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Abstract

The occurrence of at least one horizontal gene transfer (HGT)
event between two genes is indicated by the existence of an
edge connecting the two corresponding vertices in a later-
divergent-time (LDT) graph, i.e., a properly colored cograph
with a set of triples (induced P3s with pairwise distinct col-
ors) that can be combined into a supertree. This means that
phylogenetic trees can be reconstructed from LDT graphs;
however, graph representations of real data tends to have a
lot of noise which makes them not fulfill the properties of
LDT graphs and as such it is desired to edit a given properly
colored graph into an LDT graph such that the edit distance
is minimized. Since this problem is NP-complete, we pro-
vide an integer linear program (ILP) formulation as well as
an implementation of the ILP that edits a given properly col-
ored graph into an LDT graph such that the edit distance is
minimized. We also provide a heuristic that attempts to edit
a given properly colored graph into an LDT graph and we
look at different variations of this heuristic. Additionally, we
present restrictions to this heuristic that ensures the resulting
graph is an LDT graph.

To benchmark the different variations of the heuristic pre-
sented in this thesis, we generated properly colored non LDT
graphs that we applied the heuristics to by perturbing LDT
graphs using different probabilities for inserting and deleting
edges. We then looked at how often these heuristics resulted
in an LDT graph and how the edit distance of the heuristics
compared to the exact solutions from the ILP. The results
showed that the heuristics performed near optimal on smaller
graphs such as those with 18 or less vertices. We also saw
that the success rates decreased as the size of the graphs in-



creased and while we were only able to compare edit distances
of graphs with up to 18 vertices due to time constraints, it
did seem as though the edit distance relative to the exact
solutions became worse as the size of the graph increased.
Additionally, we saw that the perturbation probabilities also
had an effect on the success rates as well as the edit distance.



Sammanfattning

Åtminstånde en horisontell genöverföring mellan två gener är
indikerat av existensen av en kant mellan de två motsvarande
noder i en later-divergent-time (LDT) graf som är karakteris-
erad som en korrekt färgad graf utan någon inducerad väg
på fyra noder och en mängd tripletter (inducerad väg på tre
noder med parvis disjunkta färger) som kan kombineras till ett
superträd. Fylogenetiska träd kan alltså återuppbyggas från
LDT grafer, men eftersom grafer som representerar data of-
tast kommer med massa störningar innebär detta att graferna
måste korrigeras till LDT grafer sådant att redigerings avstån-
det är minimerat. Eftersom detta problem är NP-komplett,
ger vi en ILP (heltal linjärt program) formulering samt en
implementation av denna ILP som redigerar en given korrekt
färgad graf till en LDT graf sådant att redigerings avtsåndet
är minimalt. Vi ger även en heuristik som försöker redigera
en given korrekt färgad graf till en LDT graf och vi kollar på
olika varianter av denna heuristik. Vi lägger även fram re-
striktioner till denna heuristik för att garantera att resultatet
är en LDT graf.

För att riktmärka de olika varianter av heuristiken vi pre-
senterat, genererar vi korrekt färgade icke LDT grafer som vi
använder dessa heuristiker på, genom att störa LDT grafer
med olika sannolikheter för att ta bort samt lägga till kanter.
Vi kollar sedan på hur ofta resultatet är en LDT graf samt
hur bra redigerings avståndet är jämfört med de exakta lös-
ningarna som genererades med hjälp av ILP. Resultaten av
dessa riktmätningar visade att de olika varianterna av heuris-
tiken var nästintill optimala på mindre grafer, alltså sådana
med 18 eller färre noder. Vi såg dessutom att varianterna av
vår heuristik presterade sämre ju större den inmatade grafen
var och att sannolikheterna vid störningen av LDT grafen har



en effekt på prestandan.
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1 Introduction

1.1 Background

Phylogenetic trees contain information pertaining to the evo-
lutionary relationships between different species, organisms
or genes. Within these trees, certain events are depicted in
the form of branches, one of which is horizontal gene trans-
fer (HGT), i.e., the transferal of genes through other means
than parent to offspring. For example, it is believed that HGT
greatly contributes to the evolution of bacteria, and adapta-
tions such as antibiotic resistance [3].

Two methods of inferring horizontal gene transfer events are
parametric and phylogenetic methods [8]. Parametric meth-
ods involve comparisons between parts of genomes and ge-
nomic signatures, i.e., characteristics of genome sequences,
such as GC content, that are specific to certain species. If
these widely differ, one can infer a potential HGT event [2,
9]. Phylogenetic methods involve reconstructing and com-
paring phylogenetic trees. While we can reconstruct such
trees from graphs with certain properties [9], one of the chal-
lenges is retrieving a graph that adheres to those properties
from real data and such data tends to come with a lot of
noise. Thus by reducing the noise in such a way that a given
graph satisfies the required properties, we are able to get a
more accurate depiction of the relationships amongst species.

In this thesis our goal is to find ways to reduce noise in given
data, specifically properly colored, undirected and loop-free
graphs, such that phylogenetic trees can be reconstructed
and compared in order to infer HGT events.



1.2 Preliminaries

Graphs [9, 6]. In this thesis all graphs are finite, undirected
and loop-free, denoted by G = (V ,E), where V (G) :=V is the
set of vertices and E(G) := E is the set of edges connecting
vertices x, y ∈ V , which we also refer to as x and y being
adjacent. We denote the set of all vertices adjacent to a
vertex x by N (x) and we call this set the neighborhood of
x. The degree of a vertex is the number of vertices it is
adjacent to. An edge connecting vertices u, v ∈V is denoted
by (u, v). The complement of a graph G = (V ,E) is denoted
by G = (V ,E), E being the complement of E , i.e., E = {(x, y) ∉
E | ∀x, y ∈ V , x 6= y}. A complete graph is a graph in which
every pair of vertices is connected by an edge, i.e., for all
x, y ∈V , x 6= y , there is an edge (x, y). We denote a complete
graph on n vertices by Kn. For a graph H , such that V (H) ⊆
V (G) and E(H) ⊆ E(G), we say that H is a subgraph of G,
which is denoted by H ⊆G. An induced subgraph H of G has
vertex set S ⊂ V and edge set E ′ = {(x, y) ∈ E(G) | x, y ∈ S}.
A walk is a sequence of vertices 〈v1, v2, . . . , vk〉 such that
(vi , vi+1) ∈ E(G) and vi = v j is possible, i.e., vertices can be
repeated. A path is a walk in which all vertices are distinct
and a path on n vertices is denoted by Pn. A cycle is a walk
in which only the first and last vertices are repeated and
are the same, i.e., v1 = vk in the cycle 〈v1, v2, . . . , vk〉 where
v1, v2, . . . , vk−1 are pairwise distinct. Given a graph G = (V ,E)
such that x, y, z ∈ V and (x, y), (y, z) ∈ E , we denote by the
sequence 〈x, y, z〉, a path on three vertices. A graph G is
connected if there is a path between any two distinct vertices
of G. An independent set of a graph G = (V ,E) is a set I ⊆V
such that for any two distinct vertices x, y ∈ I , (x, y) ∉ E .
A complete multipartite graph is a graph G = (V ,E) with
independent sets I1, ..., In where (x, y) ∈ E if and only if x ∈ Ii

and y ∈ I j such that i 6= j . A colored graph is a graph whose



vertices are colored by some colors from a set C . By (G ,σ),
we denote a colored graph G with a vertex coloring σ : V →
C and we say G is properly colored if for all (x, y) ∈ E(G),
σ(x) 6=σ(y).

