remains secure under the as-
sumption that the CSP is malicious or compromised, as described in Section 3.1. In this
scenario, it is essential that a malicious server cannot successfully pass an audit without in-
deed storing the data intact, unless with negligible probability. This property is referred to
as soundness, and we only examine schemes with this property.

Statelessness: If there is no need to store and maintain the state of any party in the cloud stor-
age model between audits, a data integrity scheme is said to be stateless. In such schemes,
individual audits are independent, and no resources are used to preserve the results of previ-
ous audits.

Dynamic data handling: We consider the data stored by the server to be either static or
dynamic. As the name suggests, static data is data that is not expected to be modified, such
as backups. Similarly, dynamic data is expected to be modified in some way, for example,
via insertion or deletion. Although most schemes only support static data, there are a few
examples currently that support dynamic data handling, such as [24] or, more recently, [2].

Public auditing: In many scenarios, it is preferable to outsource not only the storage of data
but also the auditing process itself to a third-party auditor (TPA), as described previously.
Furthermore, we would like the publicly audited data to remain secure and private against
the TPA during an audit. Schemes with this property are called privacy-preserving. In
contrast to public auditing is private auditing, which describes schemes in which the data
owner cannot delegate the auditing to a third party.

Batch auditing: A TPA might receive multiple audit requests from different users simulta-
neously. In such cases, rather than processing each request separately after one another, it
might be possible to increase efficiency by auditing a batch of requests simultaneously by
aggregating authenticator values. This is referred to as batch auditing.

14

4. Analysis of data integrity schemes

4

Analysis of data integrity schemes

In this section, we examine Provable Data Possession (PDP) schemes and Proof of Retrievability
(PoR) schemes that have the potential to achieve high guarantees while also being efficient enough
for practical implementations.

All examined schemes are probabilistic but can trivially be transformed into their deterministic
counterparts by making a query on the entire data set instead of a random subset. We first give
a formal definition of PDP and PoR schemes and identify the algorithms involved, after which a
comparative analysis of the state-of-the-art PDP schemes is presented, including a comparison of
computational cost. Lastly, we examine the cryptographic primitives used to provide redundancy
in PoR schemes and give a brief overview of schemes relevant for implementation in the cloud. In
Table 2 we list common parameters used throughout this section.

Cloud Storage
&
g D Data integrity delegation .ll
Users Third Party Auditor

Figure 3: Model of a data integrity scheme.

Parameter Description

F The file being stored

n Number of file blocks

s Number of sectors in each file block

t Number of randomly sampled blocks during an audit
k System security parameter

[E] Computation cost of an exponentiation

[B] Computation cost of a bilinear pairing

Table 2: Parameters used in integrity schemes.

15

4.1. General structure of integrity schemes

4.1. General structure of integrity schemes

To allow users to remotely verify the integrity of data stored in the cloud, without needing to
download and process the stored information, two main methods have been proposed in recent
years. Provable data possession schemes (PDP), first introduced in [3], give an effective and flexible
alternative to previous deterministic methods. A PDP scheme can only be used to verify data
integrity, and is limited by the fact that if a breach in data integrity is discovered, there is no way
for the client to be able to restore the lost information. To address this problem, so-called Proofs of
Retrievability (PoR) was introduced in [15] around the same time. Similar to PDP, a PoR allows the
client to verify data integrity, and it furthermore utilizes more advanced cryptographic primitives
to provide retrievability guarantees. The main drawback to these schemes as opposed to PDP is that
the additional cryptographic tools used impose a layer of complexity in computation, ultimately
making PoR schemes less practical.

Following the original definition of PDP in [3] we now give a formal definition of PDP schemes.
The framework of data integrity protocols adhering to this model in depicted in Figure 3.

Definition 4.1. Let k be a security parameter, and F = (m,, m,, ..., m,) afile divided into n blocks.
A Provable Data Possession (PDP) scheme consists of four polynomial time algorithms:

KeyGen(k): akey generation algorithm which, given the system security param-
eter generates the public-private keypair k¥ = (pk, sk).
TagGen(k, F): atag generation algorithm taking as input the keypair generated by
Keygen, the file F, and returning metadata M, = (X,) used in the
verification, where £ = {o;},<;<, is a set containing the metadata
for each file block, encoded using an identifier # of the file F.
ProofGen(pk, chal, F,X): takes the public key, the file F and its metadata along with a chal-
lenge, chal, indicating which file blocks to audit. It returns a proof
of data possession V.
ProofCheck(k, chal, V): validates the proof of possession V using the public-private keypair
and the challenge. Outputs “success” if the file F is intact, and “fail-
ure” otherwise.

A PDP scheme together with two additional polynomial time algorithms Setup, and Challenge
constitutes a PDP protocol. During the Setup phase, the client generates the keys using KeyGen, as
well as the verification metadata using TagGen. During the Audit phase the client then proposes
a challenge to the CSP generated by the algorithm Challenge. From the challenge, a proof of
verification is generated by the CSP using ProofGen. Lastly, the validity of the proof is confirmed
by the client using ProofCheck.

