
Implementing GraphQL
in a Simple Web Application

Fanny Örte

Bachelor’s Thesis in Computer Science

at Stockholm University, Sweden, 2021

Implementing GraphQL
in a Simple Web Application

Fanny Örte

Bachelor’s Thesis in Computer Science (15 ECTS credits)

Bachelor’s Programme in Computer Science

Stockholm University year 2021

Supervisor at the Department of Mathematics was Lars Arvestad

Examiner was Woosok Moon

Department of Mathematics

Stockholm University

SE-106 91 Stockholm, Sweden

Abstract
This report investigates the potential advantages and
disadvantages with implementing the GraphQL specification for
a small-scale web application. GraphQL is a new language used
for client-to-server communication implemented to be an
alternative to the more traditional RESTful technology used for
the same purpose.

The purpose of this report is to give the reader some insight into
the complexity of GraphQL. The aim is also to hopefully give
an idea of how GraphQL can be implemented for, and influence,
a web development project.

For this purpose a simple web application using the web
technologies React, Node and Express was implemented. The
client-side of the application was implemented to contain two
features, one that allows users to fill out a contact form, and
another that allows users to log in. The server-side was
implemented to store and deliver the appropriate data for each of
these features. The client to server communication was first
done using RESTful technology and was later compared to
using GraphQL instead. GraphQL was implemented using the
Apollo server and Apollo client libraries.

The study found that there were more advantages than
disadvantages. Both advantages and disadvantages will depend
on how extensive the web application is.

Sammanfattning

Implementering av GraphQL i en enkel webbapplikation

Den här uppsatsen redogör för vilka potentiella fördelar och
nackdelar det finns med att implementera och använda GraphQL
i en småskalig webbapplikation. GraphQL är ett nytt språk som
används för kommunikation mellan datorer över internet och är
ett alternativ till teknologin RESTful som används för samma
syfte.

Syftet med denna uppsats är att ge läsaren en inblick i hur
komplext GraphQL är och hur GraphQL kan användas i ett
webbutvecklingsprojekt.

För detta syfte implementerades en enkel webbapplikation med
hjälp av ramverken React, Node och Express. På klient-sidan av
applikationen implementerades två funktionaliteter, en som låter
användaren av hemsidan fylla i ett kontaktformulär och en
annan som tillåter användare att logga in till en personlig sida.
Server-sidan av applikationen implementerades att lagra och
leverera lämplig data för att stödja båda funktionaliteterna.
Kommunikationen från klient till server implementerades först
med RESTful och sedan användes GraphQL för att göra en
jämförelse mellan de båda teknologierna. GraphQL
implementerades i webbapplikationen med hjälp av Apollo-
biblioteken.

Resultatet av studien visade att det finns fler fördelar med
GraphQL än nackdelar. Fördelar och nackdelar kommer att bero
på hur omfattande webbapplikationen är.

Contents

1 Introduction 1
1.1 Motivation and aim 2
1.2 Research Question 2
1.3 Delimitation 2

2 Background 3
2.1 Client- and server side 3
2.2 API gateway 3
2.3 GraphQL 4
2.4 Node, Express and React 6
2.5 Apollo client and server 7

3 Method 9
3.1 The Web Application 9
3.2 Authentication Service 9
3.3 Contact Service 13
3.4 Client to server communication using GraphQL 14

4 Results 17

5 Discussion 21

6 Conclusions 25

Bibliography 26

 1

1 Introduction

Being able to share data between computer systems over the
internet is and has always been fundamental. Since the
introduction of the RESTful API in the year 2000 it has become
the most popular technology used to implement the
communication between two computers over the web.
However, a new technology is spreading.

RESTful (Representational State Transfer), or just REST, is a
set of recommendations on how to implement the
communication between the client, the computer requesting
data, and the server, the computer sending data. With the REST
API (application programming interface) a request is made over
HTTP from the client to a URL that is connected to a server.
The URL is a path to the server application, called an endpoint.

For an endpoint a RESTful server can implement 4 different
methods. GET for returning requested data, POST for accepting
new data, DELETE and PUT for deleting and updating existing
data. The client can make these requests. The response to a
request is typically sent in JSON format (JSON is JavaScript
Object Notation).

With REST a client often needs to make multiple requests in
order to get all the data required. This can be a problem in terms
of latency. From these multiple requests the client usually also
gets more data than required.