Definition 1. Let G = (V ,E) be a graph and C be a set of
colors. The map σ : V →C is a color map for the graph G.

Trees [9, 6] are defined as connected graphs with no cycles
and we denote the leaves of a tree T by L(T ). A rooted tree
is a tree T such that it is rooted in one of its vertices and
we denote the root by ρT . If the root of a tree has degree 1,
we say the tree is planted and we denote the planted root by
0T . An inner vertex has at least degree 2 and the set of inner
vertices of a tree T is given by V 0(T ) :=V (T )\(L(T )∪0T ). By
x ¹T y we denote that y lies on the unique path from the root
of the tree T to x, i.e., y is an ancestor of x and consequently,
x is a descendant of y . For an edge (x, y) in a tree such that
x ¹T y we say that x is the child of y and y is the parent
of x. A tree is phylogenetic if all inner vertices have at least
two children. By x ≺ y we denote that y is a strict ancestor
of x, i.e., x ¹ y where x 6= y . In terms of ancestry, the leaves
of a tree T are ¹T -minimal and we say that T is a tree on
L(T ). The last common ancestor of two vertices x, y ∈V (T ),
denoted by lcaT (x, y), is the ¹T -minimal vertex u, such that
x ¹T u and y ¹T u. Gene and species trees are trees whose
leaves represent genes and species, respectively. These trees
are generally shown in conjunction with one another, i.e.,
gene trees residing in species trees, as shown in figure 1.

Definition 2 ([9]). Let T be a rooted tree. The map TT :
V (T ) → R is a time map for the tree T if x ≺T y implies
TT (x) <TT (y) for all x, y ∈V (T ).

Cographs [9, 5] have many equivalent definitions, one of
which is graphs that contain no path on four vertices as an



induced subgraph, hence why they are sometimes called P4-
free-graphs. If G is a cograph, then so is any induced sub-
graph of G, as well as the complement G. Starting with K1s,
we can recursively construct a cograph by means of joins or
disjoint unions of those cographs. This recursive construction
of a cograph G = (V ,E) defines a cotree, (T, t ), where t is a
labeling of the inner vertices, such that L(T ) = V and the
inner vertices are labeled with the numbers 0 and 1. These
numbers represent a join (0) or disjoint union operation (1)
between the cographs formed by the subtrees of an inner
vertex. A cograph G formed by a cotree T has an edge
(x, y) ∈ E ⇐⇒ t (lcaT (x, y)) = 1.

Rooted Triples [9, 7]. A rooted triple is a binary tree
T on three leaves. We write ab|c whenever the path from
a to b does not intersect the path from c to the root, i.e.,
lcaT (a,b) ≺ lcaT (a,c) = l caT (b,c), and we say the tree T
displays the rooted triple ab|c. We denote a set of triples
by R and say that R is consistent if there is a tree T with
LR ⊆ L(T ), where LR := ⋃

r∈R L(r ), that displays every triple
r ∈ R. By R ′ ⊆ R, we denote a maximum consistent subset of
R, which is a set of triples such that |R \ R ′| is minimal, i.e.,
R ′ excludes the least amount of triples possible in order for
R ′ to be consistent. Since all trees in this thesis are rooted,
we simply refer to a rooted triple as a triple. A species triple
is a triple on the leaves of a species tree or on the color set
of a colored graph. Throughout, we will generally denote the
vertices of a colored graph by non-capitalized roman letters
and their colors by the same, capitalized, roman letter. A
colored graph (G ,σ) exhibits a species triple X Y |Z if there
is a P3, 〈x, z, y〉, as an induced subgraph of G, such that
σ(x) = X , σ(y) = Y , σ(z) = Z are pairwise distinct. We de-
note the set of species triples of a colored graph G by RG .



Given a set of species triples RG of a colored graph G, we
denote the set of P3s forming a species triple r ∈ RG by Qr ,
and we define the set of all P3s forming the species triples in
RG by Q :=⋃

r∈RG Qr .

2 Later-Divergence-Time Graphs

Figure 1: It shows a gene tree, T residing in a species tree, S (to the left) and the
corresponding LDT graph (to the right). ρT denotes the root of T . This figure is

taken from [9].

We begin this chapter by defining a certain type of graphs,
namely Later-Divergence-Time (LDT) graphs.

To a gene tree (T,σ), species tree S with σ(L(T )) ⊆ L(S)
and corresponding time maps TT and TS, respectively, the
LDT graph [9] has vertex set

V := L(T )

and edge set

E := {(x, y) | x, y ∈ L(T ), τT (l caT (x, y)) < τS(lcaS(σ(x), σ(y))}.

Theorem 1 (LDT graph [9]). A graph is an LDT graph if
and only if it is a properly colored cograph (G ,σ) such that
RG is consistent.

In figure 1, we see how we can easily extract an LDT graph
from a given species tree S and a gene tree T . In order to



reconstruct a species and gene tree, we need to make sure
that the data we are given, i.e., a properly colored graph, is
an LDT graph. In the case where a given properly colored
graph (G ,σ) is not an LDT graph, we need to edit it such
that the resulting graph (G∗,σ) becomes an LDT graph, i.e.,
it is a properly colored cograph such that RG∗ is consistent.

Theorem 2 ([9]). LDT graph-modification is NP-complete.

By theorem 2 we know that editing a properly colored graph
G into an LDT graph such that the edit distance between G
and G∗ is minimal is NP-complete. Thus we will attempt to
develop heuristics that edits a given properly colored graph
into an LDT graph. Furthermore, we will formulate an ILP
that will give us exact solutions in terms of the edit distance
between the input graph and the edited graph. We do this
for the purpose of benchmarking future heuristics. We now
proceed by presenting additional theory that will help us with
formulating this ILP.

For a consistent set of triples R we write R ` (x y |z) if every
tree that displays R also displays x y |z, and we say that R
infers the triple x y |z. We will use the inference rules from
[7] to infer additional triples in a consistent set of triples.

{(ab|c), (ad |c)} ` (bd |c) (i)

{(ab|c), (ad |b)} ` (bd |c), (ad |c) (i i)

{(ab|c), (cd |b)} ` (bd |c), (cd |a), (i i i)



Figure 2: (a) shows two trees displaying triples ab|c and ad |c. (b) shows a tree
displaying both triples in (a).