Finally, we give a formal definition of PoR schemes based on [21, 15], which in general follow
the same structure as PDP, but also provide retrievability guarantees.

Definition 4.2. Let k be a security parameter and I = (m, m,, ... ,m,) a file divided into n blocks.
A Proof of Retrievability scheme is a Proof of Data Possession scheme along with an additional
polynomial time algorithm Extract taking as input the key sk, a file identifier #, and a series of
challenge-response interactions between the verifier and prover in the PoR, and outputs the file F,
except with negligible probability.

16

4.2. Comparative analysis of PDP schemes

By encoding the data in the TagGen algorithm using the coding techniques described in Section
4.3, such as erasure codes, lost or corrupted data can be restored by the extraction algorithm when
interacting with an honest prover.

4.2. Comparative analysis of PDP schemes

This section serves as an overview of some approaches providing provable data possession in out-
sourced cloud storage. The main results of the analysis are presented in Tables 3 and 4. We here
follow the notation described in Table 2.

A summary of the computational complexity of the examined schemes is shown in Table 4. In
this analysis, only the most expensive operations are taken into account, that being exponentiation
in multiplicative cyclic groups of prime order, denoted by [E], and computations of bilinear pairing
function, denoted by [B].

Scheme SL DD PA PP BA Hardness assumption Security model

[3] v - = - — RSA, KEAIl-r random oracle
[27] v v v / - CDH random oracle
[24] v v v V' v CDH random oracle
[19] v “+ v v v RSA random oracle

Table 3: Comparison of properties of PDP schemes. Here SL denote statelessness, DD support for dynamic
data operations, PA public auditing support, PP privacy-preserving, and BA support for batch auditing.

4.2.1. Ateniese et al. (2007). Provable data possession was introduced first in [3], and allowed a
client storing data at an untrusted CSP to verify the integrity of the data using probabilistic sampling
of data blocks. Of the two schemes suggested in the article, the first one, called S-PDP provides
the best detection guarantees. The detection guarantee Py is bounded by

— t — — t
1_<n m) SPXSI—(H t+1 m>’
n n—t+1

where m is the number of blocks modified by the server. In a file consisting of 10,000 blocks, this
indicates at least a detection rate of 99% when sampling 4.6% of the total number of file blocks,
assuming 1% of file blocks have been disrupted. Their second scheme, E-PDP, is more efficient
at the cost of significantly weaker guarantees as it only verifies the possession of the sum of the
sampled blocks instead of each individual block. Hence we only consider S-PDP and its modifica-
tions. Their RSA-based scheme uses so-called homomorphic verification tags (HVTs) generated
for each file block and stored together with the file at the server.

For a file block m;, its tag (7} ,, , W;) consists of: /) a random value W; obtained by concatenat-
ing the index i with a random, secret value, and ii) a value 7; ,, computed on the block m; itself and

*With modifications, however data is exposed to TPA under the suggested modification of the S-PDP audit protocol.

"With modification. This also increases the cost for TPA and CSP during the audit phase.

*Extension by the use of Merkle hash tables, index hash tables, index tables, doubly linked information tables, or
index switchers are suggested by the authors but no concrete modifications are further proposed. Authors suggest this
is something to be added in their future work.

17

4.2. Comparative analysis of PDP schemes

Scheme KeyGen TagGen ProofGen ProofCheck

(3] LE] 2n[E] (t+3)[E] (t+2)[E]

[27] 2[E] 2n+ s)[E] (t+s+ D[E]+[B] (t+ s)[E]+ 3[B]

[24] [E] 2n[E] (t+ DH[E]+[B] (t+3)[E]+2[B]

[24], BA [E] 2n[E] m((t + D[E] + [B)]) m(t + 3)[E]+ (m + 1)[B]
[19] S+ DIE] A+QC+sm[E] (@+s+2)[E] 2t+s+3)[E]

[19], BA (s+D[E] (1+Q+s)m[E] (2t+2)m+s+2)[E] (2t+s+ 1)m+2)[E]

Table 4: Complexity analysis of suggested PDP schemes. Schemes marked with BA are modified for batch
auditing.

the public key using BLS signatures. The tags allows a user to verify the possession of the corre-
sponding file blocks without having to be in possession of the file itself, and their homomorphic
property ensures that multiple tags can be combined into a single value. This makes it possible
to combine the HVTs for the ¢ sampled file blocks into a single value that can be used to verify
authenticity.

Even so, the HVTs in S-PDP impose a quite significant impairment to the flexibility of the
scheme by being usable only for static data, since modification of any block of data requires the
recomputation of tags.

S-PDP achieves knowledge soundness under the RSA and KEA1-r assumption in the random
oracle model. The KEA1-r is defined in [3] as follows:

Definition 4.3. Let N be a product of two safe primes p = 2p’ + 1 and ¢ = 24’ + 1, g a generator of
the cyclic subgroup of Z7, of order p'q’, and s an integer. The assumption that for any adversary A
taking as input (N, g, g°) and returning (C, Y) such that Y = C¥, there exists an extractor algorithm
which, given the same input as A, returns x such that C = g~, is called the Knowledge of Exponent
Assumption (KEAI-r).