As an example, a client wants to access information about the
top 10 selling books in a bookstore and would also like to have
the author names for each of the 10 books. To get a list of books
containing author id the client might need to make a GET
request at the “/book/” endpoint. In order to get the name of
each author another 10 separate requests need to be made using
the author id’s from the previous result. In addition to this,
making a GET request at the “/author” endpoint will result in
data that is not intended to be used. It is possible for the REST
API to include all, or just a small portion of, the information
about the author. However this would most likely mean passing
on unnecessary data to another clients request (1).

In 2012 Facebook experienced an optimisation problem with
REST when using it for their mobile application servers. As a
solution a new client-to-server communication technology,
GraphQL, was created. GraphQL is a query language and was
made public as open source in 2015 (2).

 2

While REST leaves it up to the server to specify what data is
passed from the server to the client GraphQL can be described
as a client-driven architecture. On the server-side a GraphQL
schema specifies what data exists and how this data is presented
to the client when making the request. The client is in control of
what data is returned from the server by executing a query
against it. The response data from the server has the same
format as the query (3).

1.1 Motivation and aim
FaceBook, together with many other companies, e.g. Twitter
and Github make use of GraphQL in their products (4).
Although REST is the most popular web technology for sharing
data between client and server via HTTP, GraphQL seems to be
a trending topic in the field of API technologies. GraphQL
promises multiple advantages over REST but could also be
excessive for small applications (3).

This study aims to contribute with knowledge about using and
implementing GraphQL for a web application. For the purpose
of this study a simple web application was created with aim to
further investigate if and potentially how GraphQL can benefit
or disadvantage a website.

1.2 Research Question
What are pros and cons when implementing GraphQL in a
simple web application that communicates with a small scale
back-end server?

1.3 Delimitation
In order to limit the scope of this study, the focus will be on
comparing GraphQL to the RESTful technology.

 3

2 Background

In this chapter essential concepts for this thesis will be
presented.

2.1 Client- and server side
In web development there are mainly two parts to creating a
website, the client-side and the server-side. Client- and server-
side developers typically need to work closely together in order
to maintain a well-designed and functioning product.

The client-side is the software that runs on a users web browser.
The web browser can read Javascript, Html and Css code.
Developing a website on the client-side means implementing
every part of the website that a user sees and interacts with. The
client-side is also referred to as the front-end of the application.

The server-side is the part of a website that run on the server.
The client-side is a platform that displays and collects data from
the user, the data is retrieved and sent to the server-side. The
server-side, or the back-end, of the application is built to work
behind the scenes to manage the data of the application that is
typically stored in a database (5).

2.2 API gateway
An API gateway is a type of middleware that goes between the
client and server. API gateways are especially useful when the
back-end of an application is broken up into small independent
services, in what is known as a microservice architecture. The
Microservice architecture is popular since it offers plenty of
benefits including that is makes an application easier to develop,
deploy and maintain.

An API gateway serves as a central application interface.
Instead of sending request directly to a service at the back-end,
the client sends them to the API gateway who passes the request
to the appropriate service. The API gateway can also be useful
for a number of other things, for example to authenticate a user.
If the user needs to fetch data from multiple services, they need
only to be authenticated once. This reduces the time for data to
travel from client to server and ensures the authentication
process stays consistent across the application (6).

 4

2.3 GraphQL
GraphQL is described as a query language used in client-to-
server communication. On the client-side the language is
essentially used to request data from a server. On the server-side
GraphQL specifies how to present data to a client (3).

The GraphQL specification serves as a guideline of how to
implement client-to-server communication, describing the
capabilities and characteristics of the language. Following these
guidelines, it is possible to implement GraphQL using any
programming language (7).

In the next three subsections the basics of GraphQL will be
described.

Schema

A GraphQL schema is a text document on the server-side
consisting of a collection of types. These types are the data that
the server-side of the application needs to store and deliver. The
defined types are used by both client and server to validate data
requests.

As an example of a schema, consider an application, like twitter,
that lets users log in and post a text that will be broadcasted.

Figure 2.1: Example of a GraphQL schem for an application that lets users
log in and make posts.

 5

This app will store information about users and posts and its
schema is depicted in figure 2.1.

A type in a GraphQL schema represents an object. These objects
have fields that returns a specific type of data. In the schema, the
“User” type has three fields. The fields “githubLogin” and
“name” return a scalar data type. The scalar type String and ID
are part of the GraphQL language. Both String and the ID are
strings but the ID will be a unique identifier for each user. It is
also possible to define custom scalar types. The field “posts”
will return a list of the object type “Post”. The exclamation mark
means that the field can not return something that is empty.