In figure 2 (a) we have two triples, ab|c and ad |c. In (b) we
see the tree displaying both of those triples, and we can see
that the path from a to d does not intersect the path from
c to the root. Thus this tree also displays the triple bd |c,
which is what inference rule (i) states.

We say that R is strictly dense if for all distinct leaves x, y, z ∈
L there is exactly one triple r ∈ R with Lr = {x, y, z} [7]. Fi-
nally we give the definition of the closure of a consistent set
of triples R followed by additional theory.

〈R〉 is the set of all trees on LR that display all the triples
of R and by R(T ), we denote the set of all triples that are
displayed by a tree T . We define the closure of a consistent
set of rooted triples the same way as in [7],

cl(R) = ⋂
T∈〈R〉

R(T ).

As a side note, we have by definition of the closure, R `
(x y |z) ⇐⇒ x y |z ∈ cl (R).

Theorem 3 ([7]). Let R be a strictly dense triple set on L
with |L| ≥ 3. The set R is consistent if and only if cl(R ′) ⊆ R
hold for all R ′ ⊆ R with |R ′| = 2.

Lemma 1 ([7]). Let R be a strictly dense set of rooted
triples. For all L′ = {a,b,c,d} ⊆ LR we have the following



statements: All triples inferred by rule [i i ] applied on triples
r ∈ R with Lr ⊂ L′ are contained in R if and only if all triples
inferred by rule [i i i ] applied on triples r ∈ R with Lr ⊂ L′ are
contained in R. Moreover, if all triples inferred by rule [i i ]
applied on triples r ∈ R with Lr ⊂ L′ are contained in R then
all triples inferred by rule [i ] applied on triples r ∈ R with
Lr ⊂ L′ are contained in R.

Lemma 2 ([7]). Let R be a consistent set of triples on L.
Then there is a strictly dense consistent triples set R ′ on L
that contains R.

2.1 ILP-formulation

We now present all of the necessities for this ILP, which in-
cludes the constants, variables, constraints, as well as the
objective function. The input graph is G = (V ,E) and the
final edited graph will be G∗ = (V ,E∗).

Binary constants Ex y ∈ {0,1} such that

Ex y = 1 ⇐⇒ (x, y) ∈ E .

Binary variables εx y ,T ′
αβ|γ ∈ {0,1} such that

εx y = 1 ⇐⇒ (x, y) ∈ E∗,

T ′
αβ|γ = 1 ⇐⇒ αβ|γ ∈ RG∗.

Objective function

mi n
∑

x,y∈V

Ex y (1−εx y )+ ∑
x,y∈V

εx y (1−Ex y ).

The purpose of the objective function is to minimize the sym-
metric difference between G and G∗.



The following numbered constraints are presented in [7] and
as such we will not provide any proofs for those here.

Constraints
εx y = εy x (ILP 0)

Constraint (ILP 0) is applied for all unordered pairs x, y ∈
V , x 6= y . This ensures G∗ is undirected.

εx y = 0, for all x, y ∈V , σ(x) =σ(y). (ILP 1)

Constraint (ILP 1) ensures G∗ is properly colored.

εw x +εx y +εy z −εxz −εw y −εw z ≤ 2 (ILP 2)

Constraint (ILP 2) is applied for all ordered 4-tuples (w, x, y, z),
which makes sure G∗ is a cograph. This is illustrated in figure
3. The first three terms in (ILP 2) represent the three solid
edges, whereas the remaining three terms represent the three
dotted edges. For the purpose of turning any ordered 4-tuple
of pairwise distinct vertices into a cograph, either at least one
of the dotted edges has to be present or at least one of the
solid edges has to be removed, given that no different order
of the same four vertices result in a P4.

Figure 3: A P4. To break this P4 by insertion, at least one of the dotted edges
need to be inserted. By deletion, at least one of the existing (solid) edges has to

be deleted.

2T ′
αβ|γ+2T ′

αδ|β−T ′
βδ|γ−T ′

αδ|γ ≤ 2 (ILP 3)

By theorem 3 and lemma 1, we know that we can use the
inference rule (i i ) to verify consistency. As stated in [7],



constraint (ILP 3) is a direct translation of rule (i i ). This
constraint is applied for all ordered 4-tuples (α,β,γ,δ).

T ′
αβ|γ+T ′

αγ|β+T ′
βγ|α = 1 (ILP 4)

To get a maximal consistent set of species triples RG∗ we use
lemma 2, i.e., we construct a strictly dense consistent set of
triples. We do this by applying the constraint (ILP 4) for all
unordered (α,β,γ).

Lastly, we set the following constraint for all x, y, z ∈V such
that σ(y),σ(z),σ(y) are pairwise distinct.

εx y +εy z + (1−εxz)−T ′
σ(x)σ(z)|σ(y) ≤ 2 (ILP *)

This enforces the value of the variable to be T ′
σ(x)σ(z)|σ(y) = 1

whenever there is a species triple, i.e., a P3 with three distinct
colors. If we dont have this constraint, then we could have
a P3 〈x, y, z〉 such that σ(x),σ(z),σ(y) are pairwise distinct,
but T ′

σ(x)σ(z)|σ(y) = 0, in which case the triple σ(x)σ(z)|σ(y) ∉
RG∗ and as such is not accounted for when checking for con-
sistency. We provide a short proof for (ILP *).

Proof. A P3 〈x, y, z〉 has two edge, (x, y) and (y, z), thus
εx y+εy z+(1−εxz) = 3� 2 when x, y, z forms a P3. Therefore
T ′
σ(x)σ(z)|σ(y) = 1 whenever there is a P3 with three distinct

colors.

We give two additional optional constraints if one would like
to limit the editing to only removing or only inserting edges.
These are applied for all x, y ∈V .

εx y ≥ Ex y (ILP +)

εx y ≤ Ex y (ILP -)



To restrict the editing to only inserting edges, we use con-
straint (ILP +). Similarly, if we only want to remove edges,
we use constraint (ILP -). If both inserting and removing
edges is allowed, then neither of these two constraints are
used.

3 Heuristics

Given a properly colored graph, G, we want to edit it such
that the resulting graph G∗ is an LDT graph, i.e., it is a prop-
erly colored cograph with a set RG that is consistent. To this
end, we will use a library called Asymmetree [11], which in-
cludes a few methods we will need. Amongst these methods,
we have a heuristic by Crespelle that runs in O (n2) where n is
the amount of vertices of a given graph G [5]. This heuristic
edits a given graph G into a cograph, which we will denote
by cog r aphE di ti ng (G). Additionally we have a method
that checks if a given graph G is a cograph by attempting
to construct a cotree. If a cotree can be constructed then
G is a cograph. To check for consistency we use the BUILD
algorithm which is also included in this library. BUILD is a
top-down recursive algorithm that makes use of an auxiliary
graph called Aho graph, which we now define.

Definition 3 ([9]). Let R be a set of rooted triples on the
vertex set L. The Aho graph [R, L] has vertex set L and edge
set {(x, y) | ∃z ∈ L : x y |z ∈ R}.