A modification to S-PDP is provided that does not rely on the KEA1-r assumption, although
it results in a significant increase in network communication costs. This modification can also be
further extended to support public auditing. However, the modification exposes a linear combina-
tion of sampled file blocks to the TPA, thus potentially exposing user data after running several
audits since the auditor can determine file blocks by solving a system of linear equations. So this
modification is not privacy-preserving.

S-PDP has been shown to be insecure due to lack of randomness in the Challenge algorithm,
which allows the CSP to store results of previous audits and cheat in the future [26].

4.2.2. Zhu, Hu, Ahn, and Yau (2012). After the PDP technique was introduced, many improve-
ments and modifications to the original protocol where quickly introduced. In 2012, Zhu et al.
[27] proposed an audit scheme based on bilinear pairings supporting dynamic data operations as
well as privacy preserving public auditing. The detection rate of their scheme is similar to that
of [3]. The scheme builds a hash index table using a BLS-based hash function for which the file
tag metadata is computed. By concatenating the sequence number of each block with its version
number and a random integer in order to avoid collision, it is possible to construct the hash table

18

4.2. Comparative analysis of PDP schemes

Scheme Client TPA CSP

[3] (t+2n+3)[E] - (t+3)[E]

[27] 2n+s+2)[E] (t+s[E]+3[B] (+s+1D[E]+[B]
[24] 2n+ 1[E] (t+3)[E]+2[B] @+ 1[E]+[B]
[19] Cn+sd+n)+2[E] Qt+s+3)[E] (t+s+2)[E]

Table 5: Comparison of total computations for parties in the cloud storage model.

in a way that supports dynamic data operations. By the zero knowledge property, the scheme re-
mains privacy-preserving during public audits. Furthermore, it has the soundness property under
the computational Diffie-Hellman assumption in the random oracle model.

4.2.3. Wang, Chow, Wang, Ren, and Lou (2013). Another privacy preserving PDP scheme
was proposed by Wang et al. [24], based on bilinear pairings and similar to [3], homomorphic
verification tags that are further integrated with random masking at the server to prevent leakage
of information to TPA. Their scheme provide the same detection rate as [3]. By the use of Merkle
hash trees their scheme can be extended to support dynamic data operations by additionally sending
the tree root to TPA as additional metadata in the setup phase. This does not incur any additional
computations of exponentiations or bilinear pairings, and the scheme is privacy-preserving by the
random masking.

Their scheme satisfy the soundness property under the computational Diffie-Hellman assump-
tion in bilinear groups in the random oracle model, and is privacy preserving against TPA in the
random oracle model.

However, their scheme is not secure against leakage to TPA if the stored data has low entropy,
as it is possible to extract information by guessing if a particular message is stored on the server and
running the verification using randomly generated coefficients in the verification tags. However, the
authors note that for this process to be successful it requires TPA to correctly choose the coefficients
from Z, where p is assumed to be a very large prime, and it is thus highly improbable. To this end
they provide a modification to the proposed scheme which also has the zero-knowledge property.
Although the modification provides additional security, it also adds 2[E] + [B] in computational
cost for CSP in ProofGen, as well as an additional bilinear map evaluation to the computational
cost of TPA during ProofCheck.

A further modification of their scheme provides support for batch auditing allowing the TPA
to significantly reduce the computational cost of the verification process requiring only (m + 1)
pairing operations instead of 2m operations as required by m individual audits. The computational
benefits of batch auditing are shown in Table 4.

4.2.4. Ni, Zhang, Yu, and Yang (2020). Recently, Ni et al. [19] proposed an RSA-based scheme,
called ID-P3DP, using identity-based public keys, thus providing an alternative to certificate-based
public key authentication. In contrast to certificate-based authentication in which user’s private
keys are issued by a trusted certificate authority, the private keys in identity-based authentication
are based on personal information of each user, and is valid during a fixed time period. In our
analysis we consider only the computations made during one such time interval, and note that a
private key exponent would need to be computed for every time block during which the ID is valid.

19

4.3. Methods of retrievability

Currently their scheme does not support dynamic data operations, although several possible
extensions are mentioned, for example by the use of Merkle hash trees. The detection probability is
also similar to that of [3]. The ID-P>DP scheme is privacy-preserving using a zero-knowledge proof
protocol in the random oracle model, and has the soundness property under the RSA assumption.
Batch auditing is also supported, the computational benefits of which are presented in Table 4.

4.3. Methods of retrievability

Assuming data has been tampered with by the server, a PoOR scheme provides retrievability guar-
antees based on the metadata generated by the TagGen algorithm. While PDP schemes examined
in this survey use tags for verification, PoR schemes also use additional methods such as codes and
signatures [26]. This section presents a few of the basic techniques used in the encoding step of
many proofs of retrievability.