The object type “Post” has four fields. The first three fields
return a scalar data type and the last field return a “User” object
type.

The ability to query multiple types of related data is an
important feature of the GraphQL language. When a field of an
object is specified to return another object, these objects become
connected. A post must be made by a user so the field
“postedBy” will return that user. Likewise the “posts” field for
the “User” object will return a list of “Posts” that is associated
with the user.

While the “User” and “Post” types are defined specifically for
the application, the Mutation and Query types are part of the
GraphQL language. The Query type defines what types of data
requests can be made to the server. The “allPosts” query will
return a list of posts and the “allUsers” query will return a list of
users.

The Mutation type defines what kind of data the server accepts,
in this case “makePost” makes it possible to create new posts.
Adding these in the “schema” type makes them available in the
GraphQL API (7).

Resolvers

A Resolver is a function that is responsible for getting and
returning the correct data for a single field specified in the
schema. Every field must have a corresponding resolver
function with the same name that returns the specified datatype
(7).

Queries and mutations

When making a request to a GraphQL server the query
operation is used to fetch data. The query specifies what data to

 6

receive by including fields that maps to the field with the same
name in the schema defined on the server. As an example, a
client can send the following query to a GraphQL server (that
has defined the schema in figure 2.1):

query {
 allPosts {
 title
 body
 postedBy {
 name
 }
 }
}

This is a request to get a list of all posts with their title and body
and also information about the name of the user who posted it.

To write new data to the server the mutation operation is used. A
mutation is written in a similar way as a query but also adds data
to the server-side. To make a new post the title and body must
be specified. For example, a user can make a new post and
select information about the post that was just made with the
following mutation (the id and information about the user will
be automatically generated by the server) (7):

mutation {

 makePost (title: “Fun fact about elephants”,
 body: “Elephants are constantly eating”) {

 id
 postedBy {
 id
 name
 }
 }
}

As another example, figure 2.2 shows a query and the response
sent from the Star Wars GraphQL API (8). In the query a
request was made for the name, gender and also information
about the name, population, climates and terrains of the home
world for a person with the specified id.

2.4 Node, Express and React
Node is a runtime environment that enables developers to create
server-side applications in JavaScript. This is beneficial since it
creates less of a gap between client-side and server-side
developers when both sides write code in the same language.

 7

Node also has many other benefits, among other things it is
optimised to be used in web application and encourages
developers to take advantage of new improvements in language
design. The node package manager (npm) also provides
hundreds of thousands reusable packages that can be added to a
project.

Express is a Node web framework that, among other things,
enables developers to write handlers for HTTP (Hypertext
Transfer Protocol) requests. These handlers make it easy to
implement REST APIs that can work with cookies, URL
parameters, sessions and many other things (9).

React is a JavaScript library for building user interfaces on the
front-end of the application. React is component based, each
component has its own state. React will efficiently update and
render the right components when there are data changes to the
application. Therefore it is a library that makes it easy to
manage and update different views depending on the state of the
application (10).

2.5 Apollo client and server
There are multiple libraries for implementing GraphQL into a
project. For implementation on the server side the Apollo Server
is the most popular one (3). With Apollo Server it is easy to
build a production ready and self-documenting GraphQL server
with Node, that can use data from any source. Apollo Server
also provides the GraphQL playground on the same domain as
the implemented Apollo GraphQL server. The playground is a
graphical user interface (GUI) that can be used by the web
browser during development (11).

Figure 2.2: Query to, and response from the Star Wars GraphQL API

(b) GraphQL query (a) Response object

 8

Apollo client is a JavaScript library for fetching, cashing and
modify application data with GraphQL and can be integrated in
a React project (12).

The documentation for the Apollo libraries is extensive and
provides many examples which makes the libraries easy to use.

 9

3 Method

This study was done as a part of a bigger project implementing a
full-stack web application for the company Value Delivery IT
Consultancy. In order to find answers to the research question
two website features where implemented, one that allows an
end-user to contact the company and another that enables a user
to log in to a personal account.

In order to completely investigate the benefits of using the
GraphQL specification for the client to server communication,
an implementation using the REST architecture was firstly done.
With REST the client-side of the web app communicated
directly to a service on the server-side by making post, get and
delete requests to the exposed end-points. Secondly an API
gateway was implemented using the GraphQL specification.
With this implementation the client-side makes requests to the
gateway using queries and mutations. The gateway works as a
single end-point for the client-side and is responsible for
populating these queries with data from the appropriate service.