Proposition 1 ([9]). A set of triples R is compatible if and
only if for each subset L ⊆ LR with |LR | > 1 the graph [R, L]
is disconnected.



Figure 4: An example of BUILD applied to [R,L], the result of which is the tree T .
This example was taken from [10].

In figure 4 we see how the Aho graph is used in the BUILD
algorithm to verify consistency. The trivial cases of BUILD
that result in a tree, are when the vertex set of the Aho graph
|L| ∈ {1,2}. This is illustrated by the blue arrows in this fig-
ure. BUILD is applied to each component [Ri ,Li ] of [R,L],
and as such Ri becomes restricted to the vertex set Li , i.e.,
Ri := {ab|c ∈ R | a,b,c ∈ Li }. This is shown by the black ar-
row originating at the right component of [R,L] with vertex
set L1 and triples set R1, resulting in the Aho graph [R1,L1],
which has three components. No Aho graph is constructed
for these components as they all have vertex count 1 or 2 and
as such BUILD outputs the trees shown by the blue arrows.
If BUILD outputs a tree for each component it is applied to,
the resulting tree T displays all triples in R, as shown in the
figure, and as such R is consistent. BUILD has a runtime of



O (|R||L|) [10] and the correctness of BUILD is a consequence
of proposition 1 [9]. Furthermore we have a few heuristics for
triples consistency editing. The heuristic we will use for triples
consistency editing is Aho’s BUILD with weighted mincut [1,
4], which makes use of BUILD to determine consistency, as
well as edits the Aho graph such that consistency is upheld.
This algorithm is used to find a maximum consistent triples
set R ′ given an inconsistent triples set R such that R ′ ⊆ R.
The way it works is by removing edges from a weighted aho
graph [R,L], R being an inconsistent set of triples, such that
the resulting aho graph [R ′,L] is of a consistent set of triples
R ′, whilst minimizing the total weight of the edges removed.
The weight of an edge (a,b) ∈ [R,L] is based on the number
of occurrences of triples ab|x ∈ R, x ∈ L. This is illustrated in
figure 5 (c). The runtime for BUILD with weighted mincut is
mainly dependent on the Stoer-Wagner [12] algorithm which,
for a given graph G = (V ,E), has a runtime of O (|V |3). For
BUILD with weighted mincut on [R,L], the runtime is there-
fore O (|L| ∗ |L|3) = O (|L|4) since the stoer-wagner algorithm
is applied at most |L| times. Finally we will need to develop a
method that edits a given properly colored graph G into G∗

such that the set of triples of G∗ becomes consistent. We will
denote this procedure as triples editing. In figure 5 (c) and
(d) we see an example of triples editing on an inconsistent
triples set R, and how cuts are made to make it consistent.

3.1 Challenges

For triples editing, the main challenge in editing G into G∗

such that RG∗ becomes consistent, lies in destroying species
triples without introducing new ones. When destroying a
species triple, we need to destroy all P3s forming that triple.
To destroy a P3 〈x, y, z〉, we have three options.



(i) Remove the edge (x, y)

(ii) Remove the edge (y, z)

(iii) Insert the edge (x, z)

Each of these choices risk introducing one or more (possibly
new) species triples. When removing edges, we make the
following observation.

Observation 1. If e is an edge in an induced K3 of an
undirected, loop-free graph G, then removing e from G will
create a new P3 in G.

Proof. A P3 is a path on three vertices, thus it has two edges.
Let G ′ = (V ′,E ′), be an induced subgraph of G, on three
vertices. Removing an edge from G ′ will reduce its edge
count to |E ′|−1. For G ′ to be a P3, we must have |E ′|−1 = 2,
thus |E ′| = 3, which makes G ′ a K3 since it is an undirected,
loop-free graph with |E ′| = 3 and |V ′| = 3.

For choices (i) and (ii), we know, by observation 1, that
these will only introduce as many P3s, as induced subgraphs
of a given graph G, as there are K3s as induced subgraphs,
sharing the edge being removed. For case (iii) where we
insert an edge, we take a look at figure 5 (f) to illustrate
when we might introduce new species triples. Inserting any
of the edges e1, e2, e3 into the graph would create new P3s
〈b2, a2,c3〉, 〈d , a2,c3〉 and 〈b1, a2,c3〉, which would give us
the triples, BC |A = r1 and DC |A = r2. If r1, r2 ∈ R \ R ′ = F ,
then we know that including those triples in RG∗ would make
it inconsistent and we denote such triples as forbidden triples.
In this case none of those triples are in R and as such we do
not know whether they would make the set RG∗ inconsistent
or not and we denote such triples as new triples. In figure 5
we show an example of triples editing. In the first step, we
extract the species triples along with the P3s forming them,



Figure 5: Example of a properly colored graph G with an inconsistent set of triples
being edited into G∗ such that RG∗ becomes consistent.

which gives us RG and Q as shown in (b). This is done in
O (|E ||V |). Next, we apply BUILD with weighted mincut to
the aho graph [R,LR] of which the result is the graph shown
in (d). At this point we have a maximum consistent triples
set RG∗ ⊆ RG and a set of forbidden triples F = RG \ RG∗, as
shown in (e). We now weight the edges of G, specifically, the
edges that are part of any P3 q ∈ Q, which is shown in (f).
For example, removing (red) the edge (c2, a2) introduces no
forbidden or new triples, and is part of two P3s in Q, hence the
weight 0,0,2. Similarly, by inserting (green) the edge (d , a2)
we would introduce no forbidden triples, one new triple, and
would destroy two forbidden P3s, hence the weight 0,1,2.
Finally, we edit the graph G, which is done by destroying
all P3s q ∈ Qr where r ∈ F , i.e., all of the forbidden P3s
forming the forbidden species triples in F . At this point, we
edit G such that the resulting graph is the one shown in (g).
We destroy all forbidden species triples by destroying all P3s
forming them, i.e., all forbidden P3s. We have three options



(i-iii) to destroy a P3 and when choosing an edge to edit,
we mainly want to minimize the introduction of forbidden
species triples. Secondly we want the introduction of new
species triples to be minimized, and thirdly, we want the
amount of forbidden P3s being destroyed to be maximized.
Thus the edges that are edited in this step are (c2, a2) and
(a2,c1).

3.2 Triples editing

We begin by introducing a procedure that checks if inserting
an edge introduces new species triples, in which case those
triples are returned.

Algorithm 1 potentialTriples finds potential species triples as a result of in-
serting a given edge to a properly colored graph G.

Input: Two non adjacent vertices a,b of a properly colored graph (G ,σ).
Output: A set of species triples R•, created by inserting the edge (a,b).