Efficiency demands that our verification schemes are probabilistic, and therefore an audit pro-
cess might not detect a small number of erasures done by the server. To reduce the risk of losing sen-
sitive data we are interested in being able to fully restore the stored file assuming that ProofCheck
returns ’success” on a random sample of ¢ blocks.

Error-correcting codes allows both error-detection as well as error-correction. Although the
theory of error-correcting codes is beyond the scope of this thesis, we here give an example of how
such a coding technique might work, before discussing how similar techniques are used in integrity
schemes. A further introduction to this theory is given in [14].

Say we wish to transmit a message M € {0, 1} over an unstable channel where messages are at
risk of being altered before reaching the destination. The simplest way to ensure that the message
can be correctly interpreted by the receiver in this setting is to encode M as a codeword of length
n obtained from M by repeating the message n times. So, if M = 0 and n = 3, the message is
encoded and transmitted as 000. If at most one error is made during transmission the receiver might
obtain any of {000,001, 010, 100}, only one of which is valid under this code. It is therefore in this
way possible to both detect and correct one error. This code is called the binary repetition code of

length n, and can correct at most B(n - l)J errors. In general, we can increase the redundancy in

the encoding to be able to correct a greater number of errors. However, increasing the redundancy
in the error correcting code would also increase the cost of transmission and storage.

In the context of cloud storage, data might not only be altered but also deleted. For this purpose
erasure codes are used, as described in [21]. Let F be a file divided into »n blocks, an erasure code
is an error-correcting code that encodes F in into a (n/r)-block file in such a way that any sample
of n blocks suffices to restore the original file. The parameter r is called the rate of the code, and
corresponds to the fraction of encoded blocks that are useful for decoding. Codes in which r is
significantly less than n are called rafeless, meaning that F' can be encoded into a codeword of
arbitrarily many blocks, of which # still suffices for decoding.

One particularly commonly used code is the Reed-Solomon code, which can correct up to

E(n - k)J errors, where k is the number of codewords. It can also be used as an erasure code

with arbitrary rate, for which encoding and decoding runs in @(n?) time [21]. Thus, by encoding
the stored file using a Reed-Solomon erasure code of rate ¢ we can be sure to be able to restore the
full file if the CSP passes an audit with a random sample of ¢ file blocks.

Aside from erasure codes such as the Reed-Solomon code, there is a wide range of codes and
techniques used to guarantee retrievability in PoR. Other suggested codes are for example network

20

4.4. Comparative analysis of PoR schemes

codes, online codes, and locally decodable codes [21, 16], and even algebraic techniques as in [2].
Comparing available codes in terms of efficiency and security is here omitted, but a short analysis
in the PoR context is given in [23].

4.4. Comparative analysis of PoR schemes

In this section we analyze some PoR schemes suggested in recent years, starting with the original
proposed by Juels and Kaliski in [15]. Table 6 gives an overview over the properties of the proposed
schemes. In the analysis, we will primarily compare the properties defined in Section 3.2 and the
type of encoding used to ensure retrievability.

For each paper analyzed, we discuss the main scheme presented and only briefly mention any
modifications where relevant.

4.4.1. Juels and Kaliski (2007). In their original scheme, Juels and Kaliski [15], proposed a
private proof of retrievability for static files, called SENTINEL-PORSYS. Their scheme uses a sen-
tinel-based approach to guarantee authenticity; by randomly embedding a fixed set of check-blocks
called sentinels among the file blocks in an encoded and encrypted file, data corruption can be
discovered with high probability by querying for the sentinel blocks. Encryption ensures that the
CSP cannot determine which blocks are among the embedded sentinels, and encoding ensures that
the file can be retrieved. Note however that this method does not allow an unlimited number of
audit requests as it relies on the sentinel locations being unknown to the CSP, meaning that the data
needs to pass through the Setup phase after all sentinels have been queried. The basic variant of
their scheme uses an error-correcting Reed-Solomon code, with codewords of length /, and which
is capable of correcting up to d errors.
The detection rate, Py, of their scheme is bounded below in the following way

t
(1) <

where € is the upper bound on the fraction of file blocks (including sentinels) that have been cor-
rupted by the server. Denote the number of embedded sentinels by ¢, and let

n+gq

=le — .
K n—en+q)

The probability, Py, that a file is retrievable is then bounded below as follows

—d
2 . ed_” <£> S PY
l 2

Say for example we apply SENTINEL-PORSYS to a file with 227 blocks, i.e. a 2GB file, with
a block size of 128 bits. Each chunk of 223 file blocks are encoded using a Reed-Solomon code
with codewords of length / = 255, that is capable of correcting d = 16 errors. This results in an
expansion of about 14% to the original file size, and the number of blocks under this encoding is
b = 153,477,671. By embedding s = 1,000,000 sentinels, the total expansion of the file then
becomes 15%.