3.1 The Web Application
The client-side (or front-end) of the web application was written
using the user-interface library React.js. The server-side
(or back-end) consists of two different services, the Contact
Service and the Authentication Service. These services where
implemented on different domains and with the web application
framework Express.js. The server-side also consist of a service
implemented with Express.js as an API gateway that uses the
GraphQL specification to handle client-side requests.

In the next sections further details about how the web
application was implemented around the above mentioned
services will be presented.

3.2 Authentication Service
An end-user of the website for Value Delivery Consultancy is an
employed consultant. A consultant of the company should be
able to, among other things, review a personal account listing
his or her technical competence and edit or upload a CV. As a
first step to implement this feature an authentication service that
allows users to log in and out was built for the server-side of the
application.

The authentication service API provides four different end-
points and communicates with a database that stores information
about users and user sessions. An overview of the database can

 10

be seen in figure 3.1. This API is implemented using the REST
architecture and enables client computers to make the following
requests:
- A post request to create a new user in the database table

“users” and a get request to fetch information about a given
user.

- A post request to create a new user session in the database
table “userSessions” and a get request to fetch information
about a given user session.

- A delete request to remove a given user session from the
database.

Client to server communication using REST

The user interface for the log-in functionality was implemented
with a new page “account” on the front-end of the website. The
account page displays a log-in form and to log in the user enters
a user name, and corresponding password, of a user that exists in
the database table “users” on the server-side.

When a user submits the log-in form the front-end is triggered to
firstly make a post request to the authentication service at the
end-point “/api/v1/sessions”, sending along the entered user
name and password as a JSON object. This request is made so
that the back-end can process the log-in request which means
checking that the user exists and is authenticated (the right
password was entered). The end-point is named v1 for version
one because if changes need to be made to the REST API they
will be added in a new version. A session is what is created in
the database table “userSessions”. When there exists a session
for a user in the database then the back-end knows that this user
is already authenticated and logged in to the application.

In order to handle the different HTTP request made to the
authentication service, Express.js was used. First a new instance
of express was created and set up to listen to port 8080. To

Figure 3.1: The Authentication Service database diagram

 11

handle incoming request when a user wants to log in, the
method “post” of the express instance was used.

The post method accepts a string that is the end-point (in this
case “/api/v1/sessions”) and a function as parameter. The
function is a call-back function and will be called when an
incoming post request is made at the end-point, in other words,
when the user request to log in to the application. The function
accepts three parameters req, res and next. The req parameter is
the request that is being send and the res parameter is the
response that will be returned. The next parameter is used to
return an error from the authentication service. This is the
standard way to, with Express.js, write functions that handles
HTTP requests.

The body of the call-back function is where the code for
authentication of a user was added. First the incoming request
will be checked to contain a user name and a password. An error
will be generated if this was not provided. Additional errors will
be generated if the user name did not exists in the database table
“users” or if the password did not match the corresponding
“passwordHash”. The password check is done using the node
package bcrypt. If no errors where generated the user was
authenticated and a new user session will be created in the
database table “userSessions”. The id for the user session is
generated using the node package uuidv4, the user_id is the id of
the authenticated user (found in the database table “users”) and
the node package date-fns will be used to add the “expiresAt”
timestamp, the “createdAt” timestamp will be automatically
generated in the database.

The response that is then returned is the newly created user
session as a JSON object. Also a cookie named “userSessionId”
that stores the id of the user session (the id that was generated
when creating the new user session). An example of a request
and response is depicted in figure 3.2. The cookie acts as a
secret key that is stored in the browser of the user and, when
present, is sent along with every request to the server who in
turn uses this key to authenticate the user.

When a user has been authenticated, a new user session has been
created at the back-end and the front-end has received the
response object and cookie, a second API call is made from the
front-end to the back-end. The front-end wants not only to
authenticate a user, it also wants to access information about the
user in order to update the user interface for the account page. In
order to do so a get request is made at the endpoint
“/api/v1/users/:user_id”, where “:user_id” is replaced with the id
of the user that was sent back as a result from the previous
request to the server.