1: procedure potentialTriples(a,b)
2: R• ←;
3: for c ∈ N (a) do
4: if σ(b),σ(c),σ(a) are pairwise distinct and c ∉ N (b) then
5: R• ← R•∪ {σ(b)σ(c)|σ(a)}

6: for c ∈ N (b) do
7: if σ(a),σ(c),σ(b) are pairwise distinct and c ∉ N (a) then
8: R• ← R•∪ {σ(a)σ(c)|σ(b)}

9: return R•

Lemma 3. Algorithm 1 terminates and correctly outputs a
set of potential species triples introduced by inserting a given
edge into a given graph G = (V ,E). The runtime is O (|V |).
Proof. The existence of a species triple AB |C in a colored
graph means there is a P3 〈a,c,b〉 such that σ(a) = A, σ(b) =
B , σ(c) = C are pairwise distinct, thus by checking that c
does not form a K3 with a and b and that their colors are
pairwise distinct, we ensure R• consists of species triples that
would be introduced as a result of inserting the edge (a,b)
to G. Since G is a finite graph, N (a) and N (b) are finite and



as such algorithm 1 terminates after at most |N (a)− 2| +
|N (b)−2| iterations. If N (a) and N (b) are of maximum size
then |N (a)| = |N (b)| = |V |−2 since a and b are adjacent to
all other vertices but themselves. This results in the runtime
O (2∗ (|V |−2)) =O (|V |).
In the following procedure, we make use of potentialTriples
in order to weight all edges of G based on their occurrences in
any P3, q ∈Qr where r ∈ F , F being a given set of forbidden
species triples. Furthermore, edges are also weighted based
on the amount of forbidden and new species triples that are
introduced as a result of editing an edge. We will denote the
set of forbidden P3s that would be destroyed as a result of
editing an edge e, with De ⊆ Qr , where r ∈ F . Additionally
we write Pe for the set of species triples introduced by edit-
ing an edge e.

Finding the set of all species triples R along with the cor-
responding P3s, Qr for all r ∈ R and the set of all induced
K3s with pairwise distinct colors, K , of a properly colored
graph G, is done in O (|E ||V |). We get the set of forbidden
triples of G, F , by applying BUILD with weighted mincut
on [R,LR] which, as mentioned previously, has a runtime of
O (|LR |4). Thus the initialization of the following algorithms
is done in O (|E ||V |+ |LR |4).



Algorithm 2 weightEdges weights deletion and insertion edges of G.

1: Initialize:
G ← A properly colored graph
R ← A set of triples extracted from G
for r ∈ R do

Qr ← the set of P3s forming the triple r
Q ←⋃

r∈R Qr

K ← A set of all induced K3s (pairwise distinct colors) of G
F ← A set of forbidden triples

2: procedure weightEdges(G ,R,K ,Q,F )
3: for e ∈ E(G) do
4: Pe ←;
5: De ←;
6: for AB |C ∈ F do
7: for (a,b,c) ∈Q AB |C do
8: e1 ← (a,b) . insertion edge
9: e2 ← (a,c) . deletion edge

10: e3 ← (b,c) . deletion edge
11: for e ∈ {e1,e2,e3} do
12: De ←De ∪〈a,c,b〉
13: R• ← potentialTriples(e1) . species triples from inserting e1

14: for r ∈ R• do
15: if r ∉ R or r ∈ F then
16: Pe1 ←Pe1 ∪ r

17: for k ∈ K do
18: if (a,c) ∈ E(k) then
19: if AC |∗ ∉ R or AC |∗ ∈ F then . ∗ is used as a wildcard
20: Pe2 ←Pe2 ∪ AC |∗
21: repeat steps 18 to 20 for e3

22: Set the weight of each edge e to (|Pe ∩F |, |Pe \ R|, |De |)

Lemma 4. Algorithm 2 terminates and correctly weights
insertion and deletion edges of a given graph G = (V ,E) based
on their occurrences in P3s that need to be destroyed in order
to destroy all species triples in F , and the amount of forbidden
and new species triples they would introduce if deleted or
inserted. The runtime for algorithm 2 is O (|F ||Q|n3+|LR |4),
where n = |V |.
Proof. Using observation 1 we know that removing an edge
from a K3 with vertices whose colors are pairwise distinct is
the only way to introduces a new P3 that forms a species
triples. By going through all K3s that share a given edge,



we can correctly weight deletion edges. We simply check,
for all K3s, if removing an edge e introduces species triples
that are either not in R or are forbidden species triples, in
which case these species triples are included in Pe . Simi-
larly, for insertion edges, we check, for all r ∈ R•, if r ei-
ther not in R or if it is in F , in which case r is included
in Pe . Consequently, we can get the amount of forbidden
and new species triples an edge e would introduce if edited,
by |Pe ∩F | = x and |Pe \ R| = y , respectively. As for the
amount of P3s an edge e would destroy as a result of being
edited, we simply include all q ∈Qr , r ∈ F , in De . Thus we
can correctly weight all of the edges e ∈ E(G) by setting the
weight of e to (x, y, |De |). Since the input graph is finite, so
are all the sets that are iterated through, thus algorithm 2
terminates. we begin by initializing the attributes by going
through all edges and then for every P3 〈a,c,b〉 in every for-
bidden triple, we weight all of the edges of the P3 including
the insertion edge (a, b). To weight the insertion edge we
first get the species triples that would be introduced by in-
serting the edge, R•, in O (|V |) and then iterate through R•,
of which we have the upper bound |R•| ≤ (n

3

)= n3−2n2+2n
for n = |V | ≥ 3, resulting in O (n3). We can also use this
as an upper bound for |K |. For deletion edges we iterate
through K , hence the product (|V | + |R•| + |K |). Thus we
have the runtime O (|E | + |F ||Q|(|V | + |R•| + |K |)) = O (|E | +
|F ||Q|n3) =O (|F ||Q|n3) since |E | ≤ (n

2

)< (n
3

)
for n ≥ 5. Addi-

tionally, when accounting for the initialization, the resulting
runtime is O (|F ||Q|n3 +|E ||V |+ |LR |4) =O (|F ||Q|n3 +|LR |4)
since n3 ≥ |V ||E | = n ∗ (n

2

)= n ∗ n∗(n−1)
2 = n3−n2

2 .

For every P3 we want to remove, we will choose the best
edge to edit out of the choices (i), (ii) and (iii), based on the
priority



1. edge that introduces the least amount of forbidden triples,

2. edge that introduces the least amount of new triples,

3. edge with the most occurrences in all q ∈ Qr , for all
r ∈ F .

Finally we introduce an algorithm that finds and returns the
best edge to edit.

Algorithm 3 bestEdge finds the best edge to delete or insert out of three choices
(i), (ii) and (iii).

Input: Three weighted edges and one (optional) constraint.
Output: An optimal edge to edit, out of the three input edges.