Assuming the adversary has corrupted 0.5% of the data, so that ¢ = 0.005, a query on 1,000
sentinels has a detection rate of 71.4% per challenge. Under such circumstances, the probability

21

4.4. Comparative analysis of PoR schemes

Scheme SL DD PA PP Retrievability method Hardness assumption
[15] - - - - ECC -

[21], PRIV - - - EC X

21],PuB® v - V - EC CDH

[8] / - - EC X

[22] - v v _ EC -

[20] - v v - EC DLP

[2] - vV / / Verifiable computing DLP, LIP

Table 6: Comparison of properties of PoR schemes. Here, SL denote statelessness, DD support for dynamic
data operations, PA public auditing support, PP privacy-preserving, and the symbol X indicate that the
security relies on properties of the chosen cryptographic primitives.

that the stored file cannot be retrieved is bounded below by approximately 4.68 - 107, which is
less than 1 in 200,000.

The scheme in its original form does not allow for public auditing nor dynamic data operations.
Several modifications are also presented, mainly focused on bandwidth optimizations, and ways to
allow for unbounded audits by exchanging the sentinels for a MAC-based approach.

4.4.2. Shacham and Waters (2008). Shacham and Waters [21] built upon the ideas presented in
[15] and gave two static proofs of retrievability, one private and the other one public, called PRIV
and PUB respectively. Their work took inspiration from both the PoR of Juels and Kaliski [15], but
also of the PDP presented by Ateniese et al. [3]. Similar to [3], their schemes utilize homomorphic
authenticators to combine the tags of each queried file block into an aggregated authentication
value, thus reducing the response length. Both schemes rely on erasure codes derived from Reed-
Solomon codes, providing retrievability guarantees under the assumption of an erasing adversary.

In PRIV, the file is first encoded, then split into blocks on which the authentication values are
computed using a combination of a pseudorandom function and a symmetric encryption scheme.
A file tag used for authentication is also generated using a MAC scheme. The private keys can then
be used to verify authenticity of the response from the CSP. This scheme is secure assuming the
MAC scheme is unforgeable, the encryption scheme is semantically secure, and finally assuming
that the pseudorandom function is cryptographically secure.

The publicly verifiable scheme instead uses BLS signatures to compute the authenticators for
each file block, which can then be verified using only a public key, thus allowing for public auditing
via a TPA. This also means that PUB relies on more expensive operations, such as bilinear pairings
and exponentiations in symmetric groups. A summary of the cost of computations is as follows:

e KeyGen: [E],

e TagGen: n(s + 1)[E],

e ProofGen: f[E], and

e ProofCheck: (t + s)[E] + 2[B].

The security of this scheme relies on the CDH assumption, in the random oracle model.

$The security of the scheme is proven in the random oracle model.
IWith modifications.

22

4.4. Comparative analysis of PoR schemes

4.4.3. Cash, Kiipcii, and Wichs (2013). Another approach to the PoR construction is given by
Cash et al. in [8], which allows for dynamic data operations while also hiding the client’s data and
access-patterns from the server.

This is achieved by use of an oblivious RAM model. This model was originally introduced in
[9], as a continuation of the work on so-called oblivious machines. Computations with the same
running time on an oblivious machine accesses the same memory locations. So an oblivious Turing
machine is one in which the movement of the tape heads look identical for every computation, and
an oblivious RAM is a machine on which the probability distribution of the sequence in which
memory addresses are accessed only depends on the length of the input. The oblivious RAM is
realized by use of a hierarchical data structure consisting of several layers of hash tables. The higher
tables contain the most recently accessed data, and the lower tables contain the less frequently
accessed data and has more capacity. The access pattern of a read operation on the stored data
is masked by checking each table, starting from the top, until the requested block is found, after
which random memory locations in the remaining tables are accessed. The accessed data is then
written to the top table. Occasionally, the structure is "rebuilt" to prevent tables from overflowing.

By applying the erasure code only to a small selection of data blocks, instead of the entire file
at once, the need to update the entire encoding on every dynamic update is removed. However, this
opens up for the possibility of the server to delete or ignore the updated blocks in a given codeword
while remaining undetected since an audit only checks a small subset of the file blocks. To hide
which blocks has been modified by the client, Cash et al. proposes the use of an oblivious RAM on
the server in their scheme called PORAM. The main drawback of this method is that the oblivious
RAM needs to be initiated and maintained, and that the use of this data structure generally impose
a greater bandwidth overhead compared to other methods [22].

Their scheme also assumes the use of an erasure code such as the Reed-Solomon code, and
their oblivious RAM relies on a pseudorandom function and a symmetric encryption scheme. The
PORAM is secure under the assumption that the pseudorandom function is secure and that the en-
cryption is secure against chosen-plaintext attacks.

4.4.4. Shi, Stefanov, and Papamanthou (2013). Similar to Cash et al., Shi et al. realized the
inherent difficulty in allowing efficient dynamic operations in a PoR scheme [22]. Their dynamic
scheme is more efficient than the one proposed in [8], and also allows for public auditing by using a
clever construction based on Merkle hash trees. In this setting, public auditing refers to the ability
of a public entity to read and verify the authenticity of stored data, while only a trusted entity is
allowed to write data to the server.