 12

In a similar way as for the log-in request, the authentication
back-end service uses the get method on the express instance
with the string “/api/v1/users/:user_id” and the same type of
call-back function as parameters. The call-back function is
executed when an incoming get request is made to this end-point
and checks the database for the user with the given id, returning
an error if user does not exist or responds with the data for the
given user as a JSON object.

After these two separate calls the front-end selects the id of the
user session and also the id and name of the user. This
information is then stored in a global variable. This global
variable is available on the entire domain during the run-time of
the front-end application. The variable acts as the global state
and allows the front-end to check if a user session is set, that is,
if a user is logged in. If the user is not logged in the variable will
be empty.

When a user is logged in, and the front-end has received the data
about the user from the get request, the account page will
display a view of personal information. As a start, a simple
welcome message containing the user name and a log-out
button.

When the user logs out a delete request is sent to the endpoint
“/api/v1/sessions/:session_id”, replacing “session_id” with the
session id that is set in the global state. The authentication
service uses the delete method on the express instance for this
endpoint. The call-back function removes the user session with
this id from the database and clears the cookie. The front-end
clears the global variable so that the view with the log-in form
will be displayed on the account page again.

In order to make sure that the front-end always knows when a
user is logged in, two additional requests are sent to the back-
end every time the application front-end re-renders. This is done
in order for the account page to keep the view of the personal
information as long as the user has not logged out or the session
has expired on the server (in that case the user should also be
logged out of the system).

Figure 3.2: Log-in communication from client to server, using REST.

(a) Body sent with post request. (b) Response object.

 13

This time the front-end wants to access information about the
session set in the cookie in the browser. First a get request is
send to the server endpoint “/api/v1/sessions”, the server checks
if a cookie containing a user session id was set. If a cookie was
not set nothing will be returned and the front-end will clear the
global state. If instead the user session, with the given id set in
the cookie, has not expired it is returned from the server.
Another call is made to the endpoint “/api/v1/users/:user_id”.
From the requests the id of the user session and also the id and
user name of the user is set in the global state. At the back-end
the functions that handles these request are implemented in the
standard way with Express.js as previously mentioned.

Any errors occurred on the server-side when submitting the log-
in from will be sent to the client-side who in turn will display an
error message to the user.

3.3 Contact Service
Another end-user of the website is a potential client to Value
Delivery Consultancy looking to hire a consultant. For this
purpose the user should be able to contact the company.

The contact service REST API was implemented providing a
single end-point “/api/v1/contact-service” which is associated
with a post method.

Client to server communication using REST

The user interface was implemented with a new page “clients”
and a contact form is displayed on this page. The client-side also
validates that the entered value for all the form fields is in the
correct format before the data is sent to the back-end as an
object containing the data for all fields.

When the contact-service receives a post request, the received
data object is firstly checked to contain all the required fields.
Secondly an email containing all information is sent to
contact@valuedelivery.se. The response to the client is a JSON
object that contains information about if the mail was send
successfully or not.

 14

3.4 Client to server
communication using GraphQL

When implementing the client to server communication using
GraphQL an additional service, an API gateway, was created.
The gateway can be thought of as a part of the server-side, or
back-end, of the web application, adding an additional layer
between the two RESTful services. The front-end of the
application was then changed to execute mutations and queries
against the GraphQL gateway instead of making post, get and
delete request directly to a back-end service. The back-end was
changed to authenticate a user at the level of the gateway instead
of at the individual authentication service. This gateway could
also have been implemented to work as a middleware using
RESTful instead of GraphQL. It was chosen not to do so for the
purpose of this study since the company behind the website did
not intend to use the gateway without GraphQL.

In order to use GraphQL the Apollo Server library was used in
the API gateway service, a schema and resolvers where defined.
Apollo Client was used to enable the client-side to execute
queries and mutation against the GraphQL gateway server.

As the first step the different types needed for the application
where identified. An overview of the schema can be seen in
figure 3.3. Object types for the authentication service became
“User” and “UserSession”. Query and Mutation types for this
service where “userSession”, “createUserSession” and
“deleteUserSession”. The Contact service needed a “mailStatus”
Object type and a “createContactForm” query.

When a user submits the log-in form the client-side of the
application executes a mutation against the GraphQL gateway
server, selecting the field “createUserSession”. The return type
for this field is the object type “UserSession” and the fields
selected for this object type are “id” and “user”. In turn the field
“user” is of another object type “User” and the fields “id” and
“user_name” are selected. An example request and response is
depicted in figure 3.4.