1: procedure bestEdge(e1,e2,e3, i nser t i on = F al se,del et i on = F al se)
2: if insertion then
3: return e1

4: if deletion then
5: do steps 9 to 15 for e2 and e3 only
6: (i1, j1,k1) ←ω(e1)
7: (i2, j2,k2) ←ω(e2)
8: (i3, j3,k3) ←ω(e3)
9: E∗ ← {e1,e2,e3}

10: for e ∈ E∗ with weight ω(e) = (i , j ,k), exclude from E∗, all e such that
i 6= mi n{i1, i2, i3}

11: if |E∗| > 1 then
12: exclude from E∗, all e such that j 6= mi n{ j1, j2, j3}
13: if |E∗| > 1 then
14: exclude from E∗, all e such that k 6= max{k1,k2,k3}

15: return an arbitrary edge e ∈ E∗

Lemma 5. Algorithm 3 correctly finds and returns the best
deletion or insertion edge based on the priority described
above. It runs in constant time.

Proof. To ensure algorithm 3 returns the best edge in terms
of the priorities above, we simply choose the edge e with
weight ω(e) = (i , j ,k) such that i is minimum, and in the
case where there is more than one such edge, we choose, out
of those edges, the edge e such that j is minimum. If there is
more than one such edge, we choose, out of those edges, an
edge e such that k is maximum. In the case where multiple



edges have weights (i , j ,k) where i , j are of minimum value,
and k is of maximum value, we simply choose an arbitrary
edge, out of those edges. This ensure we correctly choose
the best edge. We simply compare the attributes of three
different edges against each other and as such the runtime
is O (1). If we are given a constraint then we simply check
if i nser t i on = Tr ue, in which case we return e1 as it is
the only insertion edge. For deletion, we exclude e1 from the
comparisons and compare e2 and e3 similarly to how they are
compared without constraints.

Algorithm 4 TriplesEditing edits a properly colored graph G by removing all
P3s forming forbidden species triples.

1: Initialize:
G ← A properly colored graph
R ← A set of triples extracted from G
for r ∈ R do

Qr ← the set of P3s forming the triple r
Q ←⋃

r∈R Qr

K ← A set of all induced K3s (pairwise distinct colors) of G
F ← A set of forbidden triples

2: procedure triplesEditing(G ,R,K ,Q,F,del et i on = F al se, i nser t i on =
F al se)

3: weightEdges(G ,R,K ,Q,F )
4: for AB |C ∈ F do
5: for a,c,b ∈Q AB |C do
6: e1 ← (a,b)
7: e2 ← (a,c)
8: e3 ← (b,c)
9: e ← bestEdge(e1,e2,e3,del et i on, i nser t i on)

10: if e = e1 then
11: insert e to G
12: else
13: remove e from G

Algorithm 4 weights the edges of G using algorithm 2 and
then destroys all species triples in F by destroying their cor-
responding P3s. Since F and Q are finite sets, we can ensure
this procedure terminates. However, it does not always cor-
rectly edit G into G∗ such that R∗

G is consistent. This is due
to the fact that it is possible that out of all of the choices



we have to destroy a P3, all of those choices could introduce
forbidden triples.

In order to ensure RG∗ is consistent, we can repeat algo-
rithm 4 n times or until RG∗ becomes consistent. The reason
we limit this to n iterations is because it is not guaranteed
to terminate without a limit. This is due to the fact that
we are allowed to edit the same edge at different iterations
and as such we may end up removing and inserting edges
repeatedly. However, if we were to restrict ourselves to only
inserting or only deleting edges, then we would be able to
ensure the procedure terminates and correctly yields a graph
G∗ such that RG∗ is consistent.

Lemma 6. Algorithm 4 has a runtime of O (|F ||Q|n3+|LR |4),
where n is the amount of vertices in the given graph.

Proof. Since we initialize all of the necessary sets and use
weightEdges we have the runtime O (|F ||Q|n3 +|LR |4). We
then go through every P3 of every forbidden triple and as such
we get O (|F ||Q|n3+|LR |4+|F ||Q|) =O (|F ||Q|n3+|LR |4).

Lemma 7. If editing of G is restricted to insertion or dele-
tion, repeating algorithm 4 until RG becomes consistent will
terminate.

Proof. Consider the case where only deletion is allowed. At
every iteration, we either have an empty set F in which case
RG becomes consistent and the algorithm terminates, or we
have at least one P3 that needs to be destroyed. Thus we
end up deleting at least one edge at every iteration. We can
repeat this process until we end up with an empty edge set, in
which case, the set of triples RG =; and as such has become
consistent. This ensures termination and that the resulting
graph G∗ has a consistent set of triples, for deletion only.



Now consider the case where only insertion is allowed. Sim-
ilarly to deletion only, we insert at least one edge at every
iteration. We do this until RG∗ becomes consistent or G∗

becomes a complete multipartite graph. If G∗ is a complete
multipartite graph then it does not contain a P3 as an in-
duced subgraph and RG∗ is consistent. This ensures termi-
nation and that the resulting graph has a consistent set of
triples, for insertion only.

3.3 LDT editing

Now that we have the tools to edit a given properly colored
graph G into G∗ such that RG∗ becomes consistent, we can
try to combine this with the existing cograph editing. We
use the triples editing and restrict the editing to insertions or
deletions only in order to guarantee RG∗ becomes consistent.
We then check if G∗ is a cograph, in which case it is an
LDT graph. If not, we apply cograph editing and then make
sure it is properly colored, i.e., if it is not properly colored we
disconnect any vertices x, y such that σ(x) = σ(y). Finally
we check once again if G∗ is a cograph and if RG∗ remains
consistent.



Algorithm 5 LDTediting attempts to edit a properly colored graph G into an LDT
graph. Returns Tr ue if G was edited into an LDT graph and F al se otherwise.

1: Initialize:
G ← A properly colored graph
R ← A set of triples extracted from G
for r ∈ R do

Qr ← the set of P3s forming the triple r
Q ←⋃

r∈R Qr

K ← A set of all induced K3s (pairwise distinct colors) of G
F ← A set of forbidden triples
del , i ns ← optional booleans for editing restrictions (F al se by
default)

2: procedure LDTediting(G ,R,K ,Q,F )
3: triplesEditing(G ,R,K ,Q,F,del , i ns)
4: if G is a cograph then
5: return Tr ue
6: else
7: cographEditing(G)
8: if G is not properly colored then
9: remove all (x, y) ∈ E(G) such that σ(x) =σ(y)

10: if G is a cograph and RG is consistent then
11: return Tr ue
12: return False
13: return LDTediting(G, R, K, Q, F)

Lemma 8. Algorithm 5 has a runtime of O (|F ||Q|n3+|LR |4),
where n is the amount of vertices in the given graph.

Proof. The initialization along with triplesEditing is done
in O (|F ||Q|n3 +|LR |4). Checking if a given graph G is a co-
graph is done in linear time. In the case where G needs to
be edited into a cograph, we do this in O (n2). addition-
ally, checking for consistency is done in O (|R||LR |), and edit-
ing G into a properly colored graph is done in O (n). Thus
the resulting runtime is O (|F ||Q|n3+|LR |4+n+n2+n+n+
|R||LR |) =O (|F ||Q|n3 +|LR |4).