To solve the issue of dynamic updates, three separate buffers are used on the server-side: the
raw buffer U, the erasure-coded buffer C, and the hierarchical log H. The first contains the up-to-
date blocks in their un-encoded format on which read and write operations can be performed in the
usual way. This is implemented using a Merkle hash tree, thereby allowing audits to be performed
on this data structure, as well as public read operations. In C is stored the erasure-coded copy of the
data, which only gets rebuilt based on the updated data in U after n write operations. Finally, the
H buffer stores a hierarchical log of the recent write operations, so that on every write operation
in U the erasure coded written block along with its identifier is added to the top level of H. The
log contains k + 1 levels, where k = [logn], and each level i contains 2 erasure coded blocks.
When attempting to add a new value to the top of the log the first i levels might be filled already,
thus prompting the rebuilding of level i + 1 at which point the first i levels are emptied, encoded,

23

4.4. Comparative analysis of PoR schemes

and subsequently placed in level i + 1. This is similar to the rebuilding of the oblivious RAM , but
much faster since it only requires the computation of an erasure code of the new level. An audit is
done by querying for random blocks of the encoded buffer and the hierarchical log.

The drawback of this method as compared to the PORAM of [8] that it does not hide the access
patterns of the write operations, although this is not a strictly necessary feature of PoR schemes.

Finally, public auditing can be achieved by also building Merkle trees over the hierarchical log
H and the encoded buffer C, although it imposes a significant increase in write operations. The
details of this modification is here omitted but can be found in Appendix 1 of [22].

4.4.5. Sengupta and Ruj (2020). A recent take on the dynamic PoR is given by Sengupta and
Ruj [20]. Their approach is based on that of Shi et al. [22] and uses the three buffers U, C, and
H, but also builds two additional data structures H and C which are used to store the homomor-
phic authentication tags of the blocks stored in H and C respectively. This approach significantly
reduces the computational complexity of performing public write operations as compared to [22].
The trade-off between additional storage and less bandwidth overhead is motivated by the fact that
the latter is generally more expensive.

The computation of the homomorphic tags require the computation of # - s modular exponen-
tiations, where n denotes the number of file blocks and s the number of block sectors. By again
making a trade-off between storage and expensive computations this can be improved by gener-
ating a public key which requires s exponentiations in total, after which the tag computation for
the file only requires » exponentiations. Assuming this improvement has been made, the algo-
rithm ProofGen then requires the computation of ¢ exponentiations, and ProofCheck requires 3¢
exponentiations in total.

Furthermore, their scheme uses a digital signature scheme to sign the authentication tags. As-
suming the use of a state-of-the-art signature scheme based on elliptical curves, this signing would
impose a pairing computation on each tag, and thus an increase of the total cost of computation.
Finally, the scheme is secure under the discrete logarithm assumption, and assuming that the sig-
nature scheme used is provably secure.

4.4.6. Anthoine et al. (2021). The final scheme considered in this analysis is a recent one by
Anthoine et al. [2], that does not rely on any encoding scheme but instead uses a so-called verifiable
computing scheme based on matrix algebra. A modification also allows privacy-preserving public
auditing. Their scheme is not yet published in a peer-reviewed journal.

In contrast to the other methods examined, their scheme does not require any additional meta-
data to be generated, thus significantly reducing the persistent storage required. Instead, the file F
is organized in a square matrix M € RZX’ , where the number of bits of the file is equal to s7-log, g,
and R, is a finite ring of order g. In the privately verifiable scheme, the verification metadata con-
sists of two private control vectors: one randomly chosen vector u € [Rf] , and one vector v € R;
computed as

ol =u' M.

An audit request is then performed by choosing a random challenge vector x € [R{; which is sent
to the server. In ProofGen the server then computes the vector y € R; as

y=Mx.

24

4.4. Comparative analysis of PoR schemes

During ProofCheck the client can verify that

ul'y = vlx.
Several successful audits ensures that the full matrix M can be restored with great probability by
solving for M in the matrix equation M X =Y, where X is the matrix of challenge vectors, and Y
the matrix of response vectors. Thus, no coding is needed to ensure retrievability. This approach
is also independent of computational hardness assumptions. A Merkle hash tree is used to ensure
authenticity during read and write operations. The server stores the full tree, while the client is
only required to store the root hash.

The publicly verifiable modification is similar to the private scheme, but its security relies
on the DLP assumption, and is privacy-preserving under the Linearly Independent Polynomial
assumption (LIP). The LIP assumption states that for linearly independent multivariate polynomials
Py, ..., P, of bounded degree and a secret m in a group G of prime order with generator g, the tuple
(ghm, .., gP™M) is indistinguishable from a random tuple of the same size.