The executed mutation is checked against the schema on the
GraphQL server and the resolver for the field createUserSession
is responsible for returning the correct data type. With Apollo
Server library a post request is made to the authentication
service in order to create a new user session in the database. The
response from this request is an object containing all fields, with
their corresponding value, of the newly created user session.
With Apollo Server there is no need to have a custom resolver
for each of the fields in the object type “UserSession”, returning

 15

the object obtained from the post request to the authentication
service will populate the corresponding fields of the
“UserSession” object selected in the mutation.

The field “user” has a resolver and makes a get request, to the
authentication service, with the user id obtained from the
previous post request. The return object is used to populate the
fields selected for the “User” object type.

To update the global user session state on the client-side a
query, selecting the “userSession” field, is executed against the
gateway. The gateway handles the request to fetch a user session
with the id set in the cookie on the client. The fields selected on
the UserSession type and User are the same as when executing
the previous mentioned mutation. The difference is that this
query could return the specified data or nothing at all.

When a user wants to log out from the app, the
“deleteUserSession” field is selected on the mutation type using

Figure 3.3: GraphQL schema for the API gateway

 16

the id of the current session. The resolver for this field returns
true when this user session has been successfully removed from
database on the server-side.

When a user submits the contact form, the client-side executes
the field “createContactForm” of the mutation type.

Figure 3.4: Log-in communication from client to server, using GraphQL.

(b) Executed mutation on the
client-side.

(a) Response object from the server-
side.

 17

4 Results

In this chapter the results of implementing GraphQL compared
to REST will be presented.

GraphQL set up

Implementing GraphQL into the web application involved
learning about all the concepts of the GraphQL specification. It
also required getting familiar with a library for setting up
GraphQL, both on the client- and server-side of the application.
Compared to the implementation using REST the GraphQL
approach was more time consuming, although did not come with
too many struggles thanks to the well documented Apollo
libraries.

The study also found that, according to the GraphQL
specification, a schema must contain a Query type. This was
discovered when beginning the migration from REST to
GraphQL with the contact service. To enable for the client-side
to send data to the contact service, the API gateway need only to
provide a mutation. This initial set up generated an error from
the Apollo server library and resulted in adding a Query type
that was later removed.

Introspection

A beneficial feature found was that GraphQL supports
introspection over the schema on the server-side. In figure 4.1 is
an example of executing an introspecting query.

Figure 4.1: Example of a for type checking the schema, and a response

 18

Apollo-server provides a UI tool, the GraphQL playground.
With this tool developers can navigate into the types and
discover the schema in a user friendly way. Figure 4.2 shows
how the GraphQL playground can be used to get familiar with
the types of the back-end.

There are UI tools for REST APIs, e.g. Postman, although it is
not possible to check what kind of data is available on the
server-side.

Data requests

For the log-in functionality the front-end of the application was
simplified when using GraphQL. Instead of having to make two
separate API calls and then extracting the data needed, only one
data request was made and the data object returned had the
desired format. With GraphQL there was one API call for every
time the front-end re-renders and one call for when a user wants
to log in, compared to REST when in those cases two separate
calls and data-parsing was made.

With the google chrome developer tool the total duration, from
the start of the request to the receipt of the final byte in the
response was evaluated. At five different occasions the total
time for a log-in request to be send, and a response to be
received, was tested. The result can be seen in figure 4.3. The
graph shows a comparison between the request loading time for
the implementation with GraphQL and the implementation with
REST (where the two different API requests where
summarised). The results where different each time. This is
probably due to difference in network speed and to that the
functions handling the requests are asynchronous. Asynchronous
functions are executed in parallel to the rest of the programming
code and may cause the functions to finish executing at different
orders each time.

Figure 4.2: Overview of the types using the GraphQL playground.

 19

API changes

With GraphQL it is possible to make some API changes to the
server-side without effecting the client-side. The authentication
service may at one point add additional fields to the database
table “users”. With GraphQL these fields can be added to the
“User” type in the schema and the existing Queries and
mutations made from the client are not affected by this change
since the client is in control of what is returned from the server.
In other words this type of change will not cause the application
to crash or give unexpected results to the client.

With REST, when client communicates directly to the endpoint
“/api/v1/users/:user_id”, if similar changes are made, the client-
side will not work as expected until these changes are handled.

Error handling

In some cases the implementation with GraphQL automatically
presents the client with detailed error messages.