Lemma 9. Repeating Algorithm 5 until G becomes an LDT
graph by means of deletion, terminates and correctly returns
an LDT graph.

Proof. Similar to the proof for lemma 6, we know that at
each iteration of algorithm 5 we remove at least one edge if



editing is restricted to deletion, because in each iteration we
have an LDT graph or at least one of the three properties
of an LDT graph is not satisfied. We repeat this until G
becomes an LDT graph or until G has no edges, in which
case G is an LDT graph, because G will be properly colored,
RG will be empty and no induced P4 will exist in G.

The reason lemma 9 does not apply when restricted to inser-
tion is because cograph editing does not take into account
the coloring of the vertices and as such, while we may end up
with a cograph whose set of triples is consistent, the graph
may not be properly colored. Even if in this case, deletion is
allowed to edit the resulting graph G∗ such that it becomes
properly colored, G∗ is not guaranteed to remain a cograph.
Thus we cannot ensure termination.



4 Results

To benchmark all the heuristics, we use the Asymmetree li-
brary to simulate species and gene trees from which we ex-
tract LDT graphs.

import asymmetree.treeevolve as te
S = te.simulate_species_tree(10, model=’innovation ’)
TGT = te.simulate_dated_gene_tree(S, dupl_rate=0.5,

loss_rate=0.5, hgt_rate=0.5,
prohibit_extinction=’per_family ’,
replace_prob=0.0)

OGT = te.observable_tree(TGT)
ldt = ldt_graph(OGT , S)

We simulate 100 pairs of species and gene tree with n ∈
{10,14,18,30,40,50} surviving genes, i.e., 600 pairs in total.
These pairs will give us LDT graphs G = (V ,E) with |V | =
n ∈ {10,14,18}. For each such pair, we extract an LDT graph
which we then perturb using probabilities (pi ns , pdel ) = p ∈ P
where pi ns and pdel denotes the probability to insert and
remove an edge, respectively, and

P = {(0.15,0.15), (0.3,0.3), (0.5,0.5), (0.15,0.5), (0.5,0.15)}.

To clarify, each extracted LDT graph is perturbed six times,
once for each p ∈ P , such that it remains properly colored,
which results in the graphs G1, . . . ,G5.

from asymmetree.tools.GraphTools import disturb_graph
G_1=disturb_graph(ldt , insertion_prob=0.15, deletion_prob=0.15)
G_2=disturb_graph(ldt , insertion_prob=0.3, deletion_prob=0.3)
G_3=disturb_graph(ldt , insertion_prob=0.5, deletion_prob=0.5)
G_4=disturb_graph(ldt , insertion_prob=0.15, deletion_prob=0.5)
G_5=disturb_graph(ldt , insertion_prob=0.5, deletion_prob=0.15)

For each perturbed graph Gn,p,i for 1 ≤ i ≤ 100, we edit it
using the different heuristics independently to see how well
they perform in terms of reconciling the other properties of
LDT graphs, e.g., if we apply cograph editing to G, how
often does RG∗ become consistent as a result of this editing.
We begin by looking at cograph editing, triples editing with
k = 100 iterations (to ensure termination), triples editing with
deletion and triples editing with insertion. When the resulting



graph G∗ becomes an LDT graph, we will denote the edit
distance between Gi and G∗

i by Ai , and we will denote the
edit distance between Gi and G ′

i by Xi where G ′
i is the graph

obtained by the ILP. For triples editing restricted to deletion
or insertion, we compare Ai to the minimum edit distance
obtained by the ILP being restricted to deletion and insertion,
respectively. Due to time constraints, we have only generated
ILP solutions for graphs with 10, 14 and 18 vertices since
the time required for the ILP increases significantly as the
size of the input graph increases. As such we are only able
to compare edit distances for heuristics applied to graphs of
those sizes.

4.1 Cograph and triples editing

Figure 6: Results of different heuristics being applied to non LDT graphs with
n = 10,18 vertices and three different perturbations for each value of n. These
plots show the frequency of each heuristic correcting properties of LDT graphs.



For cograph and triples editing, we look at three different
perturbation probabilities,

p ∈ {(0.15,0.15), (0.3,0.3), (0.5,0.5)}

and n ∈ {10,18,40,50} and we see in figure 6 and 7 that the
frequency of these heuristics, editing G into an LDT graph,
decreases as the vertex count increases. We also see that
the frequency of cograph editing correcting the other proper-
ties of LDT graphs decreases quite significantly as the vertex
count increases and the same is true for triples editing mak-
ing G∗ into a cograph. The frequency of triples editing with
deletion turning G∗ into a cograph does however seem to
decrease very slowly as n increases, regardless of the pertur-
bation probability. In terms of the frequency of editing G
into an LDT graph, cograph editing seems to perform bet-
ter on graphs with lower perturbations, but for graphs with
n ≥ 40 it seems that cograph editing no longer manages to
edit G into an LDT graph, because the resulting graph does
not remain properly colored, nor does it have a consistent
set of triples. This seems to be the case regardless of the
perturbation probability. Triples editing with k = 100 slightly
outperforms triples editing with deletion on smaller graphs
regardless of the perturbation probability, as we can see in fig-
ure 7, but looking at figure 8, we see that triples editing with
deletion outperforms triples editing with k = 100 on larger
graphs in all but one case, when n = 40 and p = (0.15,0.15).
Triples editing with insertion performs the worst on larger
graphs, as is seen in figure 7. It does however perform the
best when n = 18 and p = (0.5,0.5).



Figure 7: Results of different heuristics being applied to non LDT graphs with
n = 40,50 vertices and three different perturbations for each value of n. These
plots show the frequency of each heuristic correcting properties of LDT graphs.

How well these heuristics perform in terms of the edit dis-
tance to an LDT graph is seen in figure 8. We observe
that cograph editing is the best performing one for graphs
of these sizes, regardless of the perturbation probability. Ex-
actly how these methods perform on larger graphs is unclear
as we have yet to benchmark them on larger graphs such as
n = 50 or n = 100, although it does seem like triples editing
with k = 100 and deletion perform very similarly with triples
editing (deletion) being slightly better. Comparing the triples
editing variations for n = 18, we see that for p = (0.15,0.15),
triples editing (deletion) performs the best out of the three,
while for p = (0.5,0.5), triples editing (insertion) is the one
that performs the best out of the three. This means that one
could apply triples editing with deletion or insertion based
on what the perturbation probability is, in order to to attain
a more optimal edit distance, since these variations seem to
have a certain probability p for which the median of ratios is



minimum out of the variations of triples editing.

Figure 8: Results of different heuristics being applied to non LDT graphs with
n = 10,18 vertices and three different perturbations for each value of n. These

plots show the ratio of the edit distances Ai and Xi .