25

5. Conclusion

5

Conclusion

Although cloud storage offers a practical solution to many of the problems of traditional storage,
such as maintenance and operation costs, location- and device dependence, scaling, and disaster
prevention, new threats to customer data are introduced in the form of privacy and security con-
cerns. We have in this thesis presented and analyzed a few data integrity protocols suggested in
recent years, which show that although there are many options available, the client often needs to
make a tradeoff between the desired properties, storage- and computational costs, as well as time-
and space complexity. In this final section, we present a brief overview of the current state of the
practical data integrity implementations available, and make a few notes with regards to the future
of cloud storage auditing.

5.1. Practical implementations

Examining the offerings of leading cloud providers on the market today, such as Amazon Web
Services (AWS), Google Cloud for government, and Microsoft Azure, it does not appear that any
dedicated solutions for data integrity auditing are implemented as part of any existing framework
today. Hence, a client that requires correctness and integrity guarantees must be able to implement
such features independently, which requires a deeper understanding of cloud security and the im-
plementation of protocols such as those described in Section 4. For example, several of the PoR
protocols analyzed expect the user to choose which cryptographic primitives provide a suitable
level of security and flexibility, thereby raising the bar for the level of cryptographic knowledge
necessary to implement them.

However, there is an interest from industry leaders such as AWS to provide secure and trustwor-
thy solutions for customers operating under strict regulations, such as actors in the public sector. In
October 2020, AWS announced the launch of the AWS ClearStart program, aimed at organizations
in the Swedish public sector [4]. The program consists of two main stages:

e The AWS ClearStart Delivery Framework: A framework developed for members of the
AWS Partner Network (APN) to follow to deliver and operate services in compliance with
Swedish legislation and security regulations.

e The AWS ClearStart Production Environment: A production environment tailored for
Swedish public sector customers working under strict compliance standards. The production
environment uses a wide range of AWS security tools. The APN can choose to customize
the environment further to meet special security or performance needs.

The program does not offer an off-the-shelf solution to cloud computing for actors in the public
sector but rather a platform for building a solution suitable for meeting the specific demands of a
customer. By collaboration between the customer and an APN, a tailored solution that could in-
clude data integrity auditing protocols can be obtained. Although AWS does not currently provide
any particular service that implements a data integrity protocol such as those examined in Section
4, it is possible to build such functionality using a combination of other AWS services such as AWS
Encryption SDK [6].

By working together with experts providing knowledge of today’s encryption standards and
the tools offered by cloud computing platforms, it is possible to translate theoretical results in data

26

5.2. A look into the future

storage auditing to a more reliable cloud environment. The introduction of such solutions is a step
towards bridging the gap between the strict regulatory conditions of actors in the public sector and
valuable computing paradigms such as cloud computing offered by providers in the private sector.

5.2. A look into the future

In this thesis, we have identified the most significant properties of data integrity schemes and an-
alyzed several PDP and PoR solutions based on this characterization. From this analysis, we can
conclude that it is often difficult to determine which protocol is most suitable for implementation
in a given computing environment, as desirable features often require greater computational re-
sources. Several different interpretations of the PDP and PoR frameworks exist and make the area
difficult to overlook. Beyond this thesis, there is a further need for standardization and comprehen-
sive guides to the different options available for data integrity auditing. Such efforts will possibly
also increase the number of practical implementations offered by cloud computing providers.

As many protocols propose different choices of cryptographic primitives such as encryption
schemes, signature schemes, and codings, another possible option for further study is a comparative
analysis of practical implementations based on the theoretical results presented here.

27

References

(1]

(2]

(3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Amazon Simple Storage Service. Amazon S3 Service Level Agreement. Ed. by Inc Amazon
Web Services. https://aws.amazon.com/s3/sla. July 2019. (Visited on 05/01/2021).

Gaspard Anthoine et al. Dynamic proofs of retrievability with low server storage. 2021.
arXiv: 2007.12556 [cs.CR].

Giuseppe Ateniese et al. “Provable data possession at untrusted stores”. In: CCS °07. Alexan-
dria, Virginia, USA: Association for Computing Machinery, 2007, pp. 598-6009.

AWS Public Sector Blog Team. Announcing AWS ClearStart for Swedish public sector to
accelerate security and regulatory compliance. file:///home/edun/Zotero/storage/
GWV894EG/announcing - aws - clearstart - swedish-public-sector-accelerate-
security-regulatory-compliance.html. Oct. 2020. (Visited on 05/03/2021).

Mihir Bellare and Phillip Rogaway. “Random Oracles Are Practical: A Paradigm for De-
signing Efficient Protocols”. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. CCS *93. New York, NY, USA: Association for Computing Ma-
chinery, 1993, pp. 62-73. DOI: 10.1145/168588.168596.

Roger Bille, Omegapoint. Private communication. 2021.

Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography, version 0.5.
Jan. 2020. (Visited on 05/02/2021).

David Cash, Alptekin Kiip¢ii, and Daniel Wichs. “Dynamic Proofs of Retrievability Via
Oblivious RAM”. In: Journal of Cryptology 30.1 (2017), pp. 22-57.

Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation on Oblivious
RAMSs”. In: Journal of the ACM 43 (Jan. 1996).