As an example, a common error is to send a request object in the
wrong format to the server-side. With REST, code was added to
check that the object sent with the post request to the end-point
“api/v1/sessions” contained both the fields “user_name” and
“password”. As shown in figure 4.4, if the client sends a request
directly to the REST end-point without these exact fields the
authentication service will send an error with an error message
of “invalid body”.

No code was added to the GraphQL API gateway to inform the
client of an invalid request body, although as shown in figure

Figure 4.3: Request loading time on five different
occasions, comparing REST with GraphQL.

 20

4.5 the client, when making this kind of error, is presented with
a detailed error message automatically, specifying exactly where
things went wrong.

Figure 4.4: Error message using REST.

Figure 4.5: Error message using GraphQL.

 21

5 Discussion

This chapter contains a further discussion about the significance
of each of the results. Finally, a reflection over the choice of
method and a discussion about what can be done for further
research will be presented.

GraphQL set up

A conclusion to be made from setting up GraphQL for the web
application is that a disadvantage with GraphQL could appear in
a small-scale project. If an application only needs their back-end
to allow for some mutations then GraphQL will involve
implementing features that are not intended to be used. Having
code in a project that does not add anything to the rest of the
program will most likely over-complicate the project and be
misleading for anyone trying to understand and work on it.

The time spent on the implementation with GraphQL could also
be a disadvantage for a project with a tight deadline. It is most
likely of great value for a company that the end-users will like
their products. If GraphQL does not add, in the perspective of
the end-users, a valuable feature, it might not be beneficial
delaying the release of a product because of it.

Introspection

With the introspective feature, little to no knowledge of the
back-end is needed to start sending data to and requesting data
from the services. Client-side developers can easily find out
what kinds of data requests are available and what type of data
is returned from making them.

For server-side development this feature acts as documentation
for the API. The GraphQL API gateway in this sense can be
thought of as a self-documented whereas with the REST
implementation the server-side would need to provide some
extra documentation. With this automatically generated
documentation, GraphQL servers will have a somewhat
consistent documentation. It is beneficial to have a consistent
documentation for a back-end API. It could for example
facilitate for front-end developers by abstracting the back-end
implementation, in other words front-end developers do not
need to know details about the implementation to start sending
requests. Back-end developers can also spend less time writing
commentary.

 22

Data requests

The GraphQL implementation reduced the amount of data being
passed from the server- to client-side. When the client-side
execute a query for when a user wants to log in, there is no over-
fetching of data. Nothing needs to be done to the response object
to be in the desired format. This is beneficial since it simplifies
the implementation, making it easier to understand. The query is
in the same format as the result from executing it against the
API gateway. In the same situation the client-side avoided
under-fetching of data. With REST one separate API call did not
result in the desired data, making it so that the client needed to
make an additional request. With GraphQL only a single API
call was made to fetch the data.

It is hard to make any firm conclusions from the performance
tests made for this study. The result showed that the REST
implementation reached the highest loading time but also had
overall lower results than the GraphQL implementation. To get
a better idea of how the two implementations affected the
website performance, additional tests need to be done.

It is also hard to make any conclusions to whether the
application performance benefited or not from having no over-
and under-fetching of data. This because the back-end did not
remove the RESTful implementation when implementing
GraphQL, rather an additional service needs to be up and
running in order for the client-side to execute queries and
mutations with GraphQL. This most likely effected the result of
the performance tests. It is most likely that the result had been
different if an API gateway had not been used and instead the
RESTful architecture was completely exchanged with GraphQL.
Testing the performance when hosting the server-side on a more
optimised web server, as supposed to running everything
locally, would also most likely give different results.

API changes

For a small-scale project that has only one client that
communicates with a server it might not be too much of an issue
that changes made for the server API effects the runtime of the
client. If however a back-end service is being used by multiple
clients it will most likely be problematic that changes to the API
could cause these clients to crash.

With the REST architecture, a possible solution to this is
versioning, keeping old end-points up and running and creating
new end-points that are updated with the newest changes. In this
way clients can be made aware that certain versions are being

 23

deprecated. Clients can migrate to the newer version, making it
“safer” to gradually remove older end-points.

An advantage with GraphQL is there is no need for versioning.
Instead of having old end-points up and running, the fields, that
are about to be deprecated because of the new changes, can be
kept. This can be beneficial for saving up on resources and also
for developers to spend less time versioning the API.