4.2 LDT editing

We also benchmark LDT editing (i) with no restrictions and
up to k = 100 iterations of triples editing, LDT editing (ii)
with deletion restriction for triples editing and LDT editing
(iii) with insertion restriction for triples editing. We apply
these edits to graphs obtained by perturbing LDT graphs
with p1 = (0.15,0.15), p2 = (0.3,0.3), p3 = (0.5,0.5), p4 =
(0.15,0.5), p5 = (0.5,0.15) and then look at the ratio Ai

Xi

where Ai is the edit distance between G∗
i and Gi , and Xi

is the edit distance between G ′
i and Gi , G ′

i being the graph
obtained by the ILP and G∗

i the resulting graph of LDT edit-
ing. These comparisons are only made for those G∗

i that
become LDT graphs.



Figure 9: Shows how often LDT editing (i) with no restriction, LDT editing (ii)
with deletion, and LDT editing (iii) with insertion, return an LDT graph. This

figure shows the success rate for 10, 14 and 18 vertices with varying perturbation
probabilities.

In terms of how often all variations of LDT editing success-
fully edits G into an LDT graph, we see by comparing the
frequencies in figure 9 and 10 that the frequency does indeed
decrease as n becomes larger. In some cases it decreases
slower, such as for LDT editing (ii) with p = (0.15,0.5). For
smaller graphs, such as those with n ≤ 18, the effect of per-
turbation probability p on the frequency seems to be quite
insignificant, but for graphs with n ≥ 30, p does seem to
have more of an effect on the frequency for LDT editing (i)
and (ii). For LDT editing (iii), the frequencies do seem quite
similar for different perturbation probabilities. While there
may be one variation of LDT editing that generally has a
higher success rate, the difference seem very negligible for
most n. In the case where n = 50, LDT editing (iii) seems
to generally be a better choice than LDT editing (i), i.e., for



all probabilities p tested. Additionally, when p = (0.15,0.15),
LDT editing (iii) has a 27% and 17% higher success rate
than LDT editing (i) and (ii), respectively. This makes LDT
editing (iii) the best performing, in terms of success rate, for
p = (0.15,0.15) and n = 50.

Figure 10: Shows how often LDT editing (i) with no restriction, LDT editing (ii)
with deletion, and LDT editing (iii) with insertion, return an LDT graph. This

figure shows the success rate for 30, 40 and 50 vertices with varying perturbation
probabilities.

Looking at figure 11 we see that LDT editing (iii) performs
the worst, in terms of edit distance, when the perturbation
probability is low such as p = (0.15,0.15), and it gets consid-
erably worse as n gets slightly larger. Looking at the same
probability for LDT editing (i) and (ii), we see that while the
median ratio increases between n = 14 and n = 18, it is not as
significant as it is for LDT editing (iii). For p = (0.15,0.5),
LDT editing (iii) also performs significantly worse as n in-
creases, compared to LDT editing (i) and (ii). Additionally,



we see that LDT editing (i) and (ii) perform quite similarly,
with (ii) generally performing slightly better as the vertex
count increases. As such, LDT editing (ii) seems to gener-
ally be the better option out of the three variations for larger
graphs. We do however note that when p = (0.5,0.15), LDT
editing (iii) does perform the best. This is true for all values
of n tested as we can see by comparing the purple boxes in
figure 11.

Figure 11: Edit distance to resulting LDT graph of LDT editing compared to the
minimum edit distance to an LDT graph obtained by the ILP.

4.3 BUILD

Finally, we look at how often BUILD with weighted mincut
results in T being binary. We do this for the sake of potential
improvements to triples editing. Looking at table 1, we see
that T is mainly binary for all variations. The rate at which
T is binary for triples editing with insertion when n = 40, is



n p
triples editing

(k = 100)
triples editing

(deletion)
triples editing

(insertion)

20 (0.15,0.5) 64% 81% 55%
20 (0.5,0.15) 66% 66% 82%
20 (0.5,0.5) 81% 68% 70%
40 (0.15,0.5) 57% 83% 89%
40 (0.5,0.15) 79% 69% 99%
40 (0.5,0.5) 84% 64% 100%

Table 1: Shows the percentage of how often the tree T that BUILD with weighted
mincut returns when a set of triples is consistent, is binary. This is tested on 100
LDT graphs, for each vertex count n, that were each perturbed three times with
different probabilities.

very high, and interestingly, when p = (0.5,0.5), T seems to
always be binary.

5 Conclusion

The success rate of the different variations of LDT editing de-
creases as the size of the input graph increases and as such
these variations of the LDT editing heuristic are less reliable
for larger graphs. In such a case where the input graph G
is large, restricting LDT editing to deletion would make it
completely reliable as G∗ is guaranteed to be an LDT graph.
This is also true when LDT editing is restricted to insertion
only, although cograph editing would need to be modified to
account for the coloring of the vertices so that G∗ remains
properly colored. For smaller graphs G such as those with
n ≤ 18 vertices, we can slightly modify LDT editing based on
n in order to attain a more optimal edit distance. Since co-
graph editing performed the best in terms of the frequency of
editing a given properly colored graph G into an LDT graph,
as well as the edit distance, for graphs with (n ≤ 10), it would
be best to apply cograph editing first when LDT editing such
graphs, as this would be enough to edit G into an LDT graph
about 80% of the time, such that the edit distance is near



optimal. Similarly, when n ≤ 18 and the probability of insert-
ing an edge is high while the probability of deleting an edge is
low, LDT editing (iii) is the better choice, since it results in a
more optimal edit distance, compared to the other variations
of LDT editing. If the perturbation probability p is unknown
then LDT editing (ii) would be the better option as it did
generally perform the best, i.e., it resulted in a more optimal
edit distance for most probabilities p.

Since BUILD with weighted mincut returns a binary tree
T in most cases when used in triples editing, and a binary
tree output by BUILD displays exactly one triple for each
{a,b,c} ∈ (L(T )

3

)
, as R(T ) is strictly dense [7], we can use this

to identify new triples as forbidden or not in triples editing.
We know, from the inference rules presented in section 2,
which additional triples are allowed, and we know that at
least any new triple r with Lr ∈

(L(T )
3

)
is forbidden.

To summarize, we have looked at a phylogenetic method of
inferring horizontal gene transfer and we have provided a for-
mulation as well as an implementation (https://github.
com/Rezuxi/LDT_ILP) of an ILP that edits a given prop-
erly colored graph into an LDT graph such that the edit
distance is minimal. Furthermore, we have provided an algo-
rithm that edits a given properly colored graph into an LDT
graph when restricted to deletion or insertion. The data set
used for benchmarking the edit distance to an LDT graph of
the heuristics presented consists of smaller graphs and as such
no conclusion could be made about how well these heuristics
perform on larger graphs, i.e., graphs with up to 100 or 200
vertices. It is therefore necessary that solutions are generated
for larger graphs in order for future heuristics to be properly
benchmarked, as it takes a lot of time to generate solutions

https://github.com/Rezuxi/LDT_ILP
https://github.com/Rezuxi/LDT_ILP


using the ILP.
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