Google Cloud Storage. Cloud Storage Service Level Agreement (SLA). Ed. by Google LLC.
https://cloud.google.com/storage/sla. Jan. 2020. (Visited on 05/01/2021).

Google Cloud Storage. Google Cloud Platform Terms of Service. Ed. by Google LLC.
https://cloud.google.com/terms. Apr. 2021. (Visited on 05/01/2021).

Matthew Green. What is the random oracle model and why should you care? (Part 5).
https://blog. cryptographyengineering . com/2020/01/05/what - is - the -
random-oracle-model-and-why-should-you-care-part-5/.Jan. 2020. (Visited
on 05/02/2021).

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction to Mathematical
Cryptography. Springer, 2014.

W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting Codes. Cambridge
University Press, 2003.

28

https://aws.amazon.com/s3/sla
https://arxiv.org/abs/2007.12556
file:///home/edun/Zotero/storage/GWV894EG/announcing-aws-clearstart-swedish-public-sector-accelerate-security-regulatory-compliance.html
file:///home/edun/Zotero/storage/GWV894EG/announcing-aws-clearstart-swedish-public-sector-accelerate-security-regulatory-compliance.html
file:///home/edun/Zotero/storage/GWV894EG/announcing-aws-clearstart-swedish-public-sector-accelerate-security-regulatory-compliance.html
https://doi.org/10.1145/168588.168596
https://cloud.google.com/storage/sla
https://cloud.google.com/terms
https://blog.cryptographyengineering.com/2020/01/05/what-is-the-random-oracle-model-and-why-should-you-care-part-5/
https://blog.cryptographyengineering.com/2020/01/05/what-is-the-random-oracle-model-and-why-should-you-care-part-5/

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Ari Juels and Burt Kaliski. “POR:s Proofs of retrievability for large files”. In: JACR Cryp-
tology ePrint Archive 2007 (2007), p. 243.

Julien Lavauzelle and Frangoise Levy-Dit-Vehel. “New proofs of retrievability using locally
decodable codes”. In: 2016 IEEE International Symposium on Information Theory (ISIT).
IEEE, July 2016.

Peter Mell and Timothy Grance. “The NIST Definition of Cloud Computing”. In: NIST
Special Publication 145 (2011), p. 7.

Shigeo Mitsunari. mcl. https://github.com/herumi/mcl/blob/master/bench.txt.
2018. (Visited on 05/05/2021).

Jianbing Ni et al. “Identity-based Provable Data Possession from RSA Assumption for Se-
cure Cloud Storage”. In: IEEE Transactions on Dependable and Secure Computing (2020),

pp. 1-1.

Binanda Sengupta and Sushmita Ruj. “Efficient Proofs of Retrievability with Public Verifi-
ability for Dynamic Cloud Storage”. In: IEEE Transactions on Cloud Computing 8 (2020),
pp. 138-151.

Hovav Shacham and Brent Waters. “Compact proofs of retrievability”. In: Advances in Cryp-
tology - ASIACRYPT 2008 (2008), pp. 90-107.

Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. “Practical Dynamic Proofs of
Retrievability”. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security. CCS *13. Berlin, Germany: Association for Computing Machinery,
2013, pp. 325-336.

Choon Ben Tan et al. “A survey on Proof of Retrievability for cloud data integrity and
availability: Cloud storage state-of-the-art, issues, solutions and future trends”. In: Journal
of Network and Computer Applications 110 (2018), pp. 75-86.

Cong Wang et al. “Privacy-Preserving Public Auditing for Secure Cloud Storage”. In: IEEE
Transactions on Computers 62.2 (2013), pp. 362-375.

Wikipedia contributors. Full Domain Hash — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Full_Domain_Hash&oldid=816794922.
2017. (Visited on 05/25/2021).

Faheem Zafar et al. ““A survey of cloud computing data integrity schemes: Design challenges,
taxonomy and future trends”. In: Computers & Security 65 (2017), pp. 29—49. 1SSN: 0167-
4048.

Yan Zhu et al. “Efficient audit service outsourcing for data integrity in clouds”. In: Journal
of Systems and Software 85.5 (2012), pp. 1083-1095.

https://github.com/herumi/mcl/blob/master/bench.txt
https://en.wikipedia.org/w/index.php?title=Full_Domain_Hash&oldid=816794922
https://en.wikipedia.org/w/index.php?title=Full_Domain_Hash&oldid=816794922

Kandidatuppsats 2021
Datalogi
Juni 2021

www.math.su.se

Beridkningsmatematik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

	Introduction
	Preliminaries
	Cryptographic primitives and data structures
	Cryptographic models and hardness assumptions
	Exponentiation, bilinear pairings, and computational cost

	The cloud storage model
	Risks and challenges associated with cloud storage
	Properties of data integrity schemes

	Analysis of data integrity schemes
	General structure of integrity schemes
	Comparative analysis of PDP schemes
	Methods of retrievability
	Comparative analysis of PoR schemes

	Conclusion
	Practical implementations
	A look into the future

	References