Error handling

With REST it is possible to generate custom errors and
messages. As the example in the result chapter shows, we can
generate an error from the authentication service if the log-in
form did not contain the excepted fields. An advantage with
GraphQL was that if the mutation to create a session does not
contain the expected fields, a detailed error message will be
generated automatically. GraphQL points out exactly which part
of the mutation was at fault. Although it’s possible to write code
that will generate similar detailed errors, having it automatically
generated is, again, beneficial since it means less time spend on
writing them and they are consistent throughout the application.

Choice of method

The method chosen to answer the research question, made it
somewhat difficult to test whether the performance of such a
small web application would benefit from using GraphQL. This
because the additional service, the API gateway was used to
handle requests made with GraphQL. To get a better idea of the
performance was affected, it could be easier to completely
remove the REST architecture and have GraphQL as a single
end-point for each of the back-end services. In this way the
server-side can have resolvers that populates the fields in the
request with data from the database, which reduces the overall
number of requests.

The choices of web frameworks and language also had an
impact on the complexity of setting up GraphQL in the project.
Since there are different implementations for different
frameworks and languages, further research about how
GraphQL can be integrated with the chosen web tools needs to
be done in order to determine the complexity level.

Further research

In order to further research the pros and cons of GraphQL, an
implementation involving caching can be done. It can also be of
interest to investigating how uploading of files are supported by

 24

the Apollo framework and how this differs from uploading files
using the REST architecture. File uploads are not included in the
GraphQL specification and it is mentioned in articles that this is
one of the larger drawbacks to GraphQL (3).

Another topic for research is how the two implementations
would be affected by having heavy traffic, in other words
multiple requests. This was not done for this study since the
application was only tested to run on a local computer. The
results will depend on where the website is hosted and there are
tools for testing a website once it can be accessed on a web
server.

 25

6 Conclusions

It was found that a disadvantage with GraphQL for a small-scale
web application was increased complexity of the
implementation and steeper learning curve. The complexity of
setting up GraphQL also depends on which programming
languages and web framework being used.

Advantages where also found. When considering implementing
GraphQL for a simple web application that communicates with a
small scale back-end server, it is a good idea to weight these
advantages against the possible disadvantages. Depending on
how simple the web application is, in other words how many
features and resources it consists of, these advantages will be
more or less effective.

Advantages found using GraphQL where:
- The ability for the client-side to check what types of data are

available on the server-side. This is useful when front-end
developers are not too familiar with the back-end
implementation.

- No over- or under-fetching of data. The front-end is in
control of what is returned from the server-side and related
data can be fetched with a single API call.

- There is no need for versioning. Changes made to the back-
end API does not affect the client-side in the same way as
they do using the REST architecture. This means saving up
on resources and time.

- More auto generated errors and detailed error messages.

 26

Bibliography

1. Craig Buckler. What Is a REST API?
https://www.sitepoint.com/developers-rest-api/. (Online;
accessed 09-Dec-2020).

2. Lee Byron. GraphQL: A data query language.
https://engineering.fb.com/2015/09/14/core-data/graphql-a-
data-query-language/. (Online; accessed 09-Dec-2020).

3. GraphQL: Core Features, Architecture, Pros and Cons.
https://www.altexsoft.com/blog/engineering/graphql-core-
features-architecture-pros-and-cons/. (Online; accessed 09-
Dec-2020).

4. Who’s using GraphQL? https://graphql.org/users/. (Online;
accessed 09-Dec-2020).

5. Joshua Weinstein. Client-Side vs Server-Side Web
Development. https://careerkarma.com/blog/client-vs-
server-side-development/. (Online; accessed 09-Dec-2020).

6. Thomas Bush. What Is an API Gateway?
https://nordicapis.com/what-is-an-api-gateway/. (Online;
accessed 09-Dec-2020).

7. Eve Porcello and Alex Banks. Learning GraphQL:
Declarative data fetching for modern web apps. O’Reilly
Media, Inc., 2018.

8. swapi-graphql. https://github.com/graphql/swapi-graphql.
(Online; accessed 09-Dec-2020).

9. Express/Node introduction.
https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Express_Nodejs/Introduction. (Online; accessed 09-
Dec-2020).

10. https://reactjs.org. (Online; accessed 09-Dec-2020).

11. Introduction to Apollo Server.
https://www.apollographql.com/docs/apollo-server/.
(Online; accessed 09-Dec-2020).

12. Introduction to Apollo Client.
https://www.apollographql.com/docs/react/. (Online;
accessed 09-Dec-2020).